期刊文献+
共找到31,335篇文章
< 1 2 250 >
每页显示 20 50 100
Regulation of crystal and microstructures of RETaO_(4)(RE=Nd,Sm,Gd.Ho,Er)powders synthesized via co-precipitation 被引量:1
1
作者 Jiang Tian Lin Chen +10 位作者 Xunlei Chen Keren Luo Baihui Li Di Zhang Meng Wang Bing Xu Zhiyi Ren Shixiao Yan Xiaoliang Sun Chi Liu Jing Feng 《Journal of Rare Earths》 2025年第6期1246-1255,I0006,共11页
Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research... Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders. 展开更多
关键词 Rare earth tantalates Chemical co-precipitation method Rare earths Crystal structures MICROstructures Annealingtemperatures
原文传递
Vortex Mössbauer Effect as Nanoscale Probe of Chiral Structures
2
作者 Yixin Li Youjing Wang +6 位作者 Kai Zhao Zhiguo Ma Yumiao Wang Yi Yang Xiangjin Kong Changbo Fu Yu-Gang Ma 《Chinese Physics Letters》 2025年第6期27-37,共11页
Chirality,a common phenomenon in nature,appears in structures ranging from galaxies and condensed matter to atomic nuclei.There is a persistent demand for new,high-precision methods to detect chiral structures,particu... Chirality,a common phenomenon in nature,appears in structures ranging from galaxies and condensed matter to atomic nuclei.There is a persistent demand for new,high-precision methods to detect chiral structures,particularly at the microscale.Here,we propose a novel method,vortex Mössbauer spectroscopy,for probing chiral structures.By leveraging the orbital angular momentum carried by vortex beams,this approach achieves high precision in detecting chiral structures at scales ranging from nanometers to hundreds of nanometers.Our simulation shows the ratio of characteristic lines in the Mössbauer spectra of ^(57)Fe under vortex beams exhibits differences of up to four orders of magnitude for atomic structures with different arrangements.Additionally,simulations reveal the response of ^(229m)Th chiral structures to vortex beams with opposite angular momenta differs by approximately 49-fold.These significant spectral variations indicate that this new vortex Mössbauer probe holds great potential for investigating the microscopic chiral structures and interactions of matter. 展开更多
关键词 condensed matter chiral structures m ssbauer spectroscopyfor atomic nucleithere vortex beamsthis orbital angular momentum detecting chiral structures vortex M ssbauer spectroscopy
原文传递
Design Guidelines for Composition of Brazing Filler Metals and Evolution Mechanisms of Typical Microstructures 被引量:4
3
作者 Long Weimin 《稀有金属材料与工程》 北大核心 2025年第4期837-853,共17页
Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler ... Brazing filler metals are widely applied,which serve as an industrial adhesive in the joining of dissimilar structures.With the continuous emergence of new structures and materials,the demand for novel brazing filler metals is ever-increasing.It is of great significance to investigate the optimized composition design methods and to establish systematic design guidelines for brazing filler metals.This study elucidated the fundamental rules for the composition design of brazing filler metals from a three-dimensional perspective encompassing the basic properties of applied brazing filler metals,formability and processability,and overall cost.The basic properties of brazing filler metals refer to their mechanical properties,physicochemical properties,electromagnetic properties,corrosion resistance,and the wettability and fluidity during brazing.The formability and processability of brazing filler metals include the processes of smelting and casting,extrusion,rolling,drawing and ring-making,as well as the processes of granulation,powder production,and the molding of amorphous and microcrystalline structures.The cost of brazing filler metals corresponds to the sum of materials value and manufacturing cost.Improving the comprehensive properties of brazing filler metals requires a comprehensive and systematic consideration of design indicators.Highlighting the unique characteristics of brazing filler metals should focus on relevant technical indicators.Binary or ternary eutectic structures can effectively enhance the flow spreading ability of brazing filler metals,and solid solution structures contribute to the formability.By employing the proposed design guidelines,typical Ag based,Cu based,Zn based brazing filler metals,and Sn based solders were designed and successfully applied in major scientific and engineering projects. 展开更多
关键词 design of brazing filler metals design guidelines for composition Ag based brazing filler metals eutectic structures evolution
原文传递
SCS-Net:A DNN-based electromagnetic shielding effectiveness analysis method for slotted composite structures 被引量:1
4
