Traditional surface modification methods such as physical or chemical vapor deposition and impregnation have been widely used to modify perovskite surfaces.However,there is weak interaction between metal nanoparticles...Traditional surface modification methods such as physical or chemical vapor deposition and impregnation have been widely used to modify perovskite surfaces.However,there is weak interaction between metal nanoparticles(NPs)loaded via these methods and the perovskite oxide support,which may lead to issues such as deactivation during application owing to poor stability,easy agglomeration,and carbon deposition.Exsolution refers to the in-situ growth of NPs on the surface of parent oxides.The presence of NPs increases the number of active sites for the reaction,and NPs exhibit strong interaction with the matrix,showing excellent catalytic performance and high stability.Therefore,in recent years,the field of in-situ exsolution has received extensive attention.Based on this,this paper starts from exsolution phenomena of perovskite oxides,reviews existing exsolution methods,sorts out structurally regulated exsolution strategies of perovskite oxides in terms of A-site defects,B-site cation dopants,and phase transformation,introduces application fields of the in-situ exsolution,and provides prospect.展开更多
Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type...Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.展开更多
At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficult...At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficulty of photocatalytic ammonia synthesis was that the photo-excited electrons have not enough energy to active N≡N.In this study,Ti was doped into BiOBr by one-step hydrothermal method,which was oxidized into TiO_(2)when the doping amount reaches the maximum,in situ forming Ti_(0.31)B_(0.69)OB/TiO_(2)composites.Benefiting from the synergistic effect of Ti doping and S-scheme heterojunction,the synthetic ammonia efficiency of Ti_(0.31)B_(0.69)OB/TiO_(2)-11.96 reached 1.643 mmol·g_(cat)^(-1)at mild conditions and without hole scavenger for up to 7 h,the efficiency of synthetic ammonia is 115 times,10.5 times and 3.3 times of that of BiOBr,Ti_(0.31)B_(0.69)OB and TiO_(2),respectively.Specifically,DFT calculation confirms that Ti doping accurately refine the electronic structure of BiOBr,facilitate nitrogen adsorption activation and reduce hydrogenation reaction energy barrier,thus accelerating the reaction kinetics of photocatalytic nitrogen reduction(NRR),Meanwhile,constructing S-scheme heterojunction boosts the separation and transfer of photogenerated electron-hole pairs,improving the reduction ability of electrons in the conduction band of TiO_(2)and the oxidation ability of holes in the valence band of Ti_(0.31)B_(0.69)OB.展开更多
The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phos...The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals.Here,we introduce Fe into Ni_(2)P nanocrystals by thermal injection synthesis method,and anchor them on nickel foam(NF)by facile spraying to prepare self-supporting oxygen evolution reaction(OER)electrocatalyst.Promisingly,the optimized electrode of Ni_(2)P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm^(-2)and a 0.9%decay within300 h test of 50 mA·cm^(-2).Notably,when electrode size was expanded to 600 cm^(2)and applied to a larger electrolyzer,its 9 h decay rate at 6 A current was only 1.69%.Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst,Results from density functional theory(DFT)computations suggest that Fe doping shifts NiOOH d-band center to Fermi level,lowering critical *OOH intermediates formation energy barrier during the OER reaction.These findings inform the large-scale industrial application of TMPs as robust electrocatalysts.展开更多
Developing bifunctional electrocatalysts with enhanced efficiency for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a significant challenge.Herein,we constructed S-doped ultra-fine RuO...Developing bifunctional electrocatalysts with enhanced efficiency for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a significant challenge.Herein,we constructed S-doped ultra-fine RuO_(2) nanodots that were uniformly dispersed on carbon nanotubes.The incorporation of S effectively induces local rearrangement of the electronic structure of RuO_(2),thereby enhancing the dispersion of RuO_(2) as active sites and optimizing the adsorption free energy of H^(∗)intermediate.As ex-pected,the as-synthesized S-RuO_(2)/CNT delivers remarkable HER activity in all pH electrolytes,achieving lower overpotentials of 136,159,and 396 mV at 100 mA cm^(-2) in acidic,neutral,and basic solutions,respectively.Moreover,a unitary S-RuO_(2)/CNT electrolytic cell requires only a lower voltage(1.476 V)to achieve a current density of 10 mA cm^(-2) in 1.0 mol/L KOH.This ingenious work represents a significant breakthrough in the rational design of bifunctional electrocatalysts,enabling remarkable performance in electrochemical water electrolysis.展开更多
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-...The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.展开更多
Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiv...Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.展开更多
Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic ...Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic supramolecular self-assembly strategy to fabricate 3D hierarchical porous nanoribbon assembly Mn-VN cardoons.A bimetallic polyoxovanadate(POV)with the inherent structural feature of Mn surrounded by[VO_(6)]octahedrons was introduced to trigger precise Mn incorporation in VN lattice,thereby achieving simultaneous morphology engineering and electronic structure modulation.The lattice contraction of VN caused by Mn incorporation drives electron redistribution.The unique hierarchical architecture with modulated electronic structure that provides more exposed active sites,facilitates mass and charge transfer,and optimizes the associated adsorption behavior.Mn-VN exhibits excellent activity with low overpotentials of 86 m V and 1.346 V at 10 m A/cm^(2)for hydrogen evolution reaction(HER)and urea oxidation reaction(UOR),respectively.Accordingly,in the two-electrode urea-assisted water electrolyzer utilizing Mn-VN as a bifunctional catalyst,hydrogen production can occur at low voltage(1.456 V@10 m A/cm^(2)),which has the advantages of energy saving and competitive durability over traditional water electrolysis.This work provides a simple and mild route to construct nanostructures and modulate electronic structure for designing high-efficiency electrocatalysts.展开更多
Electrocatalytic conversion of carbon dioxide(CO_(2))offers an effective method of CO_(2)fixation to mitigate global warming and the energy crisis.However,for supported Ni single-atom catalysts(SACs),which are among t...Electrocatalytic conversion of carbon dioxide(CO_(2))offers an effective method of CO_(2)fixation to mitigate global warming and the energy crisis.However,for supported Ni single-atom catalysts(SACs),which are among the most promising candidates for this application,the relationship between Ni coordination structure and catalytic properties is still under strong debate.Here,we fabricated a series of Ni SACs through precise-engineering of anchor sites on nitrogen-doped carbon(NC)followed by Ni atom anchoring using atomic layer deposition.Among them,a Ni_(1)/NC SAC,with a coordination number(CN)of four but less pyridinic nitrogen(N_(pyri)),achieved over 90%faradaic efϐiciency for CO at potentials from-0.7 to-1.0 V and a mass activity of 6.5 A/mgNi at-0.78 V along with high stability,outperforming other Ni SACs with lower CN and more N_(pyri).Theoretical calculations of various three and four-coordinated Ni_(1)-NxCy structures revealed a linear correlation between the reaction Gibbs free energy for the potential-limiting step and the highest occupied molecular orbital(HOMO)position of Ni-3d orbitals,therein the four-coordinated Ni_(1)-N_(1)C_(3)with the highest HOMO position is identified as the active site for the electrocatalytic CO_(2)-to-CO process,in line with the experimental results.展开更多
With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electro...With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.展开更多
Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relat...Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements.展开更多
In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare...In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures.It is found that the high-energy physical field could induce a more homogeneous morphology of NiFe_(2)O_(4)/Fe_(2)O_(3),accompanied by phase transformation from Fe_(2)O_(3) to NiFe_(2)O_(4).As a result,the optimized structure obtained under the magnetic field endows NiFe_(2)O_(4)/Fe_(2)O_(3) with enhanced performance for the lithium-ion battery anode,as evidenced by an increase of 16%(1200 mA·h/g)in discharge capacity and 24% in ultra-stable cycling performance(capacity retention of 97.1%).These results highlight the feasibility of high magnetic fields in modulating material structure and enhancing lithium storage performance.展开更多
Room-temperature sodium-sulfur(RT Na-S)batteries have been regarded as promising energy storage technologies in grid-scale stationary energy storage systems due to their low cost,natural abundance,and high-energy dens...Room-temperature sodium-sulfur(RT Na-S)batteries have been regarded as promising energy storage technologies in grid-scale stationary energy storage systems due to their low cost,natural abundance,and high-energy density.However,the practical application of RT Na-S batteries is hindered by low reversible capacity and unsatisfying long-cycling performance arising from the severe shuttle effect and sluggish S redox kinetics.This review provides an overview of recent efforts for the optimization strategies of the electronic structure of catalysts via catalyst engineering to enhance the adsorption and catalytic activity toward soluble long-chain sodium polysulfides(NaPSs).Finally,the current challenges and prospects for further optimization strategies of catalysts,understanding catalysis and structural evolution mechanism,and achieving practical applications are highlighted to meet the commercial requirements of RT Na-S batteries.展开更多
Nitrogen-doped carbon loaded single-atom catalysts(SACs)are promising candidates for electrocatalytic conversion of CO_(2)into high-valuable chemicals,and the modification of catalysts by heteroatom-doping strategy is...Nitrogen-doped carbon loaded single-atom catalysts(SACs)are promising candidates for electrocatalytic conversion of CO_(2)into high-valuable chemicals,and the modification of catalysts by heteroatom-doping strategy is an effective approach to enhance the CO_(2)reduction performance.However,the large difference exists in atomic radius between nitrogen atoms and the doped heteroatoms may lead to the poor stability of active sites.In this study,we have synthesized a Ni single atom catalyst with S doping at the secondshell on the ultrathin carbon nanosheets support(Ni-N_(4)-SC)by solid-phase pyrolysis.The S atom in the second-shell contributes to the higher efficiency of CO_(2)conversion at lower potentials while the Ni-N_(4)-SC can be more stable.The experimental results and theoretical calculations indicate that the S atom in second-shell breaks the uniform charge distribution and reduces the free energy of hydrogenation,which can increase the adsorption of CO_(2),accelerate charge transfer,and reduce the reaction energy barrier.This work reveals the close relationship between the second-shell and the electrocatalytic activity of single atom sites,which also provides a new perspective to design efficient single atom catalysts.展开更多
