Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors....Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.展开更多
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is app...Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.展开更多
Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,prov...Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.展开更多
In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and dif...In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.展开更多
Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for ...Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for photonic applications, including anti-counterfeiting, displays, sensors, and printing, along with their practical limitations. Recently, structural colors have received growing interest due to their advantages, including physical and chemical robustness, ecofriendliness, tunability, and high-resolution color.展开更多
Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective ...Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective structural color based on coding metasurface.In this study,the long short-term memory(LSTM)neural network is presented to enable the forward and inverse mapping between coding metasurface structure and corresponding color.The results show that the method can achieve 98%accuracy for the forward prediction of color and 93%accuracy for the inverse design of the structure.Moreover,a cascaded architecture is adopted to train the inverse neural network model,which can solve the nonuniqueness problem of the polarization-selective color reverse design.This study provides a new path for the application and development of structural colors.展开更多
Localized manipulation of light interference and phase through surface microstructures provides new viable technologies for applications such as anti-counterfeiting,camouflage,high-density optical storage and display....Localized manipulation of light interference and phase through surface microstructures provides new viable technologies for applications such as anti-counterfeiting,camouflage,high-density optical storage and display.However,the single-color rendering mechanism and the material’s intrinsic properties,such as hydrophilicity,low hardness and low melting point,limit the range of applications.In this paper,we propose a structural color based on ultrathin ZrO_(2)thin films,which presents a visible full-spectrum color display.The structural color coating has ultrahigh flame retardancy,super UV resistance,super surface hardness and resistance to acid and alkali corrosion.The use of two different color development mechanisms realizes the hiding of the quick response(QR)code in visible light.The modified film exhibits superhydrophobic properties,unique anti-icing and self-cleaning properties,and shows the material’s potential for camouflage,anti-counterfeiting,military,marine and aerospace applications.展开更多
Color as an indispensable element in our life brings vitality to us and enriches our lifestyles through decorations,indicators,and information carriers.Structural color offers an intriguing strategy to achieve novel f...Color as an indispensable element in our life brings vitality to us and enriches our lifestyles through decorations,indicators,and information carriers.Structural color offers an intriguing strategy to achieve novel functions and endows color with additional levels of significance in anti-counterfeiting,display,sensor,and printing.Furthermore,structural colors possess excellent properties,such as resistance to extreme external conditions,high brightness,saturation,and purity.Devices and platforms based on structural color have significantly changed our life and are becoming increasingly important.Here,we reviewed four typical applications of structural color and analyzed their advantages and shortcomings.First,a series of mechanisms and fabrication methods are briefly summarized and compared.Subsequently,recent progress of structural color and its applications were discussed in detail.For each application field,we classified them into several types in terms of their functions and properties.Finally,we analyzed recent emerging technologies and their potential for integration into structural color devices,as well as the corresponding challenges.展开更多
Inspired by special color-forming organisms in nature,photonic crystal materials with structural color function have been developed significantly with great potential applications for displays,sensors,anti-counterfeit...Inspired by special color-forming organisms in nature,photonic crystal materials with structural color function have been developed significantly with great potential applications for displays,sensors,anti-counterfeiting inks,etc.This review aims to summarize the functions,self-assembly modes,and ap-plications of different kinds of photonic crystal materials.The preparation methods and characteristics of monodisperse inorganic nanoparticles,polymer nanoparticles,inorganic/organic core-shell nanoparti-cles,and MOFs are discussed.Subsequently,we summarize the method of assembling colloidal parti-cles into photonic crystals,which is a template induction method,inkjet printing method,drop coating method,etc.Moreover,the potential application of structural color is presented including humidity re-sponse and magnetic field response in sensors fields,as well as the advantages and disadvantages of anti-counterfeiting,fabric coloring,displays,smart windows,and Biomedical Applications.Finally,we present the development prospects and key problems of photonic crystals.展开更多