作者 Wanli DU Guangzhi CHEN +4 位作者 Ziang ZHANG Xinsong WANG Shunchuan YANG Xingye CHEN Donglin SU 《Chinese Journal of Aeronautics》 2025年第3期505-520,共16页
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai... As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed. 展开更多
关键词 Deep neural networkcs Measurement-computation fusion Electromagnetic shielding effectiveness Slotted composite structures Structural paranmeters
原文传递
Emerging structures and dynamic mechanisms ofγ-secretase for Alzheimer’s disease
5
作者 Yinglong Miao Michael S.Wolfe 《Neural Regeneration Research》 SCIE CAS 2025年第1期174-180,共7页
γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the ... γ-Secretase,called“the proteasome of the membrane,”is a membrane-embedded protease complex that cleaves 150+peptide substrates with central roles in biology and medicine,including amyloid precursor protein and the Notch family of cell-surface receptors.Mutations inγ-secretase and amyloid precursor protein lead to early-onset familial Alzheimer’s disease.γ-Secretase has thus served as a critical drug target for treating familial Alzheimer’s disease and the more common late-onset Alzheimer’s disease as well.However,critical gaps remain in understanding the mechanisms of processive proteolysis of substrates,the effects of familial Alzheimer’s disease mutations,and allosteric modulation of substrate cleavage byγ-secretase.In this review,we focus on recent studies of structural dynamic mechanisms ofγ-secretase.Different mechanisms,including the“Fit-Stay-Trim,”“Sliding-Unwinding,”and“Tilting-Unwinding,”have been proposed for substrate proteolysis of amyloid precursor protein byγ-secretase based on all-atom molecular dynamics simulations.While an incorrect registry of the Notch1 substrate was identified in the cryo-electron microscopy structure of Notch1-boundγ-secretase,molecular dynamics simulations on a resolved model of Notch1-boundγ-secretase that was reconstructed using the amyloid precursor protein-boundγ-secretase as a template successfully capturedγ-secretase activation for proper cleavages of both wildtype and mutant Notch,being consistent with biochemical experimental findings.The approach could be potentially applied to decipher the processing mechanisms of various substrates byγ-secretase.In addition,controversy over the effects of familial Alzheimer’s disease mutations,particularly the issue of whether they stabilize or destabilizeγ-secretase-substrate complexes,is discussed.Finally,an outlook is provided for future studies ofγ-secretase,including pathways of substrate binding and product release,effects of modulators on familial Alzheimer’s disease mutations of theγ-secretase-substrate complexes.Comprehensive understanding of the functional mechanisms ofγ-secretase will greatly facilitate the rational design of effective drug molecules for treating familial Alzheimer’s disease and perhaps Alzheimer’s disease in general. 展开更多
关键词 Alzheimer’s disease amyloid precursor protein cryo-EM structures drug design intramembrane proteolysis molecular dynamics NOTCH
暂未订购
Progress on Microstructure and Performance Optimization in H/MEAs Regulated by Single and Hierarchical Heterostructures
6
作者 Wang Bing Li Chunyan +2 位作者 Wang Xinhua Li Xiaocheng Kou Shengzhong 《稀有金属材料与工程》 北大核心 2025年第3期640-664,共25页
The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstru... The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs. 展开更多
关键词 heterogeneous structures H/MEAs HDI effect microstructure regulation performance optimization
原文传递
Time-varying damage distribution of composite structures for a certain type of aircraft
7
作者 Jinxin DENG Ziqian AN +1 位作者 Peijie YUE Xiaoquan CHENG 《Chinese Journal of Aeronautics》 2025年第3期386-402,共17页
The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of c... The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time. 展开更多
关键词 AIRCRAFT Composite structures Structural damage Damage dis tribution Geonetric parameters
原文传递
Insights into microbial actions on hydraulic concrete structures:Effects of ammonia and sulfate on community structure,function and biofilm morphology
8
作者 Longfei Wang Wentao Zhuo +6 位作者 Tao He Zongyi Peng You Mou Minyue Wan Xinnan Pan Yi Li Zhengjian Yang 《Journal of Environmental Sciences》 2025年第11期430-442,共13页
Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated... Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated under variable nutrient levels is lacking.Here,biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored.From field sampling,NH_(4)^(+)-N was proven key factor governing community structure in attached biofilms,verifying the reliability of selecting target nutrient species in batch experiments.Biofilms exhibited significant compositional differences in field sampling and incubation experiments.As the nutrient increased in batch experiments,the growth of biofilms gradually slowed down and uneven distribution was detected.The proportions of proteins and β-d-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients.With the increased of nutrients,themass losses of concretes exhibited an increase,reaching a highest value of 2.37%in the presence of 20 mg/L of ammonia.Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient.The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia.While the communities and their functions remained relativelymore stable responding to sulfate gradient.Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients,which is of significance for the operation and maintenance of hydraulic engineering structures. 展开更多
关键词 Hydraulic concrete structures Community structure Nutrient levels Functional prediction Microbial action
原文传递
Methods for the Segmentation of Reticular Structures Using 3D LiDAR Data:A Comparative Evaluation
9
作者 Francisco J.Soler Mora Adrián PeidróVidal +2 位作者 Marc Fabregat-Jaén Luis PayáCastelló Óscar Reinoso García 《Computer Modeling in Engineering & Sciences》 2025年第6期3167-3195,共29页
Reticular structures are the basis of major infrastructure projects,including bridges,electrical pylons and airports.However,inspecting and maintaining these structures is both expensive and hazardous,traditionally re... Reticular structures are the basis of major infrastructure projects,including bridges,electrical pylons and airports.However,inspecting and maintaining these structures is both expensive and hazardous,traditionally requiring human involvement.While some research has been conducted in this field of study,most efforts focus on faults identification through images or the design of robotic platforms,often neglecting the autonomous navigation of robots through the structure.This study addresses this limitation by proposing methods to detect navigable surfaces in truss structures,thereby enhancing the autonomous capabilities of climbing robots to navigate through these environments.The paper proposes multiple approaches for the binary segmentation between navigable surfaces and background from 3D point clouds captured from metallic trusses.Approaches can be classified into two paradigms:analytical algorithms and deep learning methods.Within the analytical approach,an ad hoc algorithm is developed for segmenting the structures,leveraging different techniques to evaluate the eigendecomposition of planar patches within the point cloud.In parallel,widely used and advanced deep learning models,including PointNet,PointNet++,MinkUNet34C,and PointTransformerV3,are trained and evaluated for the same task.A comparative analysis of these paradigms reveals some key insights.The analytical algorithm demonstrates easier parameter adjustment and comparable performance to that of the deep learning models,despite the latter’s higher computational demands.Nevertheless,the deep learning models stand out in segmentation accuracy,with PointTransformerV3 achieving impressive results,such as a Mean Intersection Over Union(mIoU)of approximately 97%.This study highlights the potential of analytical and deep learning approaches to improve the autonomous navigation of climbing robots in complex truss structures.The findings underscore the trade-offs between computational efficiency and segmentation performance,offering valuable insights for future research and practical applications in autonomous infrastructure maintenance and inspection. 展开更多
关键词 INSPECTION structures point clouds SEGMENTATION deep learning climbing robots
暂未订购
应用Tekla Structures软件完成裂解炉钢结构详细设计图纸
10
作者 刘义朋 《石油化工设计》 2025年第3期27-30,I0002,共5页
以裂解炉辐射段钢结构设计为例,介绍如何应用Tekla Structures软件完成裂解炉详细设计图纸。设计过程中实现了将完善的三维模型和二维图纸链接,并将三维模型迅速高效的转化为二维图纸的目标。简化了传统二维出图模式,辅助完成裂解炉钢... 以裂解炉辐射段钢结构设计为例,介绍如何应用Tekla Structures软件完成裂解炉详细设计图纸。设计过程中实现了将完善的三维模型和二维图纸链接,并将三维模型迅速高效的转化为二维图纸的目标。简化了传统二维出图模式,辅助完成裂解炉钢结构在裂解炉制造厂预制和项目现场顺利安装。 展开更多
关键词 裂解炉 Tekla structures 钢结构 详图设计
在线阅读 下载PDF
Kelvin lattice structures fabricated by laser powder bed fusion:Design,preparation,and mechanical performance
11
作者 Yan-peng Wei Huai-qian Li +3 位作者 Ying-chun Ma Zhi-quan Miao Bo Yu Feng Lin 《China Foundry》 2025年第2期117-127,共11页
Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have ga... Metallic lattice structures represent advanced architected materials delivering exceptional properties with promising lightweight potential.With the rapid advancement of additive manufacturing,these structures have garnered increasing research interest.However,most metallic lattice structures generally exhibit anisotropic characteristics,which limits their application ranges.Additionally,a limited number of studies have successfully developed precise mechanical models,which have undergone experimental validation,for the purpose of describing the mechanical response exhibited by additively manufactured metallic lattice structures.In this study,Kelvin lattice structures with varying porosities were systematically designed and fabricated using laser powder bed fusion(LPBF)technology.By integrating finite element simulations with experimental characterization,an enhanced mechanical model was developed through a modification of the Gibson-Ashby model,providing an accurate quantitative description of the relationship between porosity and mechanical properties.The results show that the revised mechanical model can accurately describe the relationship between the geometric parameters and properties of metallic lattice structures.Specifically,the designed Kelvin lattice structures exhibit a smooth stress-strain curve with an obvious yield platform,demonstrating isotropic mechanical properties in all the three spatial directions.This enhances their suitability for complex loading conditions.Meanwhile,the microstructure and manufacturing accuracy of the Kelvin lattice structures were observed and analyzed by micro computed tomography.The results show that the fabricated metallic lattice structures achieved precise dimensional control and optimal densification.This study presents the complete process involved in modeling the Kelvin structure,including its conceptualization,manufacturing,implementation,and ultimately,disposal. 展开更多
关键词 Kelvin structure metallic lattice structures laser powder bed fusion mechanical model isotropic mechanical properties
在线阅读 下载PDF
New poly-types of LPSO structures in a non-equilibrium Mg_(97)Zn_(1)Y_(1.6)Ca_(0.4)alloy
12
作者 Qian-qian Jin Zi-hui Tang +5 位作者 Wen-long Xiao Xiu-yu Qu Xu-hao Han Lin Mei Xiao-hong Shao Xiu-liang Ma 《China Foundry》 2025年第1期83-89,共7页
In this study,a comprehensive analysis of microstructural features,morphology,crystal structures,and interface structures of long-period stacking ordered(LPSO)structures in a non-equilibrium Mg_(97)Zn_(1)Y_(16)Ca_(0.4... In this study,a comprehensive analysis of microstructural features,morphology,crystal structures,and interface structures of long-period stacking ordered(LPSO)structures in a non-equilibrium Mg_(97)Zn_(1)Y_(16)Ca_(0.4)alloy cast in a steel mold was carried out.The addition of Ca element plays an important role in the refinement of LPSO structure.The result reveals new poly-types including 20H F2F2F4,60R(F2F3F3)_(3),and 66H F2F3F3F2(F6)_(4)featuring a 6-Mg structure,alongside the prevalent 18R and 14H LPSO structures.The incoherent interface between 20H and the Mg matrix is split into two dislocation arrays,leading to the formation of a segment of 60R_(1).Moreover,the superstructure 116L,designated as(F2)_(18)F4,is formed through the ordered distribution of F4 stacking faults in 18R. 展开更多
关键词 LPSO structures crystal structure Mg alloys heterogeneous interface
在线阅读 下载PDF
Quantile-based optimization under uncertainties for complex engineering structures using an active learning basis-adaptive PC-Kriging model
13
作者 Yulian GONG Jianguo ZHANG +1 位作者 Dan XU Ying HUANG 《Chinese Journal of Aeronautics》 2025年第1期340-352,共13页
The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount ... The Reliability-Based Design Optimization(RBDO)of complex engineering structures considering uncertainties has problems of being high-dimensional,highly nonlinear,and timeconsuming,which requires a significant amount of sampling simulation computation.In this paper,a basis-adaptive Polynomial Chaos(PC)-Kriging surrogate model is proposed,in order to relieve the computational burden and enhance the predictive accuracy of a metamodel.The active learning basis-adaptive PC-Kriging model is combined with a quantile-based RBDO framework.Finally,five engineering cases have been implemented,including a benchmark RBDO problem,three high-dimensional explicit problems,and a high-dimensional implicit problem.Compared with Support Vector Regression(SVR),Kriging,and polynomial chaos expansion models,results show that the proposed basis-adaptive PC-Kriging model is more accurate and efficient for RBDO problems of complex engineering structures. 展开更多
关键词 Reliability-based design optimization Quantile-based Basis-adaptive PC-Kriging Complex engineering structures Active learning Uncertainty
原文传递
Synergy of strength-ductility in a novel Al-Zn-Mg-Cu-Zr-Sc-Hf alloy through optimizing hierarchical microstructures
14
