Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available...Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available cathode materials,vanadium-based sodium phosphate cathodes are particularly notable for their high operating voltage,excellent thermal stability,and superior cycling performance.However,these materials face significant challenges,including sluggish reaction kinetics,the toxicity of vanadium,and poor electronic conductivity.To overcome these limitations and enhance electrochemical performance,various strategies have been explored.These include morphology regulation via diverse synthesis routes and electronic structure optimization through metal doping,which effectively improve the diffusion of Na+and electrons in vanadium-based phosphate cathodes.This review provides a comprehensive overview of the challenges associated with V-based polyanion cathodes and examines the role of morphology and electronic structure design in enhancing performance.Key vanadium-based phosphate frameworks,such as orthophosphates(Na_(3)V_(2)(PO_(4))_(3)),pyrophosphates(NaVP_(2)O_(7),Na_(2)(VO)P_(2)O_(7),Na_(7)V_(3)(P_(2)O_(7))_(4)),and mixed phosphates(Na_(7)V_(4)(P_(2)O_(7))_(4)PO_(4)),are discussed in detail,highlighting recent advances and insights into their structure-property relationships.The design of cathode material morphology offers an effective approach to optimizing material structures,compositions,porosity,and ion/electron diffusion pathways.Simultaneously,electronic structure tuning through element doping allows for the regulation of band structures,electron distribution,diffusion barriers,and the intrinsic conductivity of phosphate compounds.Addressing the challenges associated with vanadium-based sodium phosphate cathode materials,this study proposes feasible solutions and outlines future research directions toward advancement of high-performance vanadium-based polyanion cathodes.展开更多
According to the announcement of General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,the risk of microbial items in frozen drinks is very high,and it is diffic...According to the announcement of General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,the risk of microbial items in frozen drinks is very high,and it is difficult to improve.For example,a recent spot check showed that 42 kinds of frozen drinks had microbial indicators exceeding the standard.Part of the reason is that the design of the production workshop is not conducive to the rapid removal of production water,resulting in continuous moisture throughout the workshop,which provides a breeding bed for microorganisms to breed and then contaminates the product.Therefore,research is carried out from the design point of view to fundamentally reduce the moisture in the workshop and build a dry workshop for frozen drinks production,so as to effectively reduce the risk of microbial contamination of frozen drinks.展开更多
Coronaviruses are single-stranded,positive-sense RNA enveloped viruses that have posed a significant threat to human health over the past few decades,particularly severe acute respiratory syndrome coronavirus(SARS-CoV...Coronaviruses are single-stranded,positive-sense RNA enveloped viruses that have posed a significant threat to human health over the past few decades,particularly severe acute respiratory syndrome coronavirus(SARS-CoV),Middle East respiratory syndrome coronavirus(MERS-CoV),and SARS-CoV-2.These viruses have caused widespread infections and fatalities,with profound impacts on global economies,social life,and public health systems.Due to their broad host range in natural settings and the consequent high potential for zoonotic spillover events,a thorough investigation of the common viral mechanisms and the identification of druggable targets for pan-coronavirus antiviral development are of utmost importance.展开更多
This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural de...This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural design ideas of this urban interchange ramp bridge,which can be used as a reference for future construction of the same bridge.展开更多
The strength and endurance of human limbs can be enhanced through equipping exoskeletons or other types of wearabledevices. However, long-time use of such devices may cause musculoskeletal disorders (MSDs) or potentia...The strength and endurance of human limbs can be enhanced through equipping exoskeletons or other types of wearabledevices. However, long-time use of such devices may cause musculoskeletal disorders (MSDs) or potential injuries due toexternal shocks and vibrations. Consequently, preventing potential risks and enhancing comfortability are crucial to the designof exoskeleton. This research introduces a novel hybrid rigid-soft knee joint exoskeleton, which is well flexible and supportedby two curved beams. This design is friendly and comfortable for wearers. The stiffness of the curved beam is meticulouslycalibrated to match the natural need of the knee joint, which provides appropriate support under vibration and impact. Weemploy the analytical modeling, finite element method (FEM), numerical analysis, and experimental approaches to analyze thestatic and dynamic properties of the knee exoskeleton system. The results confirm that the exoskeleton system exhibits reducedvibration transmissibility in low-frequency environments, and present a new methodology for the design and mechanicalanalysis of exoskeleton systems.展开更多
Porous titanium alloy is currently widely used in clinical treatment of orthopaedic diseases for its lower elastic modulus and ability to integrate with bone tissue.At the micro-level,cells can respond to different ge...Porous titanium alloy is currently widely used in clinical treatment of orthopaedic diseases for its lower elastic modulus and ability to integrate with bone tissue.At the micro-level,cells can respond to different geometries,and at the macro-level,the geometric design of implants will also affect the biological function of cells.In this study,three kinds of porous scaffolds with square,triangular and circle rod shapes were designed and 3D printed.This study observed the proliferation and differentiation of MC3T3-E1 cells during surface culture of the three types of scaffolds.It also evaluated the characteristics of the three scaffolds by means of compression tests and scanning electron microscopy to provide a reference for the design of porous titanium alloy implants for clinical applications.The trends of cell proliferation and gene expression between the three types of scaffolds were observed after treatment with two inhibitors.The results show that the square rod porous scaffolds have the best proliferative and osteogenic activities,and these findings may be due to differences in piezo-type mechanosensitive ion channel component 1(Piezo1)and Yes-associated protein(YAP)expression caused by the macro-geometric topography.展开更多
Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ra...Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.展开更多
Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely comme...Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.展开更多
The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.How...The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.However,the lightweight design of HDU is a huge challenge due to the need for structural strength.This paper is inspired by the geometric shape of fish bones and biomimetic reinforcing ribs on the surface of the HDU shell are designed to increase its strength and reduce its weight.First,a HDU shell with biomimetic fish bone reinforcing ribs structure is proposed.Then,the MATLAB toolbox and ANSYS finite element analysis module are used to optimize the parameters of the biomimetic reinforcing ribs structure and the overall layout of the shell.Finally,the HDU shell is manufactured using additive manufacturing technology,and a performance testing platform is built to conduct dynamic and static performance tests on the designed HDU.The experimental results show that the HDU with biomimetic fish bone reinforcing ribs has excellent dynamic performance and better static performance than the prototype model,and the weight of the shell is reduced by 20%compared to the prototype model.This work has broad application prospects in the lightweight and high-strength design of closed-pressure vessel components.展开更多
Traditional structural forms are difficult to meet the lightweight requirements of subsequent spacecraft for load-bearing structures.In the aerospace industry,filling structure with lattices is a popular approach to r...Traditional structural forms are difficult to meet the lightweight requirements of subsequent spacecraft for load-bearing structures.In the aerospace industry,filling structure with lattices is a popular approach to reduce the weight of a spacecraft.However,this design strategy has deficiencies in the spatial distribution of lattice cells as well as its affection on the mechanical properties.In this study,a two-step topology optimization technique is proposed to solve the spatial distribution problem of nanosatellite.Firstly,an entire nanosatellite box composed of panels which filled with uniform lattices is sent to the vibration test to obtain the frequency data.Then,a finite element(FE)model of the nanosatellite structure which contains the same uniform lattices is built and validated with the obtained frequency data above.For the subsequent calculation of topology optimization.An equivalent model of the verified FE model is established by replacing the lattice cells in the sandwich layer with equivalent fictional elements.Subsequently,a topology optimization problem under the mass constraints is formulated for maximize the nature frequency,and a new light weighted nanosatellite which filled with non-uniform lattices is established by applying the density mapping method and the previous topology configuration result.By separating the design problem of nanosatellite into two steps,the proposed optimization design method achieves the maximum frequency design under the weight constraint.Furthermore,the frequency is also guaranteed to be around the nature frequency.The results reveal that the mass of the new structure with non-uniform lattices is reduced by 50.32%and the frequency is increased by 1.19%.An important technical importance and application value of this proposed technique is that it improves the performance and design efficiency of the load-bearing structures of a nanosatellite,and this method has significant technical significance and application value.展开更多
The incorporation of the high-abundance rareearth element Y in(Nd,Y)-Fe-B sintered magnets offers an opportunity to reduce the cost of permanent magnetic materials,while promoting the balanced usage of rare-earth reso...The incorporation of the high-abundance rareearth element Y in(Nd,Y)-Fe-B sintered magnets offers an opportunity to reduce the cost of permanent magnetic materials,while promoting the balanced usage of rare-earth resources.However,the performance of(Nd,Y)-Fe-B magnets prepared using the conventional dual-main-phase(DMP)method undergoes significant degradation due to the strong diffusion ability of Y.To suppress the excessive diffusion of Y,this study presents a macroscopic lamellar magnet preparation scheme.Consequently,the micromagnetic simulations revealed that the multilayer magnets exhibited superior intrinsic performance compared to DMP magnets.Subsequently,the multilayer magnets were prepared by alternately stacking the 0%Y(0Y)and 30%Y(30Y)magnetic powders.The observed magnetic properties demonstrated that the coercvity of the three-layer magnet was~0.23 T higher than that of the DMP magnet,leading to improved coercivity stability at high temperatures.Furthermore,the microstructural observations and elemental analyses indicated the presence of a~200-μm-thick interface layer at the contact site between the 0Y and 30Y magnetic layers.Thus,the proposed approach effectively suppressed the excessive diffusion of Y in(Nd,Y)-Fe-B magnets,thereby enhancing the magnetic performance of the sintered magnets.展开更多
Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for ...Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA.展开更多
The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in ...The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices.Hence,a composite with three-dimensional network(Ho/U-BNNS/WPU)is developed by simultaneously incorporating magnetically modified boron nitride nanosheets(M@BNNS)and non-magnetic organo-grafted BNNS(U-BNNS)into waterborne polyurethane(WPU)to synchronous molding under a horizontal magnetic field.The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction,combined with the bridging structure established by U-BNNS,enable Ho/U-BNNS/WPU to exhibit exceptional in-plane(λ//)and through-plane thermal conductivities(λ_(⊥)).In particular,with the addition of 30 wt%M@BNNS and 5 wt%U-BNNS,theλ//andλ_(⊥)of composites reach 11.47 and 2.88 W m^(-1) K^(-1),respectively,which representing a 194.2%improvement inλ_(⊥)compared to the composites with a single orientation of M@BNNS.Meanwhile,Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips.The composites also demonstrate excellent flame retardancy,with a peak heat release and total heat release reduced by 58.9%and 36.9%,respectively,compared to WPU.Thus,this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites,presenting broad application potential in electronic packaging fields.展开更多
