The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the probl...The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the problem,this paper proposes an integrated calibration method for structured light vision sensors.In the proposed system,the sensor is mounted on a crawler-type mobile robot,which scans and measures the center height of guardrails while in motion.However,due to external disturbances such as uneven road surfaces and vehicle vibrations,the posture of the robot may deviate,causing displacement of the sensor platform and resulting in spatial 3D measurement errors.To overcome this issue,the system integrates inertial measurement unit(IMU)data into the sensor calibration process,enabling realtime correction of posture deviations through sensor fusion.This approach achieves a unified calibration of the structured light vision system,effectively compensates for posture-induced errors,and enhances detection accuracy.A prototype was developed and tested in both laboratory and real highway environments.Experimental results demonstrate that the proposed method enables accurate center height detection of guardrails under complex road conditions,significantly reduces posture-related measurement errors,and greatly improves the efficiency and reliability of traditional detection methods.展开更多
Carbon dioxide(CO_(2))can be efficiently converted and utilized through the CO_(2) methanation reaction,which has significant potential benefits for the environment and the economy.The contradiction between the thermo...Carbon dioxide(CO_(2))can be efficiently converted and utilized through the CO_(2) methanation reaction,which has significant potential benefits for the environment and the economy.The contradiction between the thermodynamics and kinetics of the CO_(2) methanation reaction process leads to low CO_(2) conversion at 200-350℃and low methane selectivity at 350-500℃.The utilization of catalysts can solve the contradiction between kinetics and thermodynamics,achieving high CO_(2) methanation efficiency at low temperatures.However,the poor thermal conductivity of powder catalysts leads to the rapid accumulation of heat,resulting in the formation of hot spots,which can cause the sintering or even deactivation of active species.To solve this problem,researchers have focused on monolithic catalysts with integrated reaction systems.This review categorizes the monolithic catalysts into two main groups based on their unique characteristics,namely structured catalysts and catalytic membrane reactors.The characteristics of these monolithic catalysts,commonly used support materials,preparation techniques,and their applications in the CO_(2) methanation reaction are discussed in depth.These studies provide theoretical basis and practical guidance for the design and optimization of structured catalysts and catalytic membrane reactors.Finally,challenges and prospects in the application of monolithic catalysts for the CO_(2) methanation reaction are proposed for the future development.展开更多
Enterprise applications utilize relational databases and structured business processes, requiring slow and expensive conversion of inputs and outputs, from business documents such as invoices, purchase orders, and rec...Enterprise applications utilize relational databases and structured business processes, requiring slow and expensive conversion of inputs and outputs, from business documents such as invoices, purchase orders, and receipts, into known templates and schemas before processing. We propose a new LLM Agent-based intelligent data extraction, transformation, and load (IntelligentETL) pipeline that not only ingests PDFs and detects inputs within it but also addresses the extraction of structured and unstructured data by developing tools that most efficiently and securely deal with respective data types. We study the efficiency of our proposed pipeline and compare it with enterprise solutions that also utilize LLMs. We establish the supremacy in timely and accurate data extraction and transformation capabilities of our approach for analyzing the data from varied sources based on nested and/or interlinked input constraints.展开更多
Narrative nursing(NN)is emerging as a critical approach in modern healthcare,addressing the complex interplay between psychological well-being and physical recovery.This manuscript discusses a study on NN and its role...Narrative nursing(NN)is emerging as a critical approach in modern healthcare,addressing the complex interplay between psychological well-being and physical recovery.This manuscript discusses a study on NN and its role in alleviating psychological distress in patients with acute pancreatitis,published in the World Journal of Psychiatry.Their research demonstrates that NN,through structured storytelling,significantly reduces anxiety and depression,thereby enhancing patient satisfaction and fostering emotional resilience.This therapeutic approach extends beyond symptom management,offering a comprehensive strategy that supports the mental and emotional recovery of patients facing severe health challenges.NN provides a unique framework for engaging patients in their care journey,promoting a sense of agency,and strengthening the patient-provider relationship.In this manuscript,we explore the broader implications of NN by synthesizing findings from various studies,showing that NN is effective not only in acute settings but also in oncology,chronic illness management,and palliative care.The evidence indicates that integrating NN into standard clinical practice could enhance healthcare outcomes by addressing the holistic needs of patients,supporting psychological resilience,and fostering a compassionate healthcare environment.展开更多
The autonomous landing guidance of fixed-wing aircraft in unknown structured scenes presents a substantial technological challenge,particularly regarding the effectiveness of solutions for monocular visual relative po...The autonomous landing guidance of fixed-wing aircraft in unknown structured scenes presents a substantial technological challenge,particularly regarding the effectiveness of solutions for monocular visual relative pose estimation.This study proposes a novel airborne monocular visual estimation method based on structured scene features to address this challenge.First,a multitask neural network model is established for segmentation,depth estimation,and slope estimation on monocular images.And a monocular image comprehensive three-dimensional information metric is designed,encompassing length,span,flatness,and slope information.Subsequently,structured edge features are leveraged to filter candidate landing regions adaptively.By leveraging the three-dimensional information metric,the optimal landing region is accurately and efficiently identified.Finally,sparse two-dimensional key point is used to parameterize the optimal landing region for the first time and a high-precision relative pose estimation is achieved.Additional measurement information is introduced to provide the autonomous landing guidance information between the aircraft and the optimal landing region.Experimental results obtained from both synthetic and real data demonstrate the effectiveness of the proposed method in monocular pose estimation for autonomous aircraft landing guidance in unknown structured scenes.展开更多