作者 Mingdong Wu Daihong Xiao +5 位作者 Shuo Yuan Zeyu Li Xiao Yin Juan Wang Lanping Huang Wensheng Liu 《Journal of Materials Science & Technology》 2025年第9期105-122,共18页
The strength improvement in the heat-treatable Al-Zn-Mg-Cu alloys is generally achieved by increasing the volume fraction of nanoprecipitates and reducing the grain size.However,utilizing one of them usu-ally leads to... The strength improvement in the heat-treatable Al-Zn-Mg-Cu alloys is generally achieved by increasing the volume fraction of nanoprecipitates and reducing the grain size.However,utilizing one of them usu-ally leads to a drastic decrease in ductility.Herein,we architect a hierarchical microstructure integrating bimodal grain structures,nanoprecipitates,and hard-brittle coarse particles wrapped by ductility coarse grain(CG)bands via conventional cold rolling(CR)deformation and heat treatment methods to break the strength-ductility dilemma in the Al-8.89Zn-1.98Mg-2.06Cu-0.12Zr-0.05Sc-0.05Hf(wt.%)alloy.The results reveal that the coupling of high-volume fraction(∼1.2%)nanoprecipitates,∼52%narrow CG bands,and most coarse particles encapsulated by CG bands contribute to the 45%CR sample with outstanding over-all mechanical properties(a tensile strength of 655 MPa,a yield strength of 620 MPa,and an elongation of 15.5%).Microstructure-based strength analysis confirms that the high strength relates to a trade-offbetween the hierarchical features,namely high-volume fraction nanoprecipitates to counterbalance the strength loss caused by grain coarsening.The excellent ductility is due to the introduction of medium CG content with a narrow width that can trigger a cross-scale strain distribution during plastic deforma-tion,suppressing the catastrophic failure in the fine grain(FG)regions and facilitating the dimple fracture along the CG bands.This study proposes a feasible approach for tailoring hierarchical microstructures in Al-Zn-Mg-Cu alloys to achieve a superior strength-ductility combination. 展开更多
关键词 Al-Zn-Mg-Cu alloy Bimodal grain structures Nanoprecipitates Coarse particles Mechanical properties
原文传递
Ordered structures with Schottky heterojunction functional unit regulate immune response and osteogenesis
15
作者 Peng Yu Maofei Ran +7 位作者 Heying Ran Xuebin Yang Youzhun Fan Zhengao Wang Zhengnan Zhou Jinxia Zhai Zefeng Lin Chengyun Ning 《Journal of Materials Science & Technology》 2025年第10期276-287,共12页
Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration w... Mimicking the electric microenvironment of natural tissue is a promising strategy for developing biomedical implants. However, current research has not taken biomimetic electrical functional units into consideration when designing biomedical implants. In this research, ordered structures with Schottky heterojunction functional unit (OSSH) were constructed on titanium implant surfaces for bone regeneration regulation. The Schottky heterojunction functional unit is composed of periodically distributed titanium microdomain and titanium oxide microdomain with different carrier densities and surface potentials. The OSSH regulates the M2-type polarization of macrophages to a regenerative immune response by activating the PI3K-AKT-mTOR signal pathway and further promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells. This work provides fundamental insights into the biological effects driven by the Schottky heterojunction functional units that can electrically modulate osteogenesis. 展开更多
关键词 Ordered structures with functional unit MACROPHAGE Implant OSTEOGENESIS Electric microenvironment
原文传递
A DFE2-SPCE Method for Multiscale Parametric Analysis of Heterogenous Piezoelectric Materials and Structures
16
作者 Qingxiang Pei Fan Li +2 位作者 Ziheng Fei Haojie Lian Xiaohui Yuan 《Computers, Materials & Continua》 2025年第4期79-96,共18页
This paper employs the Direct Finite Element Squared(DFE2)method to develop Sparse Polynomial Chaos Expansions(SPCE)models for analyzing the electromechanical properties of multiscale piezoelectric structures.By incor... This paper employs the Direct Finite Element Squared(DFE2)method to develop Sparse Polynomial Chaos Expansions(SPCE)models for analyzing the electromechanical properties of multiscale piezoelectric structures.By incorporating variations in piezoelectric and elastic constants,the DFE2 method is utilized to simulate the statistical characteristics—such as expected values and standard deviations—of electromechanical properties,including Mises stress,maximum in-plane principal strain,electric potential gradient,and electric potential,under varying parameters.This approach achieves a balance between computational efficiency and accuracy.Different SPCE models are used to investigate the influence of piezoelectric and elastic constants on multiscale piezoelectric materials.Additionally,the multiscale parameterization study investigates how microscale material properties affect the macroscopic response of these structures and materials. 展开更多