Artificial fish reef is a kind of artificial structure in water,which provides a necessary and safe place for aquatic life such as fish to inhabit,grow,and breed,and creates an environment suitable for fish growth,so ...Artificial fish reef is a kind of artificial structure in water,which provides a necessary and safe place for aquatic life such as fish to inhabit,grow,and breed,and creates an environment suitable for fish growth,so as to protect and multiply fishery resources.In a large time scale,the physical process of sea area can deeply affect the chemical process and biological process,so the structure characteristics of artificial reef are the key factors affecting the flow field effect around the reef.In this study,through the hydrodynamic experiments of four kinds of reef models,including big windows box reef,big and small windows box reef,"(卐)"shaped reef and double-layer shellfish breeding reef,the influence of single reef structure on the flow field effect is analyzed,and the force conditions of different reefs under the same incoming current velocity are obtained.According to the simulation results,the safety research and calculation of five kinds of reef models are carried out,and the volumes of vortex area and upwelling area behind four kinds of reef are obtained.Using hydrodynamic model to simulate the flow field effect of reef area,optimizing the reef structure design,improving the maximum biological trapping and proliferation effect of reef,can provide theoretical guidance and scientific and technological support for the construction of reef area.展开更多
In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-lo...In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.展开更多
Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmit...Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmits professional knowledge for students,enhances the students’professional ability,and further carries out in-depth research on the course to bring a better teaching effect for students.The article mainly focuses on the research of the principles of concrete structure design course,conducts an analysis of the teaching characteristics of the principles of concrete structure design course,and reasonably sets the teaching content from the optimization of the course teaching objectives;innovative course teaching methods can deepen the effect of knowledge understanding;reform of experimental practice teaching can lay down the effect of the internalization of knowledge,etc.The in-depth description and discussion of the relevant aspects of the research aim to provide guidelines for related research.展开更多
Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the e...Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the essential prerequisites for their successful clinical translation.Subsequently,a detailed review of magnesium-based materials is presented from five critical areas of alloying,fabrication techniques,purification,surface modification,and structural design,systematically addressing their progress in biodegradation rate retardation,mechanical reinforcement,and biocompatibility enhancement.Furthermore,recent breakthroughs in vivo animal experiments and clinical translation of magnesium alloys are summarized.Finally,this review concludes with a critical assessment of the achievements and challenges encountered in the clinical application of these materials,and proposes practical strategies to address current limitations and guide future research perspectives.展开更多
Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have ...Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have limited sensitivity and poor stability due to their bulk structure and strain concentration during stretching.In this study,we designed and fabricated diamond-,grid-,and peanut-shaped organohydrogel based on positive,near-zero,and negative Poisson’s ratios using digital light processing(DLP)-based 3D printing technology.Through structural design and optimization,the grid-shaped organohydrogel exhibited record sensitivity with gauge factors of 4.5(0–200%strain,ionic mode)and 13.5/1.5×10^(6)(0-2%/2%-100%strain,electronic mode),alongside full resistance recovery for enhanced stability.The 3D-printed grid structure enabled direct wearability and breathability,overcoming traditional sensor limitations.Integrated with a robotic hand system,this sensor demonstrated clinical potential through precise monitoring of paralyzed patients’grasping movements(with a minimum monitoring angle of 5°).This structural design paradigm advanced flexible electronics by synergizing high sensitivity,stability,wearability,and breathability for healthcare,and human-machine interfaces.展开更多
Long-bone fractures are common complaints in orthopedic surgery.In recent years,significant progress has been made in robot-assisted fracture-reduction techniques.As a key medical device for diverse fracture morpholog...Long-bone fractures are common complaints in orthopedic surgery.In recent years,significant progress has been made in robot-assisted fracture-reduction techniques.As a key medical device for diverse fracture morphologies and sites,the design of the reduction robot has a profound impact on the reduction outcomes.However,existing reduction robots have practical limitations and cannot simultaneously satisfy clinical requirements in terms of workspace,force/torque,and structural stiffness.To overcome these problems,we first analyze the potential placement areas and performance requirements of reduction robots according to clinical application scenarios.Subsequently,a 3UPS/S-3P hybrid configuration with decoupled rotational and translational degrees of freedom(DOFs)is proposed,and a kinematic model is derived to achieve the motion characteristics of the remote center of motion(RCM).Furthermore,the structural design of a hybrid reduction robot with an integrated distal clamp and proximal fixator was completed,and a mechanical prototype was constructed.The results of the performance evaluations and static analysis demonstrate that the proposed reduction robot has acceptable workspace,force,and torque performance and excellent structural stiffness.Two clinical case simulations further demonstrated the clinical feasibility of the robot.Finally,preliminary experiments on bone models demonstrated the potential effectiveness of the proposed reduction robot in lower-limb fracture reduction.展开更多