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos...Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.展开更多
In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it...In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.展开更多
Body coloration and color patterns are ubiquitous throughout the animal kingdom and vary be- tween and within species. Recent studies have dealt with individual dynamics of various aspects of coloration, as it is in m...Body coloration and color patterns are ubiquitous throughout the animal kingdom and vary be- tween and within species. Recent studies have dealt with individual dynamics of various aspects of coloration, as it is in many cases a flexible trait and changes in color expression may be context-de- pendent. During the reproductive phase, temporal changes of coloration in the visible spectral range (400-700 nm) have been shown for many animals but corresponding changes in the ultravio- let (UV) waveband (300-400 nm) have rarely been studied. Threespine stickleback Gasterosteus aculeatus males develop conspicuous orange-red breeding coloration combined with UV reflect- ance in the cheek region. We investigated dynamics of color patterns including UV throughout a male breeding cycle, as well as short-term changes in coloration in response to a computer- animated rival using reflectance spectrophotometry and visual modeling, to estimate how colors would be perceived by conspecifics. We found the orange-red component of coloration to vary during the breeding cycle with respect to hue (theta/R50) and intensity (achieved chroma/red chroma). Furthermore, color intensity in the orange-red spectral part (achieved chroma) tended to be increased after the presentation of an artificial rival. Dynamic changes in specific measures of hue and intensity in the UV waveband were not found. In general, the orange-red component of the signal seems to be dynamic with respect to color intensity and hue. This accounts in particular for color changes during the breeding cycle, presumably to signal reproductive status, and with limitations as well in the intrasexual context, most likely to signal dominance or inferiority.展开更多
Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morpho...Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morphology and structure to enhance flexibility and effectiveness in wound management.To achieve these,we propose a self-healing hydrogel dressing based on structural color microspheres for wound management.The microsphere comprised a photothermal-responsive inverse opal framework,which was constructed by hyaluronic acid methacryloyl,silk fibroin methacryloyl and black phosphorus quantum dots(BPQDs),and was further re-filled with a dynamic hydrogel.The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran(DEX-CA and DEX-BA).Notably,the composite microspheres can be applied arbitrarily,and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel.Additionally,eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism.Moreover,effective monitoring of the drug release process can be achieved through visual color variations.The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management.These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.展开更多
The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flamm...The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.展开更多
Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs hav...Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.展开更多
With the improvement of living standards, people are paying more and more attention to health problems. The antibacterial function of fabrics is therefore of great importance. The structural color(photonic crystal), w...With the improvement of living standards, people are paying more and more attention to health problems. The antibacterial function of fabrics is therefore of great importance. The structural color(photonic crystal), which has been widely investigated and applied on fabric dyeing, contains a large number of hollow microstructure and functional groups, and is easy to be modified and functionalized. Therefore, an innovative way of endowing structural color dye on fabrics with antibacterial property was presented in this paper. The latex spheres and zinc pyrrolidone were co-assembled on polydopamine modified fabrics, antibacterial ion zinc pyrrolidone was therefore loaded into the pores of structural color dye, and brilliant antibacterial fabrics were successfully achieved. The existence of zinc pyrrolidone had little influence on the color saturation of brilliant structural color and meanwhile ensured the structural color dye excellent antibacterial effect. The antibacterial reduction rate of the antibacterial fabric reached 99.99%. Owing to the addition of polyurethane(PUA) coating on the surface of structural color, the fabric modified by the antibacterial structural color dye also presented good washing resistance, which showed great application possibility in functional textile and antibacterial fields.展开更多
Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural mo...Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics.展开更多