Carbon monoxide(CO)oxidation is crucial for pollutant removal and hydrogen purification.In recent years,copper–cerium(Cu–Ce)-mixed oxide catalysts have attracted significant attention due to their excellent activity a...Carbon monoxide(CO)oxidation is crucial for pollutant removal and hydrogen purification.In recent years,copper–cerium(Cu–Ce)-mixed oxide catalysts have attracted significant attention due to their excellent activity and stability in CO oxida-tion.This study presents an innovative,environmentally friendly electrosynthesis method for producing stable,structured Cu–Ce catalysts in mesh form.This approach addresses the limitations of traditional pellet catalysts,such as fragility and poor thermal conductivity.The results demonstrated that incorporating cerium(Ce)enhanced the catalytic activity for CO oxidation threefold.A series of in situ characterizations revealed that the introduction of Ce led to the formation of a Cu–Ce mixed oxide solid solution,which significantly improved catalytic performance.Furthermore,higher pretreatment tem-peratures facilitated the decomposition of Ce compounds(nitrate and hydroxide),which promotes the formation of Cu–Ce solid solutions and increases the concentration of active intermediate species(Cu^(+)-CO)during the reaction.This process ultimately enhanced the catalyst’s activity.展开更多
Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical...Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.展开更多
Article Categories⋅Research article is a complete academic investigation that covers a significant advance in a specialty.It usually includes a structured abstract under 300 words,an introduction,sections with heading...Article Categories⋅Research article is a complete academic investigation that covers a significant advance in a specialty.It usually includes a structured abstract under 300 words,an introduction,sections with headings of Materials and Methods,Results,and Discussion,and References.Meta-analyses are published as original articles as well.The full text is about 3500 words and the figures and tables need to be kept under 7 items.展开更多
Super-resolution structured illumination microscopy(SR-SIM)relies heavily on post-processing reconstruction to obtain high-quality SR images from raw data.Although many SIM reconstruction algorithms have been develope...Super-resolution structured illumination microscopy(SR-SIM)relies heavily on post-processing reconstruction to obtain high-quality SR images from raw data.Although many SIM reconstruction algorithms have been developed to recover fine cellular structures with high fidelity even from the noisy data,whether the pixel intensities of reconstructed SR images are still proportional to the original fluorescence intensity has been less explored.The linearity between the intensity before and after reconstruction is de fined as the intensity fidelity.Here,we proposed a method to evaluate the reconstructed SR image intensity fidelity at different spatial frequencies.With the proposed metric,we systematically investigated the impact of the key factors on the intensity fidelity in the standard Wiener-SIM reconstructions with simulated data,then evaluated the intensity fidelity of the SR images reconstructed by representative open-source packages.Our work provides a reference for SR-SIM image intensity fidelity improvement.展开更多
Herein,a novel label-free electrochemical immunosensor was fabricated via immobilizing specific anti-β-lactoglobulin(β-LG)antibodies(Abs)onto an integrated electrode of gold nanoparticles(AuNPs)/Prussian blue(PB)/cu...Herein,a novel label-free electrochemical immunosensor was fabricated via immobilizing specific anti-β-lactoglobulin(β-LG)antibodies(Abs)onto an integrated electrode of gold nanoparticles(AuNPs)/Prussian blue(PB)/cubic Ia3d structured mesoporous carbon(CMK-8).This immunosensor allowed for the quantitative detection of the major milk allergenβ-LG.CMK-8 with excellent electrical conductivity and uniformly adjustable pore structure was modified on the glassy carbon electrode(GCE)and served as the sensitive substrate for the electro-polymerization of PB,forming the redox-active layer.AuNPs were subsequently electrochemically deposited on PB/CMK-8/GCE to improve the electrical conductivity and utilized as the connector for Abs immobilization.Duringβ-LG detection,the Abs-modified AuNPs/PB/CMK-8/GCE exhibited a significant reduction in differential pulse voltammetry current signal when exposed toβ-LG,displaying an inverse dose-dependent relationship.The developed electrochemical immunosensor demonstrated good detection performance forβ-LG,with a wider linear range of 0.01-100 ng/mL and a lower detection limit of 4.72 pg/mL.Meanwhile,the sensor exhibited remarkable repeatability,reproducibility,stability and anti-interference capabilities,which was further applied to detectβ-LG in dairy food,achieving satisfactory recoveries(89.2%-98.8%)and lower relative standard deviation(£3.1%).Therefore,this innovative electrochemical method for food allergen detection holds great potential application in food safety determination and evaluation.展开更多
This paper provides an overview of the recent advancements in magnetic structured triboelectric nanogenerators(MSTENGs)and their potential for energy harvesting and sensing in coastal bridge infrastructure.This paper ...This paper provides an overview of the recent advancements in magnetic structured triboelectric nanogenerators(MSTENGs)and their potential for energy harvesting and sensing in coastal bridge infrastructure.This paper begins with a brief discussion on the fundamental physics modes of triboelectric nanogenerators(TENGs),triboelectric series,and factors affecting TENG power generation and transmission,providing a foundation for the subsequent sections.The review focuses on the different types of MSTENGs and their applications in coastal infrastructure.Specifically,it covers magnetic spherical TENG networks,magnet-assisted TENGs,MSTENGs for bridges,and magnetic multilayer structures based on TENGs.The advantages and limitations of each type of MSTENG are discussed in detail,highlighting their respective suitability for different coastal bridge infrastructure applications.In addition,the paper addresses the challenges and provides insights into the future of MSTENGs.These include the need for improved durability and sustainability of MSTENGs in harsh coastal environments,increasing their power-output levels to fulfll high energy needs,and the requirement for collaborative efforts between academia,industry,and government institutions to optimize MSTENG performance.展开更多