Thanks to its abundant reserves,relatively high energy density,and low reduction potential,potassium ion batteries(PIBs)have a high potential for large-scale energy storage applications.Due to the large radius of pota...Thanks to its abundant reserves,relatively high energy density,and low reduction potential,potassium ion batteries(PIBs)have a high potential for large-scale energy storage applications.Due to the large radius of potassium ions,most conventional anode materials undergo severe volume expansion,making it difficult to achieve stable and reversible energy storage.Therefore,developing high-performance anode materials is one of the critical factors in developing PIBs.In this sense,antimony(Sb)-based anode materials with high theoretical capacity and safe reaction potentials have a broad potential for application in PIBs.However,overcoming the rapid capacity decay induced by the large radius of potassium ions is still an issue that needs to be focused on.This paper reviews the latest research on different types of Sb-based anode materials and provides an in-depth analysis of their optimization strategies.We focus on material selection,structural design,and storage mechanisms to develop a detailed description of the material.In addition,the current challenges still faced by Sb-based anode materials are summarized,and some further optimization strategies have been added.We hope to provide some insights for researchers developing Sb-based anode materials for next-generation advanced PIBs.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(22105059,22179078,22479115)the Beijing-Tianjin-Hebei Basic Research Cooperation Special Project(B2024204027)+5 种基金the Youth Top-notch Talent Foundation of Hebei Provincial Universities(BJK2022023)the Natural Science Foundation of Hebei Province(B2023204006)the talent training project of Hebei province(No.B20231004)the Innovative Research Team of High-level Local Universities in ShanghaiZhejiang Provincial Natural Science Foundation of China(LY24E020002)Wenzhou basic scientific research project(G20240022)。
文摘Sodium-ion batteries have emerged as promising candidates for next-generation large-scale energy storage systems due to the abundance of sodium resources,low solvation energy,and cost-effectiveness.Among the available cathode materials,vanadium-based sodium phosphate cathodes are particularly notable for their high operating voltage,excellent thermal stability,and superior cycling performance.However,these materials face significant challenges,including sluggish reaction kinetics,the toxicity of vanadium,and poor electronic conductivity.To overcome these limitations and enhance electrochemical performance,various strategies have been explored.These include morphology regulation via diverse synthesis routes and electronic structure optimization through metal doping,which effectively improve the diffusion of Na+and electrons in vanadium-based phosphate cathodes.This review provides a comprehensive overview of the challenges associated with V-based polyanion cathodes and examines the role of morphology and electronic structure design in enhancing performance.Key vanadium-based phosphate frameworks,such as orthophosphates(Na_(3)V_(2)(PO_(4))_(3)),pyrophosphates(NaVP_(2)O_(7),Na_(2)(VO)P_(2)O_(7),Na_(7)V_(3)(P_(2)O_(7))_(4)),and mixed phosphates(Na_(7)V_(4)(P_(2)O_(7))_(4)PO_(4)),are discussed in detail,highlighting recent advances and insights into their structure-property relationships.The design of cathode material morphology offers an effective approach to optimizing material structures,compositions,porosity,and ion/electron diffusion pathways.Simultaneously,electronic structure tuning through element doping allows for the regulation of band structures,electron distribution,diffusion barriers,and the intrinsic conductivity of phosphate compounds.Addressing the challenges associated with vanadium-based sodium phosphate cathode materials,this study proposes feasible solutions and outlines future research directions toward advancement of high-performance vanadium-based polyanion cathodes.
文摘According to the announcement of General Administration of Quality Supervision,Inspection and Quarantine of the People's Republic of China,the risk of microbial items in frozen drinks is very high,and it is difficult to improve.For example,a recent spot check showed that 42 kinds of frozen drinks had microbial indicators exceeding the standard.Part of the reason is that the design of the production workshop is not conducive to the rapid removal of production water,resulting in continuous moisture throughout the workshop,which provides a breeding bed for microorganisms to breed and then contaminates the product.Therefore,research is carried out from the design point of view to fundamentally reduce the moisture in the workshop and build a dry workshop for frozen drinks production,so as to effectively reduce the risk of microbial contamination of frozen drinks.
基金supported by the Key Research and Development Program,Ministry of Science and Technology of the People’s Republic of China(Nos.2023YFC2606500,2023YFE0206500).
文摘Coronaviruses are single-stranded,positive-sense RNA enveloped viruses that have posed a significant threat to human health over the past few decades,particularly severe acute respiratory syndrome coronavirus(SARS-CoV),Middle East respiratory syndrome coronavirus(MERS-CoV),and SARS-CoV-2.These viruses have caused widespread infections and fatalities,with profound impacts on global economies,social life,and public health systems.Due to their broad host range in natural settings and the consequent high potential for zoonotic spillover events,a thorough investigation of the common viral mechanisms and the identification of druggable targets for pan-coronavirus antiviral development are of utmost importance.
文摘This paper analyzes the structural design of an urban interchange ramp bridge from four aspects,which are the superstructure,pier structure,foundation structure,and deck structure design to summarize the structural design ideas of this urban interchange ramp bridge,which can be used as a reference for future construction of the same bridge.
基金supported by Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(Grant No.CX2024001).
