期刊文献+
共找到81篇文章
< 1 2 5 >
每页显示 20 50 100
Late Mesozoic Tectonic Evolution of Southwestern Fujian Province,South China:Constraints from Magnetic Fabric,Zircon U-Pb Geochronology and Structural Deformation 被引量:5
1
作者 Sen Wang Da Zhang +7 位作者 Ganguo Wu Xingjian Li Xiaoqiao Gao Absai Vatuva Yuan Yuan Tengda Yu Yu Bai Ye Fang 《Journal of Earth Science》 SCIE CAS CSCD 2018年第2期391-407,共17页
A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China,... A combined study of magnetic fabrics, zircon U-Pb geochronology and structural deformation was carried out for Late Paleozoic sedimentary and Mesozoic magmatic rocks in the southwestern Fujian rift basin, South China, aiming at deciphering the tectonic evolution during Late Mesozoic. Field observations showed that the Late Mesozoic structure deformations in southwestern Fujian were categorized into four phases: NW-SE compression, ENE-WSW extension, NNE-SSW compression and NNW-SSE extension, se- quentially. Zircons picked out from Juzhou granite and WNW-trending diabase dykes showed complete crys- tal shapes and clear oscillatory zonings on their edges, and the U-Pb dating yielded ages of 132 and 141 Ma, respectively. The susceptibility ellipsoid magnitude parameters of the Juzhou granite are characterized by flaser type strain ellipsoid, with pole density center of K3 falling into the first and the third quadrants, these fea- tures revealed that the Juzhou granite formed in ENE-WSW compressional stress field, indicating the early stage of Early Cretaceous extrusion in southwestern Fujian. The late stage of Early Cretaceous NNE-SSW ex- tension was limited by the widespread WNW-trending diabase dykes, which were usually regarded as impor- tant indications for a regional extensional setting. On the basic of the previous researches, structural deforma- tion studies, and the deductions above, it can be concluded that southwestern Fujian experienced five main tectonic stages during Late Mesozoic: Early Jurassic extension, Middie-Late Jurassic thrusting, early stage of Early Cretaceous extension, late stage of Early Cretaceous compression and Late Cretaceous extension. 展开更多
关键词 tectonic evolution magnetic fabric U-Pb dating structural deformation southwestern Fujian.
原文传递
Vertical Differential Structural Deformation of the Main Strike-slip Fault Zones in the Shunbei Area,Central Tarim Basin:Structural Characteristics,Deformation Mechanisms,and Hydrocarbon Accumulation Significance 被引量:5
2
作者 TIAN Fanglei HE Dengfa +1 位作者 CHEN Jiajun MAO Danfeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第4期1415-1431,共17页
Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and i... Vertical differential structural deformation(VDSD),one of the most significant structural characteristics of strike-slip fault zones(SSFZs)in the Shunbei area,is crucial for understanding deformation in the SSFZ and its hydrocarbon accumulation significance.Based on drilling data and high-precision 3-D seismic data,we analyzed the geometric and kinematic characteristics of the SSFZs in the Shunbei area.Coupled with the stratification of the rock mechanism,the structural deformations of these SSFZs in different formations were differentiated and divided into four deformation layers.According to comprehensive structural interpretations and comparisons,three integrated 3-D structural models could describe the VDSD of these SSFZs.The time-space coupling of the material basis(rock mechanism stratification),changing dynamic conditions(e.g.,changing stress-strain states),and special deformation mechanism of the en echelon normal fault array uniformly controlled the formation of the VDSD in the SSFZs of the Shunbei area.The VDSD of the SSFZs in this area controlled the entire hydrocarbon accumulation process.Multi-stage structural superimposing deformation influenced the hydrocarbon migration,accumulation,distribution,preservation,and secondary adjustments. 展开更多
关键词 strike-slip fault vertical differential structural deformation hydrocarbon accumulation Shunbei area central Tarim Basin
在线阅读 下载PDF
Paleozoic Structural Deformation of Bachu Uplift,Tarim Basin of Northwest China:Implications for Plate Drifting 被引量:4
3
作者 何光玉 何治亮 +6 位作者 张洪安 林璐 陈强路 钱一雄 顾忆 竺知新 竺国强 《Journal of China University of Geosciences》 SCIE CSCD 2009年第4期755-762,共8页