We demonstrate an effective and optimal strategy for generating spatially resolved longitudinal spin angular momentum(LSAM)in optical tweezers by tightly focusing the first-order spirally polarized vector(SPV)beams wi...We demonstrate an effective and optimal strategy for generating spatially resolved longitudinal spin angular momentum(LSAM)in optical tweezers by tightly focusing the first-order spirally polarized vector(SPV)beams with zero intrinsic angular momentum into a refractive index stratified medium.The stratified medium gives rise to a spherically aberrated intensity profile near the focal region of the optical tweezers,with off-axis intensity lobes in the radial direction possessing opposite LSAM(helicities corresponding toσ=+1 and−1)compared to the beam center.We trap mesoscopic birefringent particles in an off-axis intensity lobe as well as at the beam center by modifying the trapping plane and observe particles spinning in opposite directions depending on their location.The direction of rotation depends on the particle size with larger particles spinning either clockwise or anticlockwise depending on the direction of spirality of the polarization of the SPV beam after tight focusing,while smaller particles spin in both directions depending on their spatial locations.Numerical simulations support our experimental observations.Our results introduce new avenues in spin-orbit optomechanics to facilitate novel yet straightforward avenues for exotic and complex particle manipulation in optical tweezers.展开更多
Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel prepara...Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel preparation process is complex and costly when using microstructured grinding wheels,abrasive groups ordered grinding wheels are widely investigated.However,there is a paucity of systematic analyses and comprehensive reviews focused on abrasive groups ordered grinding wheels.Therefore,this paper defines abrasive groups ordered grinding wheels and classifies them,based on their unique characteristics,into groups such as abrasive blocks ordered grinding wheel,fine grain structured grinding wheel,abrasive clusters ordered grinding wheel,and abrasive fibers ordered grinding wheel.We provide an overview of the latest advances in wheel structures,preparation methods,and abrasive selection for various types of abrasive groups ordered grinding wheels.Furthermore,we conduct a comparative analysis of the existing types,significant advantages,and challenges associated with the four types of abrasive groups ordered grinding wheels.Looking ahead,given the potential of abrasive groups ordered grinding wheels in reducing grinding force and temperature,we recommend further exploration of their application in combination with special processing techniques.This could pave the way for the development of machining processes that are more environmentally friendly,energy-efficient,and precise.展开更多
Optical coherence is a fundamental property of light,playing a key role in understanding interference,propagation,and light-matter interactions for both classical and quantum light.Measuring the coherence properties o...Optical coherence is a fundamental property of light,playing a key role in understanding interference,propagation,and light-matter interactions for both classical and quantum light.Measuring the coherence properties of an optical field is crucial for a wide range of applications.However,despite many proposed measurement schemes,significant challenges still remain.In this work,we present a protocol to measure the full-dimensional coherence properties of a partially coherent beam.The method is based on tomographing the complex coherent modes of the partially coherent field within its coherence time.Once the complex coherent modes are reconstructed,all coherence properties including field correlation and its higher-order correlations(e.g.,intensity correlation)can be recovered for beams that are either spatially uniformly or non-uniformly correlated.We perform a proof-of-principle experiment to measure the complex field correlation and intensity correlation of a structured partially coherent beam synthesized by random modes.Additionally,we discuss the application of full-dimensional complex coherence function tomography in coherence-based multi-cipher information security.The robustness of our system in complex environments is also evaluated.展开更多
The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is m...The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is mainly attributed to the calcium silicate layer at the lime/slag interface.CO_(2)generated by CaCO_(3)decomposition can destroy the calcium silicate layer,and thus accelerates the dissolution of limestone and core–shell structured lime.However,in the initial stage,a large amount of CO_(2)emission generated by limestone decomposition results in the poor contact between molten slag and limestone,and the dissolution rate is slower in the test of limestone than that of lime.For core–shell structured lime,the initial dissolution rate is not affected due to the lime surface,and is accelerated by the appropriate CO_(2)emission.Rapid CaO pickup in molten slag by fast dissolution of the lime sample can remarkably accelerate the dephosphorization reaction.Because of the fastest dissolution rate,the core–shell structured lime slagging mode shows the most promising prospects for the efficient dephosphorization.展开更多