文摘The strength and endurance of human limbs can be enhanced through equipping exoskeletons or other types of wearabledevices. However, long-time use of such devices may cause musculoskeletal disorders (MSDs) or potential injuries due toexternal shocks and vibrations. Consequently, preventing potential risks and enhancing comfortability are crucial to the designof exoskeleton. This research introduces a novel hybrid rigid-soft knee joint exoskeleton, which is well flexible and supportedby two curved beams. This design is friendly and comfortable for wearers. The stiffness of the curved beam is meticulouslycalibrated to match the natural need of the knee joint, which provides appropriate support under vibration and impact. Weemploy the analytical modeling, finite element method (FEM), numerical analysis, and experimental approaches to analyze thestatic and dynamic properties of the knee exoskeleton system. The results confirm that the exoskeleton system exhibits reducedvibration transmissibility in low-frequency environments, and present a new methodology for the design and mechanicalanalysis of exoskeleton systems.
基金This study was carried out at the 3D Printing Innovation Research Centre of the Ninth People's Hospital Affiliated to the School of Medicine of Shanghai Jiao Tong University,and the authors thank the founding support from the Shanghai Municipal Key Clinical Specialty-Biomedical Materials(shslczdzk06701)the 3-year Action Plan of Shen kang Development Centre(SHDC2020CR2019B)+2 种基金the Huangpu District Industrial Support Fund(XK2020009)the Shanghai Engineering Research Centre of Innovative Orthopedic Instruments and Personalized Medicine(19DZ2250200)the Industry Standard Study on 3D Printing Personalized Titanium Alloy Pelvic Reconstruction Prosthesis(21DZ2201500).
文摘Porous titanium alloy is currently widely used in clinical treatment of orthopaedic diseases for its lower elastic modulus and ability to integrate with bone tissue.At the micro-level,cells can respond to different geometries,and at the macro-level,the geometric design of implants will also affect the biological function of cells.In this study,three kinds of porous scaffolds with square,triangular and circle rod shapes were designed and 3D printed.This study observed the proliferation and differentiation of MC3T3-E1 cells during surface culture of the three types of scaffolds.It also evaluated the characteristics of the three scaffolds by means of compression tests and scanning electron microscopy to provide a reference for the design of porous titanium alloy implants for clinical applications.The trends of cell proliferation and gene expression between the three types of scaffolds were observed after treatment with two inhibitors.The results show that the square rod porous scaffolds have the best proliferative and osteogenic activities,and these findings may be due to differences in piezo-type mechanosensitive ion channel component 1(Piezo1)and Yes-associated protein(YAP)expression caused by the macro-geometric topography.
基金financially supported by the National Natural Science Foundation of China (Grant No.51802025)the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No.2020JQ-384)。
文摘Different bilayer structures of HfO_(x)/Ti(TiO_(x)) are designed for hafnium-based memory to investigate the switching characteristics. The chemical states in the films and near the interface are characterized by x-ray photoelectron spectroscopy,and the oxygen vacancies are analyzed. Highly improved on/off ratio(~104) and much uniform switching parameters are observed for bilayer structures compared to single layer HfO_(x) sample, which can be attributed to the modulation of oxygen vacancies at the interface and better control of the growth of filaments. Furthermore, the reliability of the prepared samples is investigated. The carrier conduction behaviors of HfO_(x)-based samples can be attributed to the trapping and de-trapping process of oxygen vacancies and a filamentary model is proposed. In addition, the rupture of filaments during the reset process for the bilayer structures occur at the weak points near the interface by the recovery of oxygen vacancies accompanied by the variation of barrier height. The re-formation of fixed filaments due to the residual filaments as lightning rods results in the better switching performance of the bilayer structure.
基金This work was supported by the National Natural Science Foundation of China(52203066,51973157,61904123)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the National innovation and entrepreneurship training program for college students(202310058007)the Tianjin Municipal college students’innovation and entrepreneurship training program(202310058088)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(Grant No.2018KJ196)the State Key Laboratory of Membrane and Membrane Separation,Tiangong University.
文摘Lithium-sulfur battery(LSB)has brought much attention and concern because of high theoretical specific capacity and energy density as one of main competitors for next-generation energy storage systems.The widely commercial application and development of LSB is mainly hindered by serious“shuttle effect”of lithium polysulfides(Li PSs),slow reaction kinetics,notorious lithium dendrites,etc.In various structures of LSB materials,array structured materials,possessing the composition of ordered micro units with the same or similar characteristics of each unit,present excellent application potential for various secondary cells due to some merits such as immobilization of active substances,high specific surface area,appropriate pore sizes,easy modification of functional material surface,accommodated huge volume change,enough facilitated transportation for electrons/lithium ions,and special functional groups strongly adsorbing Li PSs.Thus many novel array structured materials are applied to battery for tackling thorny problems mentioned above.In this review,recent progresses and developments on array structured materials applied in LSBs including preparation ways,collaborative structural designs based on array structures,and action mechanism analyses in improving electrochemical performance and safety are summarized.Meanwhile,we also have detailed discussion for array structured materials in LSBs and constructed the structure-function relationships between array structured materials and battery performances.Lastly,some directions and prospects about preparation ways,functional modifications,and practical applications of array structured materials in LSBs are generalized.We hope the review can attract more researchers'attention and bring more studying on array structured materials for other secondary batteries including LSB.