The agricultural land suitability assessment based on the natural characteristics of land blocks is traditionally the basis for agricultural and/or land use planning.The assessment,however,is static and cannot be inco...The agricultural land suitability assessment based on the natural characteristics of land blocks is traditionally the basis for agricultural and/or land use planning.The assessment,however,is static and cannot be incorporated with potential land use changes.Recently,a dynamic approach,i.e.,matter element analysis,has been effectively applied for land use planning.In the present study,based on matter element analysis,we estab-lished a matter element analysis model for land use suitability assessment using the suitability grade of land use,evaluation indicators and their characteristic values as matter elements,and also using sutra field,controlled field,weight value and correlation degree from field survey,as well as an expert system.This model was applied to the structure regulation of the land use in the small Yuejiagou watershed of the Langzhong Municipality in Sichuan Province,China.Results show that the proportion among agriculture,forestry and animal husbandry tended to rationalize land use.The economic and eco-logical indices of the lands were increased from 1529.8 to 1719.99 and from 1460.94 to 1758.21 after the regulation,respectively.The regulation also caused changes in landscape patterns as follows:The indices of diversity and evenness were increased from 1.3028 to 2.0920 and from 0.6108 to 0.8463,or by 60.58%and 38.56%,respectively.However,the indices of dominance and contagion were decreased from 0.6431 to 0.2106 and from 0.7467 to 0.7125,respectively.This indicated that the land use in the small watershed was rational.The spatial distribution of patches tended to be uniform.The patch congregation was gradually dispersed.This study verified that the matter element analysis approach can not only overcome the factitious influences and improve the precision of land assessment,but also can be used for the structure regu-lation of specific patches.展开更多
Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The lay...Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other vip ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.展开更多
Electrolyzing seawater is a promising solution to produce hydrogen,which is hindered by low-efficiency oxygen evolution reaction(OER)and noxious chloride chemistry.Herein,the Fe-Co_(2)P/CeO_(2)heterostructure nanoshee...Electrolyzing seawater is a promising solution to produce hydrogen,which is hindered by low-efficiency oxygen evolution reaction(OER)and noxious chloride chemistry.Herein,the Fe-Co_(2)P/CeO_(2)heterostructure nanosheet arrays are developed to achieve energy-saving and chlorine-free hydrogen generation by coupling hydrogen evolution reaction(HER)with hydrazine oxidation reaction(HzOR)in seawater.The Fe-Co_(2)P/CeO_(2)realizes current densities of 10 and 400 mA·cm^(-2)at 52 and204 mV for HER.The anode potential is significantly decreased after replacing OER with HzOR.Theoretical calculations display that the electronic structure of Fe-Co_(2)P can be regulated after coupling CeO_(2),which lowers the water dissociation barrier and optimizes hydrogen adsorption-free energy,thus boosting catalytic kinetics.Significantly,the hybrid seawater electrolyzer produces hydrogen at ultralow cell voltages,greatly reducing traditional water electrolysis voltages and avoiding hazardous chlorine chemistry.This study provides an avenue to exploit advanced catalysts for acquiring hydrogen with energy-efficiency and chlorine-free from abundant ocean.展开更多
By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variationa...By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-vip electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.展开更多
To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid tre...To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications.展开更多
Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers f...Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51354001 and 51601086)the Liaoning BaiQianWan Talents Program(2018B014)the 2024 Fundamental Research Funding of the Educational Department of Liaoning Province.
文摘Traditional surface modification methods such as physical or chemical vapor deposition and impregnation have been widely used to modify perovskite surfaces.However,there is weak interaction between metal nanoparticles(NPs)loaded via these methods and the perovskite oxide support,which may lead to issues such as deactivation during application owing to poor stability,easy agglomeration,and carbon deposition.Exsolution refers to the in-situ growth of NPs on the surface of parent oxides.The presence of NPs increases the number of active sites for the reaction,and NPs exhibit strong interaction with the matrix,showing excellent catalytic performance and high stability.Therefore,in recent years,the field of in-situ exsolution has received extensive attention.Based on this,this paper starts from exsolution phenomena of perovskite oxides,reviews existing exsolution methods,sorts out structurally regulated exsolution strategies of perovskite oxides in terms of A-site defects,B-site cation dopants,and phase transformation,introduces application fields of the in-situ exsolution,and provides prospect.
基金supported by the National Natural Science Foundation of China(Grant Nos.52272208,22309057)the Natural Science Foundation of Hubei Province(Grant No.2023AFB355)the Fundamental Research Funds for the Central Universities of China(Grant No.2662022LXQD001).