This study evaluates the impact of the"4GEON;Four continents connected through geoeducation"project on engaging local and Indigenous communities within UNE-SCO Global Geoparks(UGGps)through immersive and pla...This study evaluates the impact of the"4GEON;Four continents connected through geoeducation"project on engaging local and Indigenous communities within UNE-SCO Global Geoparks(UGGps)through immersive and playful geoeducation initiatives.It aims to assess the effects on environmental commitment,participation,perception of geological heritage,and fostering sustainable development and social responsibility among youths in selected geoparks.Qualitative research techniques,including semi-structured interviews and dynamic discussions,were employed.The systematic analysis of project documentation and align-ment with the United Nations Sustainable Development Goals(SDGs)was conducted to understand the project's broader implications.The findings underscore the crucial role of systematic knowledge transfer in enhancing geo-education within geoparks and emphasize the importance of inclusive communication,with a specific focus on the intercultural dimension of knowledge exchange.By fostering a deeper understanding and appreciation of diverse cultural perspectives,the project contributes to bridging gaps and building mutual respect among different communities.Practi-cal implications include insights for designing effective educational strategies that acknowledge and respect cultural diversity,aligning initiatives with SDGs,and leveraging Information and Communication Technology(ICT)tools to enhance engagement and learning outcomes,particu-larly for youth audiences.展开更多
The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the ...The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the joint sparsity and sparsifying transform learning(JTL)into the simultaneous auto-calibrating and k-space estimation(SAKE)structured low-rank model,named JTLSAKE.The alternate direction method of multipliers is exploited to solve the resulting optimization problem,and the optimized gradient method is used to improve the convergence speed.In addition,a graphics processing unit is used to accelerate the proposed algorithm.The experimental results on four in vivo human datasets demonstrate that the reconstruction quality of the proposed algorithm is comparable to that of JTL-based low-rank modeling of local k-space neighborhoods with parallel imaging(JTL-PLORAKS),and the proposed algorithm is 46 times faster than the JTL-PLORAKS,requiring only 4 s to reconstruct a 200×200 pixels MR image with 8 channels.展开更多
We propose an all-optical,single-laser-pulse scheme for generating a dense relativistic strongly magnetized electron-positron pair plasma.The scheme involves the interaction of an extremely intense(I■10^(24) W/cm^(2)...We propose an all-optical,single-laser-pulse scheme for generating a dense relativistic strongly magnetized electron-positron pair plasma.The scheme involves the interaction of an extremely intense(I■10^(24) W/cm^(2))circularly polarized laser pulse with a solid-density target containing a conical cavity.Through full-scale three-dimensional particle-in-cell simulations that account for quantum electrodynamic effects,it is shown that this interaction results in two significant outcomes:first,the generation of quasi-static magnetic fields reaching tens of gigagauss,and,second,the production of large quantities of electron-positron pairs(up to 10^(13))via the Breit-Wheeler process.The e^(-)e^(+)plasma becomes trapped in the magnetic field and remains confined in a small volume for hundreds of femtoseconds,far exceeding the laser timescale.The dependence of pair plasma parameters,as well as the efficiency of plasma production and confinement,is discussed in relation to the properties of the laser pulse and the target.Realizing this scheme experimentally would enable the investigation of physical processes relevant to extreme astrophysical environments.展开更多
Traditional metal sulfides used as anodes for sodium-ion batteries are hindered by sluggish kinetics,which limits their rate performance.Previous attempts to address this issue focused on nanostructured configurations...Traditional metal sulfides used as anodes for sodium-ion batteries are hindered by sluggish kinetics,which limits their rate performance.Previous attempts to address this issue focused on nanostructured configurations with conductive frameworks.However,these nanomaterials often suffer from low packing density and the tendency for nanoparticles to agglomerate,posing significant challenges for practical applications.To overcome these limitations,this study presents a novel bimetal superionic anode material Cu_(3.21)Bi_(4.79)S_(9),which effectively resolves the conflict between sluggish kinetics and micrometer-scale particle size.By leveraging the vacancies created by free Cu and Bi atoms,this material forms rapid migration channels during sodium insertion and extraction,significantly reducing the migration barriers for sodium ions.The development of micrometer-scale Cu_(3.21)Bi_(4.79)S_(9)enables ultrafast chargingdischarging capabilities,achieving a reversible capacity of 325.5 mAh g^(-1)after 4000 cycles at a high rate of 45 C(15 A g^(-1)).This work marks a significant advancement in the field by offering a solution to the inherent trade-off between high capacity and rate performance in coarse-grained materials,reducing the need for reliance on nanostructured configurations for next-generation high-capacity anode materials.展开更多
1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain bounda...1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6].展开更多
基金Supported by the Special Fund for Basic Scientific Research of Central-Level Public Welfare Scientific Research Institutes(2024-9007)。
文摘The accuracy of center height detection for corrugated beam guardrails is significantly affected by robot posture in the mobile highway guardrail detection systems based on structured light vision.To address the problem,this paper proposes an integrated calibration method for structured light vision sensors.In the proposed system,the sensor is mounted on a crawler-type mobile robot,which scans and measures the center height of guardrails while in motion.However,due to external disturbances such as uneven road surfaces and vehicle vibrations,the posture of the robot may deviate,causing displacement of the sensor platform and resulting in spatial 3D measurement errors.To overcome this issue,the system integrates inertial measurement unit(IMU)data into the sensor calibration process,enabling realtime correction of posture deviations through sensor fusion.This approach achieves a unified calibration of the structured light vision system,effectively compensates for posture-induced errors,and enhances detection accuracy.A prototype was developed and tested in both laboratory and real highway environments.Experimental results demonstrate that the proposed method enables accurate center height detection of guardrails under complex road conditions,significantly reduces posture-related measurement errors,and greatly improves the efficiency and reliability of traditional detection methods.