文摘The lightweight design of hydraulic quadruped robots,especially the lightweight design of the leg joint Hydraulic Drive Unit(HDU),can improve the robot's response speed,motion speed,endurance,and load capacity.However,the lightweight design of HDU is a huge challenge due to the need for structural strength.This paper is inspired by the geometric shape of fish bones and biomimetic reinforcing ribs on the surface of the HDU shell are designed to increase its strength and reduce its weight.First,a HDU shell with biomimetic fish bone reinforcing ribs structure is proposed.Then,the MATLAB toolbox and ANSYS finite element analysis module are used to optimize the parameters of the biomimetic reinforcing ribs structure and the overall layout of the shell.Finally,the HDU shell is manufactured using additive manufacturing technology,and a performance testing platform is built to conduct dynamic and static performance tests on the designed HDU.The experimental results show that the HDU with biomimetic fish bone reinforcing ribs has excellent dynamic performance and better static performance than the prototype model,and the weight of the shell is reduced by 20%compared to the prototype model.This work has broad application prospects in the lightweight and high-strength design of closed-pressure vessel components.
文摘Traditional structural forms are difficult to meet the lightweight requirements of subsequent spacecraft for load-bearing structures.In the aerospace industry,filling structure with lattices is a popular approach to reduce the weight of a spacecraft.However,this design strategy has deficiencies in the spatial distribution of lattice cells as well as its affection on the mechanical properties.In this study,a two-step topology optimization technique is proposed to solve the spatial distribution problem of nanosatellite.Firstly,an entire nanosatellite box composed of panels which filled with uniform lattices is sent to the vibration test to obtain the frequency data.Then,a finite element(FE)model of the nanosatellite structure which contains the same uniform lattices is built and validated with the obtained frequency data above.For the subsequent calculation of topology optimization.An equivalent model of the verified FE model is established by replacing the lattice cells in the sandwich layer with equivalent fictional elements.Subsequently,a topology optimization problem under the mass constraints is formulated for maximize the nature frequency,and a new light weighted nanosatellite which filled with non-uniform lattices is established by applying the density mapping method and the previous topology configuration result.By separating the design problem of nanosatellite into two steps,the proposed optimization design method achieves the maximum frequency design under the weight constraint.Furthermore,the frequency is also guaranteed to be around the nature frequency.The results reveal that the mass of the new structure with non-uniform lattices is reduced by 50.32%and the frequency is increased by 1.19%.An important technical importance and application value of this proposed technique is that it improves the performance and design efficiency of the load-bearing structures of a nanosatellite,and this method has significant technical significance and application value.
基金financially supported by the National Natural Science Foundation of China(No.52201235)the Natural Science Foundation of Ningbo City(No.2022J308)+4 种基金the Science and Technology Program of Zhejiang Province(No.2024C01145)Ningbo Young Science and Technology Innovation Leading Talents(No.2023QL040)Kunpeng Plan of Zhejiang ProvinceNingbo Top Talent Programthe"Pioneer"and"Leading Goose"R&D Program of Zhejiang(No.2022C01020)。
文摘The incorporation of the high-abundance rareearth element Y in(Nd,Y)-Fe-B sintered magnets offers an opportunity to reduce the cost of permanent magnetic materials,while promoting the balanced usage of rare-earth resources.However,the performance of(Nd,Y)-Fe-B magnets prepared using the conventional dual-main-phase(DMP)method undergoes significant degradation due to the strong diffusion ability of Y.To suppress the excessive diffusion of Y,this study presents a macroscopic lamellar magnet preparation scheme.Consequently,the micromagnetic simulations revealed that the multilayer magnets exhibited superior intrinsic performance compared to DMP magnets.Subsequently,the multilayer magnets were prepared by alternately stacking the 0%Y(0Y)and 30%Y(30Y)magnetic powders.The observed magnetic properties demonstrated that the coercvity of the three-layer magnet was~0.23 T higher than that of the DMP magnet,leading to improved coercivity stability at high temperatures.Furthermore,the microstructural observations and elemental analyses indicated the presence of a~200-μm-thick interface layer at the contact site between the 0Y and 30Y magnetic layers.Thus,the proposed approach effectively suppressed the excessive diffusion of Y in(Nd,Y)-Fe-B magnets,thereby enhancing the magnetic performance of the sintered magnets.
基金National Natural Science Foundation of China(22272150,22302177)Major Program of Zhejiang Provincial Natural Science Foundation of China(LD22B030002)+2 种基金Zhejiang Provincial Ten Thousand Talent Program(2021R51009)Public Technology Application Project of Jinhua City(2022-4-067)Self Designed Scientific Research of Zhejiang Normal University(2021ZS0604)。
文摘Biomass conversion offers an efficient approach to alleviate the energy and environmental issues.Electrochemical oxidation of 5-hydroxymethylfurfural(HMF)has attracted tremendous attention in the latest few years for the mild synthesis conditions and high conversion efficiency to obtain 2,5-furan dicarboxylic acid(FDCA),but there still remain problems such as limited yield,short cycle life,and ambiguous reaction mechanism.Despite many reviews highlighting a variety of electrocatalysts for electrochemical oxidation of HMF,a detailed discussion of the structural modulation of catalyst and the underlying catalytic mechanism is still lacking.We herein provide a comprehensive summary of the recent development of electrochemical oxidation of HMF to FDCA,particularly focusing on the mechanism studies as well as the advanced strategies developed to regulate the structure and optimize the performance of the electrocatalysts,including heterointerface construction,defect engineering,single-atom engineering,and in situ reconstruction.Experimental characterization techniques and theoretical calculation methods for mechanism and active site studies are elaborated,and challenges and future directions of electrochemical oxidation of HMF are also prospected.This review will provide guidance for designing advanced catalysts and deepening the understanding of the reaction mechanism beneath electrochemical oxidation of HMF to FDCA.