Based on high-resolution 2D seismic profiles, the Paleozoic structural deformation char- acteristics of Bachu (巴楚) uplift of northwestern Tarim basin, NW China, are exhibited in this article. The deformation happe... Based on high-resolution 2D seismic profiles, the Paleozoic structural deformation char- acteristics of Bachu (巴楚) uplift of northwestern Tarim basin, NW China, are exhibited in this article. The deformation happened during three main geological periods: the end of Middle-Late Ordovician (O2-3), the end of Early-Middle Devonian (D1-2), and the end of Late Permian (P2). In the Bachu uplift, there developed a series of NW-trending thrust faults and imbricate structures due to the effect of the NW-SE compression stress towards the end of Middle-Late Ordovician (O2-3) (middle Caledonian movement), and there developed some NNE-trending thrust faults and fault blocks under the control of the NEE-SWW compression stress at the end of Early-Middle Devonian (D1-2) (early Hercynian movement). However, at the end of Late Permian (P2) (late Hercynian movement), some NE-trending thrust faults and associated folds developed as a result of the NE-SW compression stress. The first-stage (O2-3) deformation is obviously more violent than those of the latter two stages (D1-2 and P2), which implies that the Tarim plate drifted quickly to the north at around the same time basin. 展开更多
关键词 structural deformation PALEOZOIC plate drift Bachu uplift Tarim.
原文传递
Numerical Simulations of Structural Deformation and Fluid Flow in Xiangshan Deposit 被引量:7
4
作者 ZHOU Ye LIN Ge +1 位作者 GONG Fa-xiong LIU Shi-lin 《Journal of China University of Mining and Technology》 EI 2006年第4期404-408,共5页
The Xiangshan deposit in Jiangxi province is one of the most important uranium deposits in China. The aim of this study is to achieve a better understanding of mineralization in the Xiangshan deposit through numerical... The Xiangshan deposit in Jiangxi province is one of the most important uranium deposits in China. The aim of this study is to achieve a better understanding of mineralization in the Xiangshan deposit through numerical simulation. In order to find the most favorable locations of mineralization and to help further mineral exploration, a coupling deforma- tion and fluid flow model has been established to describe the mineralization process. In this model, the simulation re- constructs the strata deformations under fields of compressive stress and thrust structure on the hanging wall of the Zou-Shi fault. Compared with practical information, the simulation results are consistent with the No. 51 exploration section of the western Xiangshan. In addition, on the basis of geological information provided by previous investigators, the model simulates the flow process of fluids under compressive stress fields. The result suggests that many tensional areas are formed, which can help the fluid flowing upward from deeper parts. The fluid is easy to concentrate on the breccia fractured zone between two volcanic layers, especially on the intersection parts with faults, resulting in the for- mation of favourable locations of mineralization. In addition, the model is significant in guiding the exploration of ura- nium deposits in the western Xiangshan and provides clues for further exploration of deposits. 展开更多
关键词 numerical simulation Xiangshan structural deformation fluid flow
在线阅读 下载PDF
Structural deformation and fluid flow from East Sichuan to the northwestern periphery of the Xuefeng Uplift,China 被引量:3
5
作者 Tang Liangjie Cui Min 《Petroleum Science》 SCIE CAS CSCD 2012年第4期429-435,共7页
Hydrocarbon preservation conditions have restricted exploration in the Middle and Upper Yangtze,and structural deformation and fluid activity have played an important role in the origin and preservation of oil and gas... Hydrocarbon preservation conditions have restricted exploration in the Middle and Upper Yangtze,and structural deformation and fluid activity have played an important role in the origin and preservation of oil and gas.In order to study that how the deformation and fluid activity impact the hydrocarbon preservation,we did some field work and collected some calcite vein samples for analysis of deformation periods using acoustic emission and fluid inclusions.Combined with previous studies,the strata distribution,tectonic deformation