基金the National Natural Science Foundation of China(22325804 and 22308148)the Natural Science Foundation of Jiangsu Province(BK20230344)+1 种基金the Natural Science Research Project of Jiangsu University(22KJB610001)the Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB505)。
文摘Carbon dioxide(CO_(2))can be efficiently converted and utilized through the CO_(2) methanation reaction,which has significant potential benefits for the environment and the economy.The contradiction between the thermodynamics and kinetics of the CO_(2) methanation reaction process leads to low CO_(2) conversion at 200-350℃and low methane selectivity at 350-500℃.The utilization of catalysts can solve the contradiction between kinetics and thermodynamics,achieving high CO_(2) methanation efficiency at low temperatures.However,the poor thermal conductivity of powder catalysts leads to the rapid accumulation of heat,resulting in the formation of hot spots,which can cause the sintering or even deactivation of active species.To solve this problem,researchers have focused on monolithic catalysts with integrated reaction systems.This review categorizes the monolithic catalysts into two main groups based on their unique characteristics,namely structured catalysts and catalytic membrane reactors.The characteristics of these monolithic catalysts,commonly used support materials,preparation techniques,and their applications in the CO_(2) methanation reaction are discussed in depth.These studies provide theoretical basis and practical guidance for the design and optimization of structured catalysts and catalytic membrane reactors.Finally,challenges and prospects in the application of monolithic catalysts for the CO_(2) methanation reaction are proposed for the future development.
文摘Enterprise applications utilize relational databases and structured business processes, requiring slow and expensive conversion of inputs and outputs, from business documents such as invoices, purchase orders, and receipts, into known templates and schemas before processing. We propose a new LLM Agent-based intelligent data extraction, transformation, and load (IntelligentETL) pipeline that not only ingests PDFs and detects inputs within it but also addresses the extraction of structured and unstructured data by developing tools that most efficiently and securely deal with respective data types. We study the efficiency of our proposed pipeline and compare it with enterprise solutions that also utilize LLMs. We establish the supremacy in timely and accurate data extraction and transformation capabilities of our approach for analyzing the data from varied sources based on nested and/or interlinked input constraints.
文摘Narrative nursing(NN)is emerging as a critical approach in modern healthcare,addressing the complex interplay between psychological well-being and physical recovery.This manuscript discusses a study on NN and its role in alleviating psychological distress in patients with acute pancreatitis,published in the World Journal of Psychiatry.Their research demonstrates that NN,through structured storytelling,significantly reduces anxiety and depression,thereby enhancing patient satisfaction and fostering emotional resilience.This therapeutic approach extends beyond symptom management,offering a comprehensive strategy that supports the mental and emotional recovery of patients facing severe health challenges.NN provides a unique framework for engaging patients in their care journey,promoting a sense of agency,and strengthening the patient-provider relationship.In this manuscript,we explore the broader implications of NN by synthesizing findings from various studies,showing that NN is effective not only in acute settings but also in oncology,chronic illness management,and palliative care.The evidence indicates that integrating NN into standard clinical practice could enhance healthcare outcomes by addressing the holistic needs of patients,supporting psychological resilience,and fostering a compassionate healthcare environment.
基金co-supported by the Science and Technology Innovation Program of Hunan Province,China(No.2023RC3023)the National Natural Science Foundation of China(No.12272404)。
文摘The autonomous landing guidance of fixed-wing aircraft in unknown structured scenes presents a substantial technological challenge,particularly regarding the effectiveness of solutions for monocular visual relative pose estimation.This study proposes a novel airborne monocular visual estimation method based on structured scene features to address this challenge.First,a multitask neural network model is established for segmentation,depth estimation,and slope estimation on monocular images.And a monocular image comprehensive three-dimensional information metric is designed,encompassing length,span,flatness,and slope information.Subsequently,structured edge features are leveraged to filter candidate landing regions adaptively.By leveraging the three-dimensional information metric,the optimal landing region is accurately and efficiently identified.Finally,sparse two-dimensional key point is used to parameterize the optimal landing region for the first time and a high-precision relative pose estimation is achieved.Additional measurement information is introduced to provide the autonomous landing guidance information between the aircraft and the optimal landing region.Experimental results obtained from both synthetic and real data demonstrate the effectiveness of the proposed method in monocular pose estimation for autonomous aircraft landing guidance in unknown structured scenes.
基金supported by the National Key R&D Program of China(No.2022YFB3805504)the National Natu-ral Science Foundation of China(No.22078089)+2 种基金the Shanghai Pilot Program for Basic Research(No.22TQ1400100-7)the Basic Research Program of Science and Technology Commission of Shanghai Munici-pality(No.22JC1400600)the Fundamental Research Funds for the Central Universities.
文摘Carbon monoxide(CO)oxidation is crucial for pollutant removal and hydrogen purification.In recent years,copper–cerium(Cu–Ce)-mixed oxide catalysts have attracted significant attention due to their excellent activity and stability in CO oxida-tion.This study presents an innovative,environmentally friendly electrosynthesis method for producing stable,structured Cu–Ce catalysts in mesh form.This approach addresses the limitations of traditional pellet catalysts,such as fragility and poor thermal conductivity.The results demonstrated that incorporating cerium(Ce)enhanced the catalytic activity for CO oxidation threefold.A series of in situ characterizations revealed that the introduction of Ce led to the formation of a Cu–Ce mixed oxide solid solution,which significantly improved catalytic performance.Furthermore,higher pretreatment tem-peratures facilitated the decomposition of Ce compounds(nitrate and hydroxide),which promotes the formation of Cu–Ce solid solutions and increases the concentration of active intermediate species(Cu^(+)-CO)during the reaction.This process ultimately enhanced the catalyst’s activity.