文摘Dual-ion batteries(DIBs)usually use carbon-based materials as electrodes,showing advantages in high operating volt-age,potential low cost,and environmental friendliness.Different from conventional“rocking chair”type secondary batter-ies,DIBs perform a unique working mechanism,which employ both cation and anion taking part in capacity contribution at an anode and a cathode,respectively,during electrochemical reactions.Graphite has been identified as a suitable cathode material for anion intercalation at high voltages(>4.8 V)with fast reaction kinetics.However,the development of DIBs is being hindered by dynamic mismatch between a cathode and an anode due to sluggish Li+diffusion at a high rate.Herein,we prepared phyllostachys edulis derived carbon(PEC)through microstructure regulation strategy and investigated the carbonized temperature effect,which effectively tailored the rich short-range ordered graphite microdomains and disor-dered amorphous regions,as well as a unique nano-pore hierarchical structure.The pore size distribution of nano-pores was concentrated in 0.5-5 nm,providing suitable channels for rapid Li+transportation.It was found that PEC-500(carbon-ized at 500℃)achieved a high capacity of 436 mAh·g^(-1)at 300 mA·g^(-1)and excellent rate performance(maintaining a high capacity of 231 mAh·g^(-1)at 3 A·g^(-1)).The assembled dual-carbon PEC-500||graphite full battery delivered 114 mAh·g^(-1)at 10 C with 96%capacity retention after 3000 cycles and outstanding rate capability,providing 74 mAh·g^(-1)at 50 C.
基金financially supported by the National Natural Science Foundation of China(Nos.22168040 and 22162025)the Project of Science&Technology Office of Shannxi Province(No.2022JM-062)。
文摘At present,industrial synthetic ammonia was still obtained through the Hubble-Bosch process,with large energy consumption.It is a research hotspot to realize green synthetic ammonia by using solar energy.The difficulty of photocatalytic ammonia synthesis was that the photo-excited electrons have not enough energy to active N≡N.In this study,Ti was doped into BiOBr by one-step hydrothermal method,which was oxidized into TiO_(2)when the doping amount reaches the maximum,in situ forming Ti_(0.31)B_(0.69)OB/TiO_(2)composites.Benefiting from the synergistic effect of Ti doping and S-scheme heterojunction,the synthetic ammonia efficiency of Ti_(0.31)B_(0.69)OB/TiO_(2)-11.96 reached 1.643 mmol·g_(cat)^(-1)at mild conditions and without hole scavenger for up to 7 h,the efficiency of synthetic ammonia is 115 times,10.5 times and 3.3 times of that of BiOBr,Ti_(0.31)B_(0.69)OB and TiO_(2),respectively.Specifically,DFT calculation confirms that Ti doping accurately refine the electronic structure of BiOBr,facilitate nitrogen adsorption activation and reduce hydrogenation reaction energy barrier,thus accelerating the reaction kinetics of photocatalytic nitrogen reduction(NRR),Meanwhile,constructing S-scheme heterojunction boosts the separation and transfer of photogenerated electron-hole pairs,improving the reduction ability of electrons in the conduction band of TiO_(2)and the oxidation ability of holes in the valence band of Ti_(0.31)B_(0.69)OB.
基金financially supported by Shenzhen Bureau of Science,Technology and Innovation Commission(No.JSGG20200914113601003)the National Natural Science Foundation of China(No.51971080)。
文摘The inherent electrocatalytic potential of transition metal phosphides(TMPs)for oxygen evolution is influenced by the reduced efficiency of electron transfer resulting from the interaction between electronegative phosphorus atoms and transition metals.Here,we introduce Fe into Ni_(2)P nanocrystals by thermal injection synthesis method,and anchor them on nickel foam(NF)by facile spraying to prepare self-supporting oxygen evolution reaction(OER)electrocatalyst.Promisingly,the optimized electrode of Ni_(2)P-Fe-2/NF demonstrates low overpotentials of 212 mV with 10 mA·cm^(-2)and a 0.9%decay within300 h test of 50 mA·cm^(-2).Notably,when electrode size was expanded to 600 cm^(2)and applied to a larger electrolyzer,its 9 h decay rate at 6 A current was only 1.69%.Characterization results show that Fe doped NiOOH is generated during OER reaction as actual catalyst,Results from density functional theory(DFT)computations suggest that Fe doping shifts NiOOH d-band center to Fermi level,lowering critical *OOH intermediates formation energy barrier during the OER reaction.These findings inform the large-scale industrial application of TMPs as robust electrocatalysts.