All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and ...All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and lacks active tuning. In this work, we demonstrate a reconfigurable and polarization-dependent active color generation technique by incorporating low-loss phase change materials(PCMs) and CaF_2 all-dielectric substrate. Based on the strong Mie resonance effect and low optical absorption structure, a transflective, full-color with high color purity and gamut value is achieved. The spectrum can be dynamically manipulated by changing either the polarization of incident light or the PCM state. High transmittance and reflectance can be simultaneously achieved by using low-loss PCMs and substrate. The novel active metasurfaces can bring new inspiration in the areas of optical encryption, anti-counterfeiting, and display technologies.展开更多
In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of method...In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52233001,51927805,and 52173110)the Innovation Program of Shanghai Municipal Education Commission(No.2023ZKZD07)the Shanghai Rising-Star Program(No.22QA1401200)。
文摘Cholesteric liquid crystals(CLCs)exhibit unique helical superstructures that selectively reflect circularly polarized light,enabling them to dynamically respond to environmental changes with tunable structural colors.This dynamic color-changing capability is crucial for applications that require adaptable optical properties,positioning CLCs as key materials in advanced photonic technologies.This review focuses on the mechanisms of dynamic color tuning in CLCs across various forms,including small molecules,cholesteric liquid crystal elastomers(CLCEs),and cholesteric liquid crystal networks(CLCNs),and emphasizes the distinct responsive coloration each structure provides.Key developments in photochromic mechanisms based on azobenzene,dithienylethene,and molecular motor switches,are discussed for their roles in enhancing the stability and tuning range of CLCs.We examine the color-changing behaviors of CLCEs under mechanical stimuli and CLCNs under swelling,highlighting the advantages of each form.Following this,applications of dynamic color-tuning CLCs in information encryption,adaptive camouflage,and smart sensing technologies are explored.The review concludes with an outlook on current challenges and future directions in CLC research,particularly in biomimetic systems and dynamic photonic devices,aiming to broaden their functional applications and impact.
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
文摘Measurement of out-of-plane deformation is significant to understanding of the deflection mechanisms of the plate and tube structures.In this study,a new surface contouring technique with color structured light is applied to measure the out-of-plane deformation of structures with one-shot projection.Through color fringe recognizing,decoding and triangulation processing for the captured images corresponding to each deformation state,the feasibility of the method is testified by the measurement of elastic deflections of a flexible square plate,showing good agreement with those from the calibrated displacement driver.The plastic deformation of two alloy aluminum rectangular tubes is measured to show the technique application to surface topographic evaluation of the buckling structures with large displacements.
基金supported by the National Natural Science Foundation of China(Grant No.61925307).
文摘Dynamic structuralcolors can change in response todifferent environmental stimuli.This ability remains effectiveeven when the size of the speciesresponsible for the structural coloris reduced to a few micrometers,providing a promising sensingmechanism for solving microenvironmentalsensing problems inmicro-robotics and microfluidics.However, the lack of dynamicstructural colors that can encoderapidly, easily integrate, and accuratelyreflect changes in physical quantities hinders their use in microscale sensing applications. Herein, we present a 2.5-dimensionaldynamic structural color based on nanogratings of heterogeneous materials, which were obtained by interweaving a pH-responsive hydrogelwith an IP-L photoresist. Transverse gratings printed with pH-responsive hydrogels elongated the period of longitudinal grating in the swollenstate, resulting in pH-tuned structural colors at a 45° incidence. Moreover, the patterned encoding and array printing of dynamic structuralcolors were achieved using grayscale stripe images to accurately encode the periods and heights of the nanogrid structures. Overall, dynamicstructural color networks exhibit promising potential for applications in information encryption and in situ sensing for microfluidic chips.
文摘In the printing industry,the common method of coloring relies on inks,which contains amounts of chemical agents,causing environment pollution.However,structural color achieves coloration through the refraction and diffraction of light by periodic structure,offering eco-friendly and fade-resistant advantages,as well as colorful.In this study,screen printing was used to create patterned mask on paper substrates.Then,coated SiO_(2)microspheres on the mask to create structural color patterns with angle-dependent color characteristics.The patterns showed color changes from rose-red to orange to green by changing the viewing angle.By changing the color grayscale,the absorption of stray light by the substrate was enhanced,thereby the brightness and saturation of the structural color improved too.This method is simple,cost-effective,and environmentally friendly,and it has highly promising for the application in printing and anti-counterfeiting.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCOthe National Research Foundation(NRF)grants(RS-2022-NR067559,RS-2023-00302586)funded by the Ministry of Science and ICT(MSIT)of the Korean government.