关键词 DFE2 SPCE piezoelectric structures parameter analyses
在线阅读 下载PDF
Theoretical and computational feasibility of femtosecond laser multifilament transverse structures reconstruction via circular-scanning-based photoacoustic tomography
17
作者 Qingwei Zeng Lei Liu +1 位作者 Shuai Hu Shulei Li 《Chinese Physics B》 2025年第9期240-248,共9页
We theoretically investigate the feasibility of reconstructing the transverse structures of femtosecond laser filaments in air by photoacoustic tomography.To simulate the emission and transmission of filament-induced ... We theoretically investigate the feasibility of reconstructing the transverse structures of femtosecond laser filaments in air by photoacoustic tomography.To simulate the emission and transmission of filament-induced ultrasonic signals more truly,a series of experimentally recorded cross-sectional images are used to simulate the initial pressure rise from multiple filaments(MFs).The aperture size and sensitivity of the detector was incorporated into the reconstruction algorithm.The results show that frequency of acoustic signals induced by MFs with maximum volumetric energy density~100 k J/m^(3)is about 2 MHz below.The initial spatial distribution of optical filaments can be clearly reconstructed with the back projection based algorithm.We recommend a PAT system with transducers of a lower central frequency and a stronger apodization working at a longer scanning radius can be used in photoacoustic image reconstruction of femtosecond laser multifilaments.This study demonstrates the feasibility of using photoacoustic tomography to reconstruct femtosecond multifilament images,which is helpful for studying the complex dynamic processes of multifilament and multifilament manipulation and is also valuable for the remote applications of laser filaments. 展开更多
关键词 femtosecond laser laments transverse structures energy deposition photoacoustic tomography ultrasonic transducer back projection
原文传递
Impact of Hard Segment Structures on Fatigue Threshold of Casting Polyurethane Using Cutting Method
18
作者 Guang-Zhi Jin Le-Hang Chen +4 位作者 Yu-Zhen Gong Peng Li Run-Guo Wang Fan-Zhu Li Yong-Lai Lu 《Chinese Journal of Polymer Science》 2025年第2期303-315,共13页
The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of ... The fatigue resistance of casting polyurethane(CPU)is crucial in various sectors,such as construction,healthcare,and the automotive industry.Despite its importance,no studies have reported on the fatigue threshold of CPU.This study employed an advanced Intrinsic Strength Analyzer(ISA)to evaluate the fatigue threshold of CPUs,systematically exploring the effects of three types of isocyanates(PPDI,NDI,TDI)that contribute to hard segment structures based on the cutting method.Employing multiple advanced characterization techniques(XRD,TEM,DSC,AFM),the results indicate that PPDI-based polyurethane exhibits the highest fatigue threshold(182.89 J/m^(2))due to a highest phase separation and a densely packed spherulitic structure,although the hydrogen bonding degree is the lowest(48.3%).Conversely,NDI-based polyurethane,despite having the high hydrogen bonding degree(53.6%),exhibits moderate fatigue performance(122.52 J/m^(2)),likely due to a more scattered microstructure.TDI-based polyurethane,with the highest hydrogen bonding degree(59.1%)but absence of spherulitic structure,shows the lowest fatigue threshold(46.43 J/m^(2)).Compared to common rubbers(NR,NBR,EPDM,BR),the superior fatigue performance of CPU is attributed to its well-organized microstructure,polyurethane possesses a higher fatigue threshold due to its high phase separation degree and orderly and dense spherulitic structure which enhances energy dissipation and reduces crack propagation. 展开更多
关键词 Casting polyurethane Fatigue threshold Cutting method Hard segment structures Materials characterization
原文传递
Achieving tip-based down-milling forming of nanograting structures with variable heights through precise control of nano revolving trajectories
19
作者 Bo Xue Huilin Yan +2 位作者 Zhengchang Liu Yongda Yan Yanquan Geng 《International Journal of Extreme Manufacturing》 2025年第5期314-334,共21页