基金financially supported by the Joint Fund of Science and Technology R&D Plan of Henan Province(No.232301420003)。
文摘Developing bifunctional electrocatalysts with enhanced efficiency for both hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)remains a significant challenge.Herein,we constructed S-doped ultra-fine RuO_(2) nanodots that were uniformly dispersed on carbon nanotubes.The incorporation of S effectively induces local rearrangement of the electronic structure of RuO_(2),thereby enhancing the dispersion of RuO_(2) as active sites and optimizing the adsorption free energy of H^(∗)intermediate.As ex-pected,the as-synthesized S-RuO_(2)/CNT delivers remarkable HER activity in all pH electrolytes,achieving lower overpotentials of 136,159,and 396 mV at 100 mA cm^(-2) in acidic,neutral,and basic solutions,respectively.Moreover,a unitary S-RuO_(2)/CNT electrolytic cell requires only a lower voltage(1.476 V)to achieve a current density of 10 mA cm^(-2) in 1.0 mol/L KOH.This ingenious work represents a significant breakthrough in the rational design of bifunctional electrocatalysts,enabling remarkable performance in electrochemical water electrolysis.
基金sponsored by the National Natural Science Foundation of China(Nos.5210125 and 52375422)the Science Research Project of Hebei Education Department(No.BJK2023058)the Natural Science Foundation of Hebei Province(Nos.E2020208069,B2020208083 and E202320801).
文摘The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.
文摘Biomass-derived hard carbons,usually prepared by pyrolysis,are widely considered the most promising anode materials for sodium-ion bat-teries(SIBs)due to their high capacity,low poten-tial,sustainability,cost-effectiveness,and environ-mental friendliness.The pyrolysis method affects the microstructure of the material,and ultimately its so-dium storage performance.Our previous work has shown that pyrolysis in a sealed graphite vessel im-proved the sodium storage performance of the car-bon,however the changes in its microstructure and the way this influences the sodium storage are still unclear.A series of hard carbon materials derived from corncobs(CCG-T,where T is the pyrolysis temperature)were pyrolyzed in a sealed graphite vessel at different temperatures.As the pyrolysis temperature increased from 1000 to 1400℃ small carbon domains gradually transformed into long and curved domains.At the same time,a greater number of large open pores with uniform apertures,as well as more closed pores,were formed.With the further increase of pyrolysis temperature to 1600℃,the long and curved domains became longer and straighter,and some closed pores gradually became open.CCG-1400,with abundant closed pores,had a superior SIB performance,with an initial reversible ca-pacity of 320.73 mAh g^(-1) at a current density of 30 mA g^(-1),an initial Coulomb efficiency(ICE)of 84.34%,and a capacity re-tention of 96.70%after 100 cycles.This study provides a method for the precise regulation of the microcrystalline and pore structures of hard carbon materials.
基金supported by the National Natural Science Foundation of China(Nos.22322104,22171074)the Natural Science Foundation of Heilongjiang Province(No.YQ2021B009)+3 种基金the Reform and Development Fund Project of Local University supported by the Central Government(Outstanding Youth Program)Heilongjiang Province Young Scientific and Technological Talent Lifting Project(No.2023QNTJ019)the Basic Research Support Project for Outstanding Young Teachers in Heilongjiang Provincial University(No.YQJH2023129)the Outstanding Youth Science Foundation of Heilongjiang University(No.JCL202301)。
文摘Urea-assisted water electrolysis offers a promising route to reduce energy consumption for hydrogen production and meanwhile treat urea-rich wastewater.Herein,we devised a shear force-involved polyoxometalate-organic supramolecular self-assembly strategy to fabricate 3D hierarchical porous nanoribbon assembly Mn-VN cardoons.A bimetallic polyoxovanadate(POV)with the inherent structural feature of Mn surrounded by[VO_(6)]octahedrons was introduced to trigger precise Mn incorporation in VN lattice,thereby achieving simultaneous morphology engineering and electronic structure modulation.The lattice contraction of VN caused by Mn incorporation drives electron redistribution.The unique hierarchical architecture with modulated electronic structure that provides more exposed active sites,facilitates mass and charge transfer,and optimizes the associated adsorption behavior.Mn-VN exhibits excellent activity with low overpotentials of 86 m V and 1.346 V at 10 m A/cm^(2)for hydrogen evolution reaction(HER)and urea oxidation reaction(UOR),respectively.Accordingly,in the two-electrode urea-assisted water electrolyzer utilizing Mn-VN as a bifunctional catalyst,hydrogen production can occur at low voltage(1.456 V@10 m A/cm^(2)),which has the advantages of energy saving and competitive durability over traditional water electrolysis.This work provides a simple and mild route to construct nanostructures and modulate electronic structure for designing high-efficiency electrocatalysts.
