A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic response...A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.展开更多
The new organic-inorganic compound, [C_6H_7N_2O_2]_3TeCl_5·2Cl was synthesized and its structure was determined at room temperature in the triclinic system (P^-1) with the following parameters: a = 10.5330(11...The new organic-inorganic compound, [C_6H_7N_2O_2]_3TeCl_5·2Cl was synthesized and its structure was determined at room temperature in the triclinic system (P^-1) with the following parameters: a = 10.5330(11) ?, b = 10.6663(11) ?, c = 15.9751(16)?, α = 82.090(2)°, β = 71.193(2)°, γ = 68.284(2)°and Z = 2. The final cycle of refinement led to R = 0.057 and Rw = 0.149. The crystal structure was stabilized by an extensive network of N--H···Cl and non-classical C--H···Cl hydrogen bonds between the cation and the anionic group. Several thermal analysis techniques such as thermogravimetric analysis, differential scanning calorimetric analysis and evolved gas analysis were used. We used isoconversional kinetics methods to determine the kinetics parameters. We observe that the decomposition of [C_6H_7N_2O_2]_3TeCl_5·2Cl entails the formation hydrochloric acid of nitroaniline as volatiles. The infrared spectra were recorded in the4000–400 cm^(-1)frequency region. The Raman spectra were recorded in the external region of the anionic sublattice vibration 50–1500 cm^(-1). The optical band gap was calculated from the UV-Vis absorbance spectra using classical Tauc relation which was found to be 3.12 and 3.67 eV.展开更多
基金Supported by the National Natural Science Foundation of China(51079027)
文摘A ship is operated under an extremely complex environment, and waves and winds are assumed to be the stochastic excitations. Moreover, the propeller, host and mechanical equipment can also induce the harmonic responses. In order to reduce structural vibration, it is important to obtain the modal parameters information of a ship. However, the traditional modal parameter identification methods are not suitable since the excitation information is difficult to obtain. Natural excitation technique-eigensystem realization algorithm (NExT-ERA) is an operational modal identification method which abstracts modal parameters only from the response signals, and it is based on the assumption that the input to the structure is pure white noise. Hence, it is necessary to study the influence of harmonic excitations while applying the NExT-ERA method to a ship structure. The results of this research paper indicate the practical experiences under ambient excitation, ship model experiments were successfully done in the modal parameters identification only when the harmonic frequencies were not too close to the modal frequencies.
基金partially funded by the Tunisian Ministry of Higher Education and Scientific Research,the Spanish Programa Nacional de Materiales through project MAT2014-51778-C2-2-Rby the Universitat de Girona contract No.MPCUd G2016/059.Dfinancial support of the Tunisian Ministry of Higher Education and Scientific Research
文摘The new organic-inorganic compound, [C_6H_7N_2O_2]_3TeCl_5·2Cl was synthesized and its structure was determined at room temperature in the triclinic system (P^-1) with the following parameters: a = 10.5330(11) ?, b = 10.6663(11) ?, c = 15.9751(16)?, α = 82.090(2)°, β = 71.193(2)°, γ = 68.284(2)°and Z = 2. The final cycle of refinement led to R = 0.057 and Rw = 0.149. The crystal structure was stabilized by an extensive network of N--H···Cl and non-classical C--H···Cl hydrogen bonds between the cation and the anionic group. Several thermal analysis techniques such as thermogravimetric analysis, differential scanning calorimetric analysis and evolved gas analysis were used. We used isoconversional kinetics methods to determine the kinetics parameters. We observe that the decomposition of [C_6H_7N_2O_2]_3TeCl_5·2Cl entails the formation hydrochloric acid of nitroaniline as volatiles. The infrared spectra were recorded in the4000–400 cm^(-1)frequency region. The Raman spectra were recorded in the external region of the anionic sublattice vibration 50–1500 cm^(-1). The optical band gap was calculated from the UV-Vis absorbance spectra using classical Tauc relation which was found to be 3.12 and 3.67 eV.