基金supported by the National Natural Science Foundation of China[Grant Nos.62205367 and 62141506]the Suzhou Basic Research Pilot Project[Grant Nos.SSD2023006 and SJC2021013]the National Key Research and Development Program of China[Grant No.2023YFF1205700].
文摘Maintaining the s-polarization state of laser beams is important to achieve high modulation depth in a laser-interference-based super-resolution structured illumination microscope(SR-SIM).However,the imperfect optical components can depolarize the laser beams hence degenerating the modulation depth.Here,we first presented a direct measurement method designed to estimate the modulation depth more precisely by shifting illumination patterns with equal phase steps.This measurement method greatly reduces the dependence of modulation depths on the samples,and then developed a polarization optimization method to achieve high modulation depth at all orientations by actively and quantitatively compensating for the additional phase difference using a combination of waveplate and a liquid crystal variable retarder(LCVR).Experimental results demonstrate that our method can achieve illumination patterns with modulation depth higher than 0.94 at three orientations with only one LCVR voltage,which enables isotropic resolution improvement.
文摘Article Categories⋅Research article is a complete academic investigation that covers a significant advance in a specialty.It usually includes a structured abstract under 300 words,an introduction,sections with headings of Materials and Methods,Results,and Discussion,and References.Meta-analyses are published as original articles as well.The full text is about 3500 words and the figures and tables need to be kept under 7 items.
基金supported by the National Natural Science Foundation of China[Grant Nos.62205367 and 62141506]Suzhou Basic Research Pilot Project[Grant Nos.SSD2023006 and SJC2021013]Jiangsu Provincial Key Research and Development Program[Grant No.BE2020664].
文摘Super-resolution structured illumination microscopy(SR-SIM)relies heavily on post-processing reconstruction to obtain high-quality SR images from raw data.Although many SIM reconstruction algorithms have been developed to recover fine cellular structures with high fidelity even from the noisy data,whether the pixel intensities of reconstructed SR images are still proportional to the original fluorescence intensity has been less explored.The linearity between the intensity before and after reconstruction is de fined as the intensity fidelity.Here,we proposed a method to evaluate the reconstructed SR image intensity fidelity at different spatial frequencies.With the proposed metric,we systematically investigated the impact of the key factors on the intensity fidelity in the standard Wiener-SIM reconstructions with simulated data,then evaluated the intensity fidelity of the SR images reconstructed by representative open-source packages.Our work provides a reference for SR-SIM image intensity fidelity improvement.
基金supported by the National Natural Science Foundation of China(32272416,31972147)Project of Tianjin Science and Technology Plan(22ZYJDSS00030).
文摘Herein,a novel label-free electrochemical immunosensor was fabricated via immobilizing specific anti-β-lactoglobulin(β-LG)antibodies(Abs)onto an integrated electrode of gold nanoparticles(AuNPs)/Prussian blue(PB)/cubic Ia3d structured mesoporous carbon(CMK-8).This immunosensor allowed for the quantitative detection of the major milk allergenβ-LG.CMK-8 with excellent electrical conductivity and uniformly adjustable pore structure was modified on the glassy carbon electrode(GCE)and served as the sensitive substrate for the electro-polymerization of PB,forming the redox-active layer.AuNPs were subsequently electrochemically deposited on PB/CMK-8/GCE to improve the electrical conductivity and utilized as the connector for Abs immobilization.Duringβ-LG detection,the Abs-modified AuNPs/PB/CMK-8/GCE exhibited a significant reduction in differential pulse voltammetry current signal when exposed toβ-LG,displaying an inverse dose-dependent relationship.The developed electrochemical immunosensor demonstrated good detection performance forβ-LG,with a wider linear range of 0.01-100 ng/mL and a lower detection limit of 4.72 pg/mL.Meanwhile,the sensor exhibited remarkable repeatability,reproducibility,stability and anti-interference capabilities,which was further applied to detectβ-LG in dairy food,achieving satisfactory recoveries(89.2%-98.8%)and lower relative standard deviation(£3.1%).Therefore,this innovative electrochemical method for food allergen detection holds great potential application in food safety determination and evaluation.
文摘This paper provides an overview of the recent advancements in magnetic structured triboelectric nanogenerators(MSTENGs)and their potential for energy harvesting and sensing in coastal bridge infrastructure.This paper begins with a brief discussion on the fundamental physics modes of triboelectric nanogenerators(TENGs),triboelectric series,and factors affecting TENG power generation and transmission,providing a foundation for the subsequent sections.The review focuses on the different types of MSTENGs and their applications in coastal infrastructure.Specifically,it covers magnetic spherical TENG networks,magnet-assisted TENGs,MSTENGs for bridges,and magnetic multilayer structures based on TENGs.The advantages and limitations of each type of MSTENG are discussed in detail,highlighting their respective suitability for different coastal bridge infrastructure applications.In addition,the paper addresses the challenges and provides insights into the future of MSTENGs.These include the need for improved durability and sustainability of MSTENGs in harsh coastal environments,increasing their power-output levels to fulfll high energy needs,and the requirement for collaborative efforts between academia,industry,and government institutions to optimize MSTENG performance.
基金the SERB,Department of Science and Technology,Government of India(Project No.EMR/2017/001456)aIISER Kolkata IPh.D fellowship for research.