文摘Electrocatalytic conversion of carbon dioxide(CO_(2))offers an effective method of CO_(2)fixation to mitigate global warming and the energy crisis.However,for supported Ni single-atom catalysts(SACs),which are among the most promising candidates for this application,the relationship between Ni coordination structure and catalytic properties is still under strong debate.Here,we fabricated a series of Ni SACs through precise-engineering of anchor sites on nitrogen-doped carbon(NC)followed by Ni atom anchoring using atomic layer deposition.Among them,a Ni_(1)/NC SAC,with a coordination number(CN)of four but less pyridinic nitrogen(N_(pyri)),achieved over 90%faradaic efϐiciency for CO at potentials from-0.7 to-1.0 V and a mass activity of 6.5 A/mgNi at-0.78 V along with high stability,outperforming other Ni SACs with lower CN and more N_(pyri).Theoretical calculations of various three and four-coordinated Ni_(1)-NxCy structures revealed a linear correlation between the reaction Gibbs free energy for the potential-limiting step and the highest occupied molecular orbital(HOMO)position of Ni-3d orbitals,therein the four-coordinated Ni_(1)-N_(1)C_(3)with the highest HOMO position is identified as the active site for the electrocatalytic CO_(2)-to-CO process,in line with the experimental results.
基金supported by the Surface Project of Local De-velopment in Science and Technology Guided by Central Govern-ment(No.2021ZYD0041)the National Natural Science Founda-tion of China(Nos.52377026 and 52301192)+3 种基金the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)the Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)the Special Financial of Shandong Province(Struc-tural Design of High-efficiency Electromagnetic Wave-absorbing Composite Materials and Construction of Shandong Provincial Tal-ent Teams)the“Sanqin Scholars”Innovation Teams Project of Shaanxi Province(Clean Energy Materials and High-Performance Devices Innovation Team of Shaanxi Dongling Smelting Co.,Ltd.).
文摘With the increasing complexity of the current electromagnetic environment,excessive microwave radi-ation not only does harm to human health but also forms various electromagnetic interference to so-phisticated electronic instruments.Therefore,the design and preparation of electromagnetic absorbing composites represent an efficient approach to mitigate the current hazards of electromagnetic radiation.However,traditional electromagnetic absorbers are difficult to satisfy the demands of actual utilization in the face of new challenges,and emerging absorbents have garnered increasing attention due to their structure and performance-based advantages.In this review,several emerging composites of Mxene-based,biochar-based,chiral,and heat-resisting are discussed in detail,including their synthetic strategy,structural superiority and regulation method,and final optimization of electromagnetic absorption ca-pacity.These insights provide a comprehensive reference for the future development of new-generation electromagnetic-wave absorption composites.Moreover,the potential development directions of these emerging absorbers have been proposed as well.
文摘Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements.
基金supported by the National Natural Science Foundation of China(No.52274294)the Fundamental Research Funds for the Central Universities,China(No.N2124007-1)the Fund of the State Key Laboratory of Solidification Processing in Northwestern Polytechnical University,China(No.SKLSP202101)。
文摘In response to the limitations of conventional chemical synthesis methods for the structural modulation of nanomaterials,an innovative high magnetic field-assisted wet chemical synthesis method was proposed to prepare NiFe_(2)O_(4)/Fe_(2)O_(3) heterostructures.It is found that the high-energy physical field could induce a more homogeneous morphology of NiFe_(2)O_(4)/Fe_(2)O_(3),accompanied by phase transformation from Fe_(2)O_(3) to NiFe_(2)O_(4).As a result,the optimized structure obtained under the magnetic field endows NiFe_(2)O_(4)/Fe_(2)O_(3) with enhanced performance for the lithium-ion battery anode,as evidenced by an increase of 16%(1200 mA·h/g)in discharge capacity and 24% in ultra-stable cycling performance(capacity retention of 97.1%).These results highlight the feasibility of high magnetic fields in modulating material structure and enhancing lithium storage performance.
基金supported by the National Natural Science Foundation of China(No.22005201)the Young Scholars Science Foundation of Lanzhou Jiaotong University(No.2022023)the Fundamental Research Funds for the Central Universities,and the Youth Science and Technology Foundation of Gansu Province(Nos.22JR5RA541 and 22JR5RA374).
文摘Room-temperature sodium-sulfur(RT Na-S)batteries have been regarded as promising energy storage technologies in grid-scale stationary energy storage systems due to their low cost,natural abundance,and high-energy density.However,the practical application of RT Na-S batteries is hindered by low reversible capacity and unsatisfying long-cycling performance arising from the severe shuttle effect and sluggish S redox kinetics.This review provides an overview of recent efforts for the optimization strategies of the electronic structure of catalysts via catalyst engineering to enhance the adsorption and catalytic activity toward soluble long-chain sodium polysulfides(NaPSs).Finally,the current challenges and prospects for further optimization strategies of catalysts,understanding catalysis and structural evolution mechanism,and achieving practical applications are highlighted to meet the commercial requirements of RT Na-S batteries.