文摘Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for photonic applications, including anti-counterfeiting, displays, sensors, and printing, along with their practical limitations. Recently, structural colors have received growing interest due to their advantages, including physical and chemical robustness, ecofriendliness, tunability, and high-resolution color.
基金supported by the National Natural Science Foundation of China(Grant Nos.62375137 and 62175114).
文摘Structural colors based on metasurfaces have very promising applications in areas such as optical image encryption and color printing.Herein,we propose a deep learning-enabled reverse design of polarization-selective structural color based on coding metasurface.In this study,the long short-term memory(LSTM)neural network is presented to enable the forward and inverse mapping between coding metasurface structure and corresponding color.The results show that the method can achieve 98%accuracy for the forward prediction of color and 93%accuracy for the inverse design of the structure.Moreover,a cascaded architecture is adopted to train the inverse neural network model,which can solve the nonuniqueness problem of the polarization-selective color reverse design.This study provides a new path for the application and development of structural colors.
基金supported by the National Key Research and Development Program of China(No.2021YFA1401100)the National Natural Science Foundation of China(Nos.61825403 and 61921005).
文摘Localized manipulation of light interference and phase through surface microstructures provides new viable technologies for applications such as anti-counterfeiting,camouflage,high-density optical storage and display.However,the single-color rendering mechanism and the material’s intrinsic properties,such as hydrophilicity,low hardness and low melting point,limit the range of applications.In this paper,we propose a structural color based on ultrathin ZrO_(2)thin films,which presents a visible full-spectrum color display.The structural color coating has ultrahigh flame retardancy,super UV resistance,super surface hardness and resistance to acid and alkali corrosion.The use of two different color development mechanisms realizes the hiding of the quick response(QR)code in visible light.The modified film exhibits superhydrophobic properties,unique anti-icing and self-cleaning properties,and shows the material’s potential for camouflage,anti-counterfeiting,military,marine and aerospace applications.
基金financially supported by the Natural Science Foundation of Shaanxi Province(Grant No.2024JC-YBMS-291)Special Support Program for High-level Talents of Shaanxi Province(No.2020-44)。
文摘Color as an indispensable element in our life brings vitality to us and enriches our lifestyles through decorations,indicators,and information carriers.Structural color offers an intriguing strategy to achieve novel functions and endows color with additional levels of significance in anti-counterfeiting,display,sensor,and printing.Furthermore,structural colors possess excellent properties,such as resistance to extreme external conditions,high brightness,saturation,and purity.Devices and platforms based on structural color have significantly changed our life and are becoming increasingly important.Here,we reviewed four typical applications of structural color and analyzed their advantages and shortcomings.First,a series of mechanisms and fabrication methods are briefly summarized and compared.Subsequently,recent progress of structural color and its applications were discussed in detail.For each application field,we classified them into several types in terms of their functions and properties.Finally,we analyzed recent emerging technologies and their potential for integration into structural color devices,as well as the corresponding challenges.
基金supported by The National Key Re-search and Development Program of China(No.2021YFD1600402)the Central Guidance on Local Science and Technology Devel-opment Fund of Shaanxi Province(No.2020-ZYYD-NCC-9)+8 种基金the Shaanxi Provincial Department of Education Collaborative In-novation Center Project(No.20JY052)the National Natural Science Foundation of China(Nos.51802259 and 51372200)the China Postdoctoral Science Foundation Funded Project(No.2019M663785)the Natural Science Foundation of Shaanxi(No.2019JQ-510)the Opening Project of Shanxi Key Laboratory of Ad-vanced Manufacturing Technology(No.XJZZ202001)the Scientific Research Project of Shaanxi Education Department(No.20JS108)the Promotion Program for Youth of Shaanxi University science and technology association(No.20190415)the Fund of Key laboratory of Processing and Quality Evaluation Technology of Green Plastics of China National Light Industry council(No.PQETGP2019003)the Innovation Guidance of Technology Program of Shaanxi Province(No.2020CGXNG-022).