基金support from the National Natural Science Foundation of China(22268025,52473083,and 22475176)Key Research and Development Program of Yunnan Province(202403AP140036)+2 种基金Natural Science Basic Research Program of Shaanxi(2024JC-TBZC-04)Applied Basic Research Program of Yunnan Province(202201AT070115 and 202201BE070001-031)supported by the Innovation Capability Support Program of Shaanxi(2024RS-CXTD-57).
文摘The microstructure design for thermal conduction pathways in polymeric electrical encapsulation materials is essential to meet the stringent requirements for efficient thermal management and thermal runaway safety in modern electronic devices.Hence,a composite with three-dimensional network(Ho/U-BNNS/WPU)is developed by simultaneously incorporating magnetically modified boron nitride nanosheets(M@BNNS)and non-magnetic organo-grafted BNNS(U-BNNS)into waterborne polyurethane(WPU)to synchronous molding under a horizontal magnetic field.The results indicate that the continuous in-plane pathways formed by M@BNNS aligned along the magnetic field direction,combined with the bridging structure established by U-BNNS,enable Ho/U-BNNS/WPU to exhibit exceptional in-plane(λ//)and through-plane thermal conductivities(λ_(⊥)).In particular,with the addition of 30 wt%M@BNNS and 5 wt%U-BNNS,theλ//andλ_(⊥)of composites reach 11.47 and 2.88 W m^(-1) K^(-1),respectively,which representing a 194.2%improvement inλ_(⊥)compared to the composites with a single orientation of M@BNNS.Meanwhile,Ho/U-BNNS/WPU exhibits distinguished thermal management capabilities as thermal interface materials for LED and chips.The composites also demonstrate excellent flame retardancy,with a peak heat release and total heat release reduced by 58.9%and 36.9%,respectively,compared to WPU.Thus,this work offers new insights into the thermally conductive structural design and efficient flame-retardant systems of polymer composites,presenting broad application potential in electronic packaging fields.
基金supported by the National Key R&D Plan(No.2023YFD2401104)Tianjin Agricultural Development Service Center Science and Technology Innovation Project for Youth(No.ZXKJ202429 and No.ZXKJ202454).
文摘Artificial fish reef is a kind of artificial structure in water,which provides a necessary and safe place for aquatic life such as fish to inhabit,grow,and breed,and creates an environment suitable for fish growth,so as to protect and multiply fishery resources.In a large time scale,the physical process of sea area can deeply affect the chemical process and biological process,so the structure characteristics of artificial reef are the key factors affecting the flow field effect around the reef.In this study,through the hydrodynamic experiments of four kinds of reef models,including big windows box reef,big and small windows box reef,"(卐)"shaped reef and double-layer shellfish breeding reef,the influence of single reef structure on the flow field effect is analyzed,and the force conditions of different reefs under the same incoming current velocity are obtained.According to the simulation results,the safety research and calculation of five kinds of reef models are carried out,and the volumes of vortex area and upwelling area behind four kinds of reef are obtained.Using hydrodynamic model to simulate the flow field effect of reef area,optimizing the reef structure design,improving the maximum biological trapping and proliferation effect of reef,can provide theoretical guidance and scientific and technological support for the construction of reef area.
文摘In this research work, it has been designed a bionic robot fish structure, can swim underwater. The active compact body is powered by eight sets of symmetric PVC gel actuators with a caudal fin. The robot’s 200 mm-long, fish structure design incorporates a 55.52 angle to optimize the fish dynamics movement. It’s a fast and smooth operation and can swim. The robot can swim fast and quietly by using the right positions and the appropriate actuators on PVC gel actuators. This design entails a unique architecture that enables the robot to move safely and unobtrusively at the same time, which makes it suitable equipment for different exploration and surveillance missions in the water with speed and silent operation as the foremost concern.
文摘Nowadays,education and teaching have become a hot topic,and teaching in colleges and universities is facing a brand-new development direction.Principles of Concrete Structure Design,as one of the main courses,transmits professional knowledge for students,enhances the students’professional ability,and further carries out in-depth research on the course to bring a better teaching effect for students.The article mainly focuses on the research of the principles of concrete structure design course,conducts an analysis of the teaching characteristics of the principles of concrete structure design course,and reasonably sets the teaching content from the optimization of the course teaching objectives;innovative course teaching methods can deepen the effect of knowledge understanding;reform of experimental practice teaching can lay down the effect of the internalization of knowledge,etc.The in-depth description and discussion of the relevant aspects of the research aim to provide guidelines for related research.