基金financial support of the National Natural Science Foundation of China(Nos.52100186,52170082,51938007 and 52063024)the Jiangxi Provincial Natural Science Foundation(Nos.20225BCJ23003 and 20212ACB203008)。
文摘Nitrogen-doped carbon loaded single-atom catalysts(SACs)are promising candidates for electrocatalytic conversion of CO_(2)into high-valuable chemicals,and the modification of catalysts by heteroatom-doping strategy is an effective approach to enhance the CO_(2)reduction performance.However,the large difference exists in atomic radius between nitrogen atoms and the doped heteroatoms may lead to the poor stability of active sites.In this study,we have synthesized a Ni single atom catalyst with S doping at the secondshell on the ultrathin carbon nanosheets support(Ni-N_(4)-SC)by solid-phase pyrolysis.The S atom in the second-shell contributes to the higher efficiency of CO_(2)conversion at lower potentials while the Ni-N_(4)-SC can be more stable.The experimental results and theoretical calculations indicate that the S atom in second-shell breaks the uniform charge distribution and reduces the free energy of hydrogenation,which can increase the adsorption of CO_(2),accelerate charge transfer,and reduce the reaction energy barrier.This work reveals the close relationship between the second-shell and the electrocatalytic activity of single atom sites,which also provides a new perspective to design efficient single atom catalysts.
基金The study was supported by the Key Project of the 11th Five-year Program for Science and Technology Development of China(No.2006BAD03A0504)the Key Project of 11th Five-year Program for Science and Technology Development of China(No.2006BAD03A0204).
文摘The agricultural land suitability assessment based on the natural characteristics of land blocks is traditionally the basis for agricultural and/or land use planning.The assessment,however,is static and cannot be incorporated with potential land use changes.Recently,a dynamic approach,i.e.,matter element analysis,has been effectively applied for land use planning.In the present study,based on matter element analysis,we estab-lished a matter element analysis model for land use suitability assessment using the suitability grade of land use,evaluation indicators and their characteristic values as matter elements,and also using sutra field,controlled field,weight value and correlation degree from field survey,as well as an expert system.This model was applied to the structure regulation of the land use in the small Yuejiagou watershed of the Langzhong Municipality in Sichuan Province,China.Results show that the proportion among agriculture,forestry and animal husbandry tended to rationalize land use.The economic and eco-logical indices of the lands were increased from 1529.8 to 1719.99 and from 1460.94 to 1758.21 after the regulation,respectively.The regulation also caused changes in landscape patterns as follows:The indices of diversity and evenness were increased from 1.3028 to 2.0920 and from 0.6108 to 0.8463,or by 60.58%and 38.56%,respectively.However,the indices of dominance and contagion were decreased from 0.6431 to 0.2106 and from 0.7467 to 0.7125,respectively.This indicated that the land use in the small watershed was rational.The spatial distribution of patches tended to be uniform.The patch congregation was gradually dispersed.This study verified that the matter element analysis approach can not only overcome the factitious influences and improve the precision of land assessment,but also can be used for the structure regu-lation of specific patches.
基金supported by the National Research Foundation(NRF)grants(2022R1A4A1032832 and 2019R1A6A1A10073079)funded by the Korean government(MSIT)
文摘Aqueous zinc-ion batteries(ZIBs)have shown great potential in the fields of wearable devices,consumer electronics,and electric vehicles due to their high level of safety,low cost,and multiple electron transfer.The layered cathode materials of ZIBs hold a stable structure during charge and discharge reactions owing to the ultrafast and straightforward(de)intercalation-type storage mechanism of Zn^(2+)ions in their tunable interlayer spacing and their abilities to accommodate other vip ions or molecules.Nevertheless,the challenges of inadequate energy density,dissolution of active materials,uncontrollable byproducts,increased internal pressure,and a large de-solvation penalty have been deemed an obstacle to the development of ZIBs.In this review,recent strategies on the structure regulation of layered materials for aqueous zinc-ion energy storage devices are systematically summarized.Finally,critical science challenges and future outlooks are proposed to guide and promote the development of advanced cathode materials for ZIBs.
基金financially supported by the National Natural Science Foundation of China(No.22302103)the Natural Science Foundation of Jiangsu Province(No.BK20230619)+1 种基金the Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.23KJB540003)the Science Research Program of Nantong University(No.03083110)。
文摘Electrolyzing seawater is a promising solution to produce hydrogen,which is hindered by low-efficiency oxygen evolution reaction(OER)and noxious chloride chemistry.Herein,the Fe-Co_(2)P/CeO_(2)heterostructure nanosheet arrays are developed to achieve energy-saving and chlorine-free hydrogen generation by coupling hydrogen evolution reaction(HER)with hydrazine oxidation reaction(HzOR)in seawater.The Fe-Co_(2)P/CeO_(2)realizes current densities of 10 and 400 mA·cm^(-2)at 52 and204 mV for HER.The anode potential is significantly decreased after replacing OER with HzOR.Theoretical calculations display that the electronic structure of Fe-Co_(2)P can be regulated after coupling CeO_(2),which lowers the water dissociation barrier and optimizes hydrogen adsorption-free energy,thus boosting catalytic kinetics.Significantly,the hybrid seawater electrolyzer produces hydrogen at ultralow cell voltages,greatly reducing traditional water electrolysis voltages and avoiding hazardous chlorine chemistry.This study provides an avenue to exploit advanced catalysts for acquiring hydrogen with energy-efficiency and chlorine-free from abundant ocean.