文摘We demonstrate an effective and optimal strategy for generating spatially resolved longitudinal spin angular momentum(LSAM)in optical tweezers by tightly focusing the first-order spirally polarized vector(SPV)beams with zero intrinsic angular momentum into a refractive index stratified medium.The stratified medium gives rise to a spherically aberrated intensity profile near the focal region of the optical tweezers,with off-axis intensity lobes in the radial direction possessing opposite LSAM(helicities corresponding toσ=+1 and−1)compared to the beam center.We trap mesoscopic birefringent particles in an off-axis intensity lobe as well as at the beam center by modifying the trapping plane and observe particles spinning in opposite directions depending on their location.The direction of rotation depends on the particle size with larger particles spinning either clockwise or anticlockwise depending on the direction of spirality of the polarization of the SPV beam after tight focusing,while smaller particles spin in both directions depending on their spatial locations.Numerical simulations support our experimental observations.Our results introduce new avenues in spin-orbit optomechanics to facilitate novel yet straightforward avenues for exotic and complex particle manipulation in optical tweezers.
基金Supported by National Natural Science Foundation of China(Grant No.52175401)Hunan Provincial Postgraduate Scientific Research Innovation Project(Grant No.QL20230244)+1 种基金Enterprise Innovation and Development Joint Program of National Natural Science Foundation of China(Grant No.U20B2032)Hunan Provincial Science and Technology Innovation Program(Grant No.2022RC1050).
文摘Because the grinding temperature is high when grinding using conventional disordered grinding wheels,the grinding quality improvement is limited when using single abrasive ordered grinding wheels,and the wheel preparation process is complex and costly when using microstructured grinding wheels,abrasive groups ordered grinding wheels are widely investigated.However,there is a paucity of systematic analyses and comprehensive reviews focused on abrasive groups ordered grinding wheels.Therefore,this paper defines abrasive groups ordered grinding wheels and classifies them,based on their unique characteristics,into groups such as abrasive blocks ordered grinding wheel,fine grain structured grinding wheel,abrasive clusters ordered grinding wheel,and abrasive fibers ordered grinding wheel.We provide an overview of the latest advances in wheel structures,preparation methods,and abrasive selection for various types of abrasive groups ordered grinding wheels.Furthermore,we conduct a comparative analysis of the existing types,significant advantages,and challenges associated with the four types of abrasive groups ordered grinding wheels.Looking ahead,given the potential of abrasive groups ordered grinding wheels in reducing grinding force and temperature,we recommend further exploration of their application in combination with special processing techniques.This could pave the way for the development of machining processes that are more environmentally friendly,energy-efficient,and precise.
基金supports from the National Key Research and Development Project of China(2022YFA1404800)the National Natural Science Foundation of China(NSFC)(12404348,12347114,12274311,12274310,12192254,92250304,W2441005)+1 种基金the China Postdoctoral Science Foundation(2024M752311)the Jiangsu Funding Program for Excellent Postdoctoral Talent(2023ZB185).
文摘Optical coherence is a fundamental property of light,playing a key role in understanding interference,propagation,and light-matter interactions for both classical and quantum light.Measuring the coherence properties of an optical field is crucial for a wide range of applications.However,despite many proposed measurement schemes,significant challenges still remain.In this work,we present a protocol to measure the full-dimensional coherence properties of a partially coherent beam.The method is based on tomographing the complex coherent modes of the partially coherent field within its coherence time.Once the complex coherent modes are reconstructed,all coherence properties including field correlation and its higher-order correlations(e.g.,intensity correlation)can be recovered for beams that are either spatially uniformly or non-uniformly correlated.We perform a proof-of-principle experiment to measure the complex field correlation and intensity correlation of a structured partially coherent beam synthesized by random modes.Additionally,we discuss the application of full-dimensional complex coherence function tomography in coherence-based multi-cipher information security.The robustness of our system in complex environments is also evaluated.
基金gratefully acknowledge the support from National Natural Science Foundation of China(Nos.52274305,52374309 and 52004189)Project of Hubei Provincial Department of Science and Technology(No.2022BAA021)+2 种基金China Postdoctoral Science Foundation(Nos.2023T160210 and 2022M721109)Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)Open Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(FMRUlab-25-05).
文摘The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is mainly attributed to the calcium silicate layer at the lime/slag interface.CO_(2)generated by CaCO_(3)decomposition can destroy the calcium silicate layer,and thus accelerates the dissolution of limestone and core–shell structured lime.However,in the initial stage,a large amount of CO_(2)emission generated by limestone decomposition results in the poor contact between molten slag and limestone,and the dissolution rate is slower in the test of limestone than that of lime.For core–shell structured lime,the initial dissolution rate is not affected due to the lime surface,and is accelerated by the appropriate CO_(2)emission.Rapid CaO pickup in molten slag by fast dissolution of the lime sample can remarkably accelerate the dephosphorization reaction.Because of the fastest dissolution rate,the core–shell structured lime slagging mode shows the most promising prospects for the efficient dephosphorization.
基金support of the Project“751-4GEON:Four Con-tinents Connected through Playful Geoeducation”and financial sup-port of the Specific Research Project“Information and Knowledge Management and Cognitive Science in Tourism”of FIM UHK is gratefully acknowledged.The authors wish to express their thanks to StanislavŠafránek,FIM UHK student,and David Zejda and Zuzana Kroulíková,former FIM UHK students,who assisted with the graphical elements.