基金supported by the Science and Technology Planning Project of Guangdong Province(Nos.2024A0505040016 and 2023A0505050148)National Key Research and Development Project of China(2023YFB3809900/2023YFB3809902)Natural Science Foundation of Guangdong Province(No.2025A1515010026)。
文摘Biodegradable metals have garnered considerable interest owing to their capacity for self-degradation following the repair of damaged tissues.This review commences with their historical development and clarifies the essential prerequisites for their successful clinical translation.Subsequently,a detailed review of magnesium-based materials is presented from five critical areas of alloying,fabrication techniques,purification,surface modification,and structural design,systematically addressing their progress in biodegradation rate retardation,mechanical reinforcement,and biocompatibility enhancement.Furthermore,recent breakthroughs in vivo animal experiments and clinical translation of magnesium alloys are summarized.Finally,this review concludes with a critical assessment of the achievements and challenges encountered in the clinical application of these materials,and proposes practical strategies to address current limitations and guide future research perspectives.
基金financially supported by the National Key R&D Program of China (2022YFE0197100, 2023YFB4603500)Shenzhen Science and Technology Innovation Commission (KQTD20190929172505711)+1 种基金supported by MOE SUTD Kickstarter initiative (SKI2021_02_16)Singapore Ministry of Education academic research grant Tier 2 (MOE-T2EP50121-0007).
文摘Organohydrogel-based strain sensors are gaining attention for real-time health services and human-machine interactions due to their flexibility,stretchability,and skin-like compliance.However,these sensors often have limited sensitivity and poor stability due to their bulk structure and strain concentration during stretching.In this study,we designed and fabricated diamond-,grid-,and peanut-shaped organohydrogel based on positive,near-zero,and negative Poisson’s ratios using digital light processing(DLP)-based 3D printing technology.Through structural design and optimization,the grid-shaped organohydrogel exhibited record sensitivity with gauge factors of 4.5(0–200%strain,ionic mode)and 13.5/1.5×10^(6)(0-2%/2%-100%strain,electronic mode),alongside full resistance recovery for enhanced stability.The 3D-printed grid structure enabled direct wearability and breathability,overcoming traditional sensor limitations.Integrated with a robotic hand system,this sensor demonstrated clinical potential through precise monitoring of paralyzed patients’grasping movements(with a minimum monitoring angle of 5°).This structural design paradigm advanced flexible electronics by synergizing high sensitivity,stability,wearability,and breathability for healthcare,and human-machine interfaces.
基金Supported by National Natural Science Foundation of China(Grant Nos.52405001,52175001,62373010,82472537)China Postdoctoral Science Foundation(Grant No.2024M760166)+2 种基金Postdoctoral Fellowship Program of CPSF(Grant No.GZC20230186)Shenzhen Municipal Science,Technology,and Innovation Commission(Grant No.SGDX20220530111005036)Beijing Natural Science Foundation(Grant Nos.3222002,3232004,L222061).
文摘Long-bone fractures are common complaints in orthopedic surgery.In recent years,significant progress has been made in robot-assisted fracture-reduction techniques.As a key medical device for diverse fracture morphologies and sites,the design of the reduction robot has a profound impact on the reduction outcomes.However,existing reduction robots have practical limitations and cannot simultaneously satisfy clinical requirements in terms of workspace,force/torque,and structural stiffness.To overcome these problems,we first analyze the potential placement areas and performance requirements of reduction robots according to clinical application scenarios.Subsequently,a 3UPS/S-3P hybrid configuration with decoupled rotational and translational degrees of freedom(DOFs)is proposed,and a kinematic model is derived to achieve the motion characteristics of the remote center of motion(RCM).Furthermore,the structural design of a hybrid reduction robot with an integrated distal clamp and proximal fixator was completed,and a mechanical prototype was constructed.The results of the performance evaluations and static analysis demonstrate that the proposed reduction robot has acceptable workspace,force,and torque performance and excellent structural stiffness.Two clinical case simulations further demonstrated the clinical feasibility of the robot.Finally,preliminary experiments on bone models demonstrated the potential effectiveness of the proposed reduction robot in lower-limb fracture reduction.
基金financially supported by the National Natural Science Foundation of China(No.22209057)the Guangzhou Basic and Applied Basic Research Foundation(No.2024A04J0839)。
文摘Thanks to its abundant reserves,relatively high energy density,and low reduction potential,potassium ion batteries(PIBs)have a high potential for large-scale energy storage applications.Due to the large radius of potassium ions,most conventional anode materials undergo severe volume expansion,making it difficult to achieve stable and reversible energy storage.Therefore,developing high-performance anode materials is one of the critical factors in developing PIBs.In this sense,antimony(Sb)-based anode materials with high theoretical capacity and safe reaction potentials have a broad potential for application in PIBs.However,overcoming the rapid capacity decay induced by the large radius of potassium ions is still an issue that needs to be focused on.This paper reviews the latest research on different types of Sb-based anode materials and provides an in-depth analysis of their optimization strategies.We focus on material selection,structural design,and storage mechanisms to develop a detailed description of the material.In addition,the current challenges still faced by Sb-based anode materials are summarized,and some further optimization strategies have been added.We hope to provide some insights for researchers developing Sb-based anode materials for next-generation advanced PIBs.