文摘Inspired by special color-forming organisms in nature,photonic crystal materials with structural color function have been developed significantly with great potential applications for displays,sensors,anti-counterfeiting inks,etc.This review aims to summarize the functions,self-assembly modes,and ap-plications of different kinds of photonic crystal materials.The preparation methods and characteristics of monodisperse inorganic nanoparticles,polymer nanoparticles,inorganic/organic core-shell nanoparti-cles,and MOFs are discussed.Subsequently,we summarize the method of assembling colloidal parti-cles into photonic crystals,which is a template induction method,inkjet printing method,drop coating method,etc.Moreover,the potential application of structural color is presented including humidity re-sponse and magnetic field response in sensors fields,as well as the advantages and disadvantages of anti-counterfeiting,fabric coloring,displays,smart windows,and Biomedical Applications.Finally,we present the development prospects and key problems of photonic crystals.
文摘Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.
基金supported by the National Natural Science Foundation of China(Nos.51973155,52173181,and 52173262)Jiangsu Innovation Team Program,Natural Science Foundation of Tianjin(20JCYBJC00810).
文摘In nature,many living organisms exhibiting unique structural coloration and soft-bodied actuation have inspired scientists to develop advanced structural colored soft actuators toward biomimetic soft robots.However,it is challenging to simultaneously biomimic the angle-independent structural color and shape-morphing capabilities found in the plum-throated cotinga flying bird.Herein,we report biomimetic MXene-based soft actuators with angle-independent structural color that are fabricated through controlled self-assembly of colloidal SiO_(2) nanoparticles onto highly aligned MXene films followed by vacuum-assisted infiltration of polyvinylidene fluoride into the interstices.The resulting soft actuators are found to exhibit brilliant,angle-independent structural color,as well as ultrafast actuation and recovery speeds(a maximum curvature of 0.52 mm−1 can be achieved within 1.16 s,and a recovery time of~0.24 s)in response to acetone vapor.As proof-of-concept illustrations,structural colored soft actuators are applied to demonstrate a blue gripper-like bird’s claw that can capture the target,artificial green tendrils that can twine around tree branches,and an artificial multicolored butterfly that can flutter its wings upon cyclic exposure to acetone vapor.The strategy is expected to offer new insights into the development of biomimetic multifunctional soft actuators for somatosensory soft robotics and next-generation intelligent machines.
文摘Body coloration and color patterns are ubiquitous throughout the animal kingdom and vary be- tween and within species. Recent studies have dealt with individual dynamics of various aspects of coloration, as it is in many cases a flexible trait and changes in color expression may be context-de- pendent. During the reproductive phase, temporal changes of coloration in the visible spectral range (400-700 nm) have been shown for many animals but corresponding changes in the ultravio- let (UV) waveband (300-400 nm) have rarely been studied. Threespine stickleback Gasterosteus aculeatus males develop conspicuous orange-red breeding coloration combined with UV reflect- ance in the cheek region. We investigated dynamics of color patterns including UV throughout a male breeding cycle, as well as short-term changes in coloration in response to a computer- animated rival using reflectance spectrophotometry and visual modeling, to estimate how colors would be perceived by conspecifics. We found the orange-red component of coloration to vary during the breeding cycle with respect to hue (theta/R50) and intensity (achieved chroma/red chroma). Furthermore, color intensity in the orange-red spectral part (achieved chroma) tended to be increased after the presentation of an artificial rival. Dynamic changes in specific measures of hue and intensity in the UV waveband were not found. In general, the orange-red component of the signal seems to be dynamic with respect to color intensity and hue. This accounts in particular for color changes during the breeding cycle, presumably to signal reproductive status, and with limitations as well in the intrasexual context, most likely to signal dominance or inferiority.