文摘This study evaluates the impact of the"4GEON;Four continents connected through geoeducation"project on engaging local and Indigenous communities within UNE-SCO Global Geoparks(UGGps)through immersive and playful geoeducation initiatives.It aims to assess the effects on environmental commitment,participation,perception of geological heritage,and fostering sustainable development and social responsibility among youths in selected geoparks.Qualitative research techniques,including semi-structured interviews and dynamic discussions,were employed.The systematic analysis of project documentation and align-ment with the United Nations Sustainable Development Goals(SDGs)was conducted to understand the project's broader implications.The findings underscore the crucial role of systematic knowledge transfer in enhancing geo-education within geoparks and emphasize the importance of inclusive communication,with a specific focus on the intercultural dimension of knowledge exchange.By fostering a deeper understanding and appreciation of diverse cultural perspectives,the project contributes to bridging gaps and building mutual respect among different communities.Practi-cal implications include insights for designing effective educational strategies that acknowledge and respect cultural diversity,aligning initiatives with SDGs,and leveraging Information and Communication Technology(ICT)tools to enhance engagement and learning outcomes,particu-larly for youth audiences.
基金the Yunnan Fundamental Research Projects(No.202301AT070452)the National Natural Science Foundation of China(No.61861023)。
文摘The structured low-rank model for parallel magnetic resonance(MR)imaging can efficiently reconstruct MR images with limited auto-calibration signals.To improve the reconstruction quality of MR images,we integrate the joint sparsity and sparsifying transform learning(JTL)into the simultaneous auto-calibrating and k-space estimation(SAKE)structured low-rank model,named JTLSAKE.The alternate direction method of multipliers is exploited to solve the resulting optimization problem,and the optimized gradient method is used to improve the convergence speed.In addition,a graphics processing unit is used to accelerate the proposed algorithm.The experimental results on four in vivo human datasets demonstrate that the reconstruction quality of the proposed algorithm is comparable to that of JTL-based low-rank modeling of local k-space neighborhoods with parallel imaging(JTL-PLORAKS),and the proposed algorithm is 46 times faster than the JTL-PLORAKS,requiring only 4 s to reconstruct a 200×200 pixels MR image with 8 channels.
基金supported by BMBF-Project No.05P24PF1DFG Project No.PU 213/6-3.
文摘We propose an all-optical,single-laser-pulse scheme for generating a dense relativistic strongly magnetized electron-positron pair plasma.The scheme involves the interaction of an extremely intense(I■10^(24) W/cm^(2))circularly polarized laser pulse with a solid-density target containing a conical cavity.Through full-scale three-dimensional particle-in-cell simulations that account for quantum electrodynamic effects,it is shown that this interaction results in two significant outcomes:first,the generation of quasi-static magnetic fields reaching tens of gigagauss,and,second,the production of large quantities of electron-positron pairs(up to 10^(13))via the Breit-Wheeler process.The e^(-)e^(+)plasma becomes trapped in the magnetic field and remains confined in a small volume for hundreds of femtoseconds,far exceeding the laser timescale.The dependence of pair plasma parameters,as well as the efficiency of plasma production and confinement,is discussed in relation to the properties of the laser pulse and the target.Realizing this scheme experimentally would enable the investigation of physical processes relevant to extreme astrophysical environments.
基金the financial support of the National Natural Science Foundation of China(Grant No.21975036)the Fundamental Research Funds for the Central Universities(Grant No.3132023503).
文摘Traditional metal sulfides used as anodes for sodium-ion batteries are hindered by sluggish kinetics,which limits their rate performance.Previous attempts to address this issue focused on nanostructured configurations with conductive frameworks.However,these nanomaterials often suffer from low packing density and the tendency for nanoparticles to agglomerate,posing significant challenges for practical applications.To overcome these limitations,this study presents a novel bimetal superionic anode material Cu_(3.21)Bi_(4.79)S_(9),which effectively resolves the conflict between sluggish kinetics and micrometer-scale particle size.By leveraging the vacancies created by free Cu and Bi atoms,this material forms rapid migration channels during sodium insertion and extraction,significantly reducing the migration barriers for sodium ions.The development of micrometer-scale Cu_(3.21)Bi_(4.79)S_(9)enables ultrafast chargingdischarging capabilities,achieving a reversible capacity of 325.5 mAh g^(-1)after 4000 cycles at a high rate of 45 C(15 A g^(-1)).This work marks a significant advancement in the field by offering a solution to the inherent trade-off between high capacity and rate performance in coarse-grained materials,reducing the need for reliance on nanostructured configurations for next-generation high-capacity anode materials.
基金support by the National Natural Science Foundation of China(Grant Nos.U23A20546 and 52271010)the Chinese National Natural Science Fund for Distinguished Young Scholars(Grant No.52025015)the Natural Science Foundation of Tianjin City(No.21JCZDJC00510).
文摘1.Introduction The strength-ductility trade-offdilemma has long been a per-sistent challenge in Al matrix composites(AMCs)[1,2].This is-sue primarily arises from the agglomeration of reinforcements at the grain boundaries(GBs),which restricts local plastic flow dur-ing the plastic deformation and leads to stress concentration[3,4].Recently,the development of concepts aimed at achieving hetero-geneous grain has emerged as a promising approach for enhanc-ing comprehensive mechanical properties[5,6].