文摘By virtue of a 3∶1 complementary coordination strategy,a chiral heteroleptic metal-organic cage that con-tains divergent functional units,Pd‑R(Zn),was precisely constructed via self-assembly of monodentate variational Zn-salen ligands RZn and NADH(reduced nicotinamide adenine dinucleotide)mimic modified tridentate ligands with square-planar Pd ions.UV-Vis and luminescence spectra experiments reveal that different anions could selec-tively interact with different sites of Zn-salen modified metal-organic cages to achieve the structural regulation of cage compound,by using the differentiated host-vip electrostatic interactions of counter ions with metal-organic hosts.Compared to other anions,the presence of chloride ions caused the most significant fluorescence emission enhancement of Pd‑R(Zn),meanwhile,the UV-Vis absorption band attributed to the salen aromatic backbone showed an absorption decrease,and the metal-to-ligand induced peak displayed a blue shift effect.Circular dichro-ism and ^(1)H NMR spectra further demonstrate that the introduction of chloride anions is beneficial to keeping a more rigid scaffold.
基金Tural Science Foundation of China(No.52274255)the Young Scientists Fund of the National Natural ScienceFoundation of China(No.52404276)+3 种基金Fundamental Re-search Funds for the Central Universities,China(Nos.N2301003,N2201008,N2201004,and N2301025)Liaon-ingRevitalizationTalentsProgram,China(No.XLYC2202028)Postdoctoral Foundation of NortheasternUniversity,Young Elite Scientists Sponsorship Program byChina Association for Science and Technology(No.2022QNRC001)and China Postdoctoral Science Founda-tion(No.2022M720025)。
文摘To advance the precise regulation and high-value utilization of halloysite nanotubes(HNTs),this work systematically investigated five treatment strategies,including calcination,acid treatment,alkali treatment,acid treatment of calcined HNTs,and alkali treatment of calcined HNTs,to modulate their structural and application properties.The structural characteristics,surface properties,and methylene blue(MB)adsorption capacity of HNTs under multiple treatments were systematically analyzed.Calcination at varying temperatures modified the crystal structure,morphology,and surface properties of HNTs,with higher calcination temperatures reducing their reactivity towards MB.Moderate acid treatment expanded the lumen and decreased the surface potential of HNTs,significantly enhancing MB adsorption capacity.In contrast,alkali treatment dispersed the multilayered walls of HNTs and raised surface potential,reducing MB affinity.Acid treatment of calcined HNTs effectively increased their specific surface areas by leaching most of Al while maintaining the tubular structure,thereby maximizing MB adsorption.Alkali treatment of calcined HNTs destroyed the tubular structure and resulted in poor MB adsorption.HNTs pre-calcined at 600℃ for 3 h and acid-treated at 60℃ for 8 h exhibited an optimal specific surface area of443 m^(2)·g^(-1)and an MB adsorption capacity of 190 mg·g^(-1).Kinetic and Arrhenius equation fittings indicated that chemical reactions control interactions of acids and alkalis with HNTs.This study provides a comprehensive comparison and analysis of five treatment methods,offering insights into regulating the structures and surface properties of HNTs by controlling the treatment condition,thereby laying a foundation for their efficient utilization in practical applications.
基金supported by the National Key Research and Development Program of China(2021YFF0500600)National Natural Science Foundation of China(Nos.U2001220,52203298 and 523B2022)+2 种基金National Science Fund for Distinguished Young Scholars(No.52325206)Shenzhen Technical Plan Project(Nos.RCJC20200714114436091,JCYJ20220530143012027,JCYJ20220818101003008 and JCYJ20220818101003007)Tsinghua Shenzhen International Graduate School-Shenzhen Pengrui Young Faculty Program of Shenzhen Pengrui Foundation(No.SZPR2023006).
文摘Nickel(Ni)-rich layered oxides have drawn great attention as cathode for lithium batteries due to their high capacity,high working voltage and competitive cost.Unfortunately,the operation of Ni-rich cathodes suffers from the notorious structural degradation and interfacial side reactions with electrolytes and thus incurs premature failure,especially at high charge cut-off voltages(≥4.4 V).For this,various structural and interphase regulation strategies(such as coating modification,element doping,and electrolyte engineering)are developed to enhance the cycling survivability of Ni-rich cathodes.Among them,electrolyte engineering by changing solvation structure and introducing additives has been considered an efficient method for constructing robust cathode-electrolyte interphases(CEI),inhibiting the formation of harmful species(such as HF and H_(2)O)or restraining the dissolution of transition metal ions.However,there is still an absence of systematic guidelines for selecting and designing competitive electrolyte systems for Ni-rich layered cathodes.In this review,we comprehensively summarize the recent research progress on electrolyte engineering for Ni-rich layered cathodes according to their working mechanisms.Moreover,we propose future perspectives of improving the electrolyte performance,which will provide new insights for designing novel electrolytes toward high-performance Ni-rich layered cathodes.