基金supported by the Ruijin Hospital Guangci Introducing Talent Projectfinancial support from National Natural Science Foundation of China(82372145)+4 种基金the Research Fellow(Grant No.353146)Research Project(347897)Solutions for Health Profile(336355)InFLAMES Flagship(337531)grants from Academy of Finlandthe Finland China Food and Health International Pilot Project funded by the Finnish Ministry of Education and Culture.
文摘Chronic diabetic wounds confront a significant medical challenge because of increasing prevalence and difficult-healing circumstances.It is vital to develop multifunctional hydrogel dressings,with well-designed morphology and structure to enhance flexibility and effectiveness in wound management.To achieve these,we propose a self-healing hydrogel dressing based on structural color microspheres for wound management.The microsphere comprised a photothermal-responsive inverse opal framework,which was constructed by hyaluronic acid methacryloyl,silk fibroin methacryloyl and black phosphorus quantum dots(BPQDs),and was further re-filled with a dynamic hydrogel.The dynamic hydrogel filler was formed by Knoevenagel condensation reaction between cyanoacetate and benzaldehyde-functionalized dextran(DEX-CA and DEX-BA).Notably,the composite microspheres can be applied arbitrarily,and they can adhere together upon near-infrared irradiation by leveraging the BPQDs-mediated photothermal effect and the thermoreversible stiffness change of dynamic hydrogel.Additionally,eumenitin and vascular endothelial growth factor were co-loaded in the microspheres and their release behavior can be regulated by the same mechanism.Moreover,effective monitoring of the drug release process can be achieved through visual color variations.The microsphere system has demonstrated desired capabilities of controllable drug release and efficient wound management.These characteristics suggest broad prospects for the proposed composite microspheres in clinical applications.
基金supported by the Special Actions for Developing High-performance Manufacturing of Ministry of Industry and Information Technology(Grant No.:TC200H02J)the Research Grants Council of the Hong Kong Special Ad-ministrative Region,China(Project No.:PolyU 152125/18E)+1 种基金the National Natural Science Foundation of China(Project No.:U19A20104)the Research Committee of The Hong Kong Polytechnic University(Project Code G-RK2V).
文摘The lightness and high strength-to-weight ratio of the magnesium alloy have attracted more interest in various applications.However,micro/nanostructure generation on their surfaces remains a challenge due to the flammability and ignition.Motivated by this,this study proposed a machining process,named the ultraprecision diamond surface texturing process,to machine the micro/nanostructures on magnesium alloy surfaces.Experimental results showed the various microstructures and sawtooth-shaped nanostructures were successfully generated on the AZ31B magnesium alloy surfaces,demonstrating the effectiveness of this proposed machining process.Furthermore,sawtooth-shaped nanostructures had the function of inducing the optical effect and generating different colors on workpiece surfaces.The colorful letter and colorful flower image were clearly viewed on magnesium alloy surfaces.The corresponding cutting force,chip morphology,and tool wear were systematically investigated to understand the machining mechanism of micro/nanostructures on magnesium alloy surfaces.The proposed machining process can further improve the performances of the magnesium alloy and extend its functions to other fields,such as optics.
基金This work was supported by the National Natural Science Foundation of China(12074123,11804227,91950112)the Ministry of Science and Technology of China(Grant No.2021YFA1401100)the Foundation of‘Manufacturing beyond limits’of Shanghai.
文摘Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications.