With the advantage of high light intensity due to low scatting, structural colors generated by metallic diffraction nanograting structures, used as a type of diffractive optical element, have shown great potential for... With the advantage of high light intensity due to low scatting, structural colors generated by metallic diffraction nanograting structures, used as a type of diffractive optical element, have shown great potential for application in industrial and scientific research fields such as optical anti-counterfeiting and sensors. Within the visible light wavelength range, the diffraction performance is highly dependent on the height and shape consistencies of the nanograting. However, there is still room for the improvement in the flexible control over structure formation through mechanical nanomachining within this scale. The novelty of this paper lies in proposing a machining strategy for nanograting structures with variable heights through precise regulation of the revolving trajectory using tip-based nano down-milling. It explores how different geometric features of trajectories impact the amount of material deformed into a grating and its distribution shape, referred to as undeformed grating area. By analyzing the forming mechanisms of nanogratings under various trajectories with finite element simulation, the desired undeformed grating area is successfully achieved, which is mainly extruded by the tip flank face to form the right facet of the grating, resulting in a small deformation degree and a high deformation efficiency. Three distinct types of revolving trajectories are filtered out according to five quantitative evaluation indicators for machining performance, namely material plastic deformation, grating profile consistency, grating height consistency, machining forces, and area transforming height, and then are compared in processing nanogratings with different heights. It is obtained that only by regulating the vertical vibration amplitude of the revolving trajectory, the semicircle trajectory with the optimal geometric features has the ability to machine high-quality nanograting structures with a continuous height variation of up to 220 nm in a spacing of 400 nm. 展开更多
关键词 tip-based nanomachining down-milling trajectory nanograting structures grating height undeformed grating area
在线阅读 下载PDF
Assessing Floristic Diversity, Stand Structures, and Carbon Stocks in Sacred Forests of West Cameroon: Insights from Bandrefam and Batoufam
20
作者 Nicole Liliane Maffo Maffo Hubert Kpoumie Mounmemi +7 位作者 Hermann Taedoumg Valery Noumi Noiha Karl Marx Matindje Mbaire Boris Nyeck Severin Samuel Feukeng Kenfack Mireil Carole Votio Tchoupou Eric François Menyengue Louis Zapfack 《Open Journal of Forestry》 2025年第1期69-95,共27页
Sacred forests play a valuable role in the conservation of local biodiversity and provide numerous ecosystem services in Cameroon. The aim of this study was to estimate floristic diversity, stand structures and carbon... Sacred forests play a valuable role in the conservation of local biodiversity and provide numerous ecosystem services in Cameroon. The aim of this study was to estimate floristic diversity, stand structures and carbon stocks in the sacred forests of Bandrefam and Batoufam (western Cameroon). The floristic inventory and the stand structures were carried out in 25 m × 25 m plots for individuals with diameters greater than 10 cm;5 m × 5 m for individuals with diameters less than 10 cm. Carbon stocks were estimated using the non-destructive method and allometric equations. The floristic inventory identified 65 species divided into 57 genera and 30 families in the Bandrefam sacred forest and 45 species divided into 42 genera and 27 families in the Batoufam sacred forest. In the Bandrefam, the most important families are Phyllanthaceae (53.98%), Moraceae (21.69%), Lamiaceae (20.15%). At Batoufam, the most important families are Phyllanthaceae (39.73%), Fabaceae (28.47%), Araliaceae (23.77%). Malacantha alnifolia (55.14%), Vitex grandifolia (18.43%), Bosqueia angolensis (15.06%) were the most important species in Bandrefam. Otherwise, Malacantha alnifolia (28%), Polyscias fulva (22.73%), Psychotria sp. (21.28%) were the most important in Batoufam. The Bandrefam sacred forest has the highest tree density (2669 stems/ha). Total carbon stock is 484.88 ± 2.28 tC/ha at Batoufam and 313.95 ± 0.93 tC/ha at Bandrefam. The economic value varies between 5858.04 ± 27.62 USD/ha in Batoufam sacred forest and 3788.51 ± 11.26 USD/ha in Bandrefam sacred forest. The number of individuals and small-diameter trees has little influence on the carbon stocks in the trees. Medium-diameter trees store the most carbon, and very large-diameter trees, which are very poorly represented, store less carbon. In another way, wood density and the basal areas influence the carbon storage of the trees. 展开更多
关键词 Sacred Forests Stand structures Carbon Stocks West-Cameroon
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部