基金National Nature Science Foundation of China(No.51503034)Science and Technology Commission of Shanghai Municipality for Yangfan Program,China(No.15YF1400700)。
文摘With the improvement of living standards, people are paying more and more attention to health problems. The antibacterial function of fabrics is therefore of great importance. The structural color(photonic crystal), which has been widely investigated and applied on fabric dyeing, contains a large number of hollow microstructure and functional groups, and is easy to be modified and functionalized. Therefore, an innovative way of endowing structural color dye on fabrics with antibacterial property was presented in this paper. The latex spheres and zinc pyrrolidone were co-assembled on polydopamine modified fabrics, antibacterial ion zinc pyrrolidone was therefore loaded into the pores of structural color dye, and brilliant antibacterial fabrics were successfully achieved. The existence of zinc pyrrolidone had little influence on the color saturation of brilliant structural color and meanwhile ensured the structural color dye excellent antibacterial effect. The antibacterial reduction rate of the antibacterial fabric reached 99.99%. Owing to the addition of polyurethane(PUA) coating on the surface of structural color, the fabric modified by the antibacterial structural color dye also presented good washing resistance, which showed great application possibility in functional textile and antibacterial fields.
文摘Soft actuators have garnered substantial attention in current years in view of their potential appliances in diverse domains like robotics,biomedical devices,and biomimetic systems.These actuators mimic the natural movements of living organisms,aiming to attain enhanced flexibility,adaptability,and versatility.On the other hand,angle-independent structural color has been achieved through innovative design strategies and engineering approaches.By carefully controlling the size,shape,and arrangement of nanostructures,researchers have been able to create materials exhibiting consistent colors regardless of the viewing angle.One promising class of materials that holds great potential for bioinspired soft actuators is MXenes in view of their exceptional mechanical,electrical,and optical properties.The integration of MXenes for bioinspired soft actuators with angle-independent structural color offers exciting possibilities.Overcoming material compatibility issues,improving color reproducibility,scalability,durability,power supply efficiency,and cost-effectiveness will play vital roles in advancing these technologies.This perspective appraises the development of bioinspired MXene-centered soft actuators with angleindependent structural color in soft robotics.
基金supported in part by Beijing Natural Science Foundation Grant No.Z220006in part by the National Natural Science Foundation of China under Grant No.62304087。
文摘All-dielectric metasurface, which features low optical absorptance and high resolution, is becoming a promising candidate for full-color generation. However, the optical response of current metamaterials is fixed and lacks active tuning. In this work, we demonstrate a reconfigurable and polarization-dependent active color generation technique by incorporating low-loss phase change materials(PCMs) and CaF_2 all-dielectric substrate. Based on the strong Mie resonance effect and low optical absorption structure, a transflective, full-color with high color purity and gamut value is achieved. The spectrum can be dynamically manipulated by changing either the polarization of incident light or the PCM state. High transmittance and reflectance can be simultaneously achieved by using low-loss PCMs and substrate. The novel active metasurfaces can bring new inspiration in the areas of optical encryption, anti-counterfeiting, and display technologies.
基金supported by the National Natural Science Foundation of China(31271837 and 31471704)the major project of Fujian Industry-Academy-Research Cooperation(2013N5003)+1 种基金the Natural Science Foundation(2011J0101)of Fujian Province,the Science and Technology Program under Fujian Provincial Department of Education(JA13439 and JA13440)the Science and Technology Program under Fujian Provincial Department of Forestry(20135)
文摘In this paper,molecular dynamics simulation was applied to synthesize a layered structural color from Konjac glucomannan(KGM) and the effect of particle diameter and temperature were investigated. A series of methods such as high voltage electric field treatment,the transfer matrix method and the CIE standard colorimetric system were simulated to obtain the chromaticity coordinates and to analyze the color changes of KGM particles. The results revealed that as the particle diameter increases,the structural color of KGM particles deflects towards the yellow wavelength within the visible spectrum; and as the reaction temperature rises,the structural color deflects towards the blue and violet wavelengths within the visible spectrum.