and fluid characteristics show that there are three structural belts in the study area:East Sichuan,West Hunan and Hubei and the northwestern periphery of the Xuefeng Uplift,and that their tectonic deformation style,fluid inclusion characteristics and hydrocarbon preservation are different.The breakthrough thrusts were well developed in the anticline core,and a lot of hydrocarbon inclusions were found in calcite veins around the thrusts in East Sichuan.The breakthrough thrusts were only in the syncline core in West Hunan and Hubei,and the brine inclusions did not contain hydrocarbon in calcite veins around the thrusts.Many breakthrough thrusts were found in the northwestern periphery of the Xuefeng Uplift,where there were only rare calcite veins.The deformation and hydrocarbon inclusion indicated that when there was no fault breakthrough in East Sichuan,the Paleozoic covered by the Triassic regional cap was good for hydrocarbon preservation.The strata above the Lower Paleozoic were denuded,and lots of brine inclusions and deep infiltration of surface water were found in the West Hunan and Hubei,so only the part of the syncline area with a well developed Silurian regional cap had good preservation conditions.Intense tectonic movements and denudation were widely developed in the northwestern periphery of the Xuefeng Uplift,where there were only paleo-reservoirs,non-hydrocarbon fluid activity and poor preservation conditions. 展开更多
关键词 structural deformation fluid flow preservation conditions fluid inclusion Middle and Upper Yangtze
原文传递
Structural deformation of nitro group of nitromethane molecule in liquid phase in an intense femtosecond laser field
6
作者 王畅 吴红琳 +1 位作者 宋云飞 杨延强 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期228-233,共6页
The structural deformation of NO2 group induced by an intense femtosecond laser field of liquid nitromethane(NM)molecule is detected by time-and frequency-resolved coherent anti-Stokes Raman spectroscopy(CARS) tec... The structural deformation of NO2 group induced by an intense femtosecond laser field of liquid nitromethane(NM)molecule is detected by time-and frequency-resolved coherent anti-Stokes Raman spectroscopy(CARS) technique with the intense pump laser. Here, we present the mechanism of molecular alignment and deformation. The CARS spectra and its FFT spectra of liquid NM show that the NO2 torsional mode couples with the CN symmetric stretching mode and that the NO2 group undergoes ultrafast structural deformation with a relaxation time of 195 fs. The frequency of the NO2 torsional mode in liquid NM(50.8±0.3 cm^-1) at room temperature is found. Our results prove the structural deformation of two groups in liquid NM molecule occur simultaneously in the intense laser field. 展开更多
关键词 coherent anti-Stokes Raman spectroscopy(CARS) spectra structural deformation intense laser field liquid nitromethane
原文传递
Structural deformation characteristics and shale gas preservation conditions in the Zhaotong National Shale Gas Demonstration Area along the southern margin of the Sichuan Basin
7
作者 Xu Zhengyu Liang Xing +8 位作者 Lu Huili Zhang Jiehui Shu Honglin Xu Yunjun Wu Jinyun Wang Gaocheng Lu Wenzhong Tang Xiehua Shi Wenrui 《Natural Gas Industry B》 2020年第3期224-233,共10页
The Zhaotong National Shale Gas Demonstration Area along the southern margin of the Sichuan Basin is located in the complex marine tectonic area of South China,where shale deformation and reformation are intense and t... The Zhaotong National Shale Gas Demonstration Area along the southern margin of the Sichuan Basin is located in the complex marine tectonic area of South China,where shale deformation and reformation are intense and the factors controlling sweet spots are complex,so the preservation conditions have an important impact on the enrichment of shale gas.In order to support the selection and evaluation of shale gas sweet spots in this area and improve the success rate of drilling,this paper carried out a geological survey onfield outcrops.Then,based on drilling,mud logging and physical property test data,the structural deformation pattern and the regional deformation characteristics of this demonstration area were analyzed,and the development characteristics of formation joints and fractures,the sealing capacity of shale sur-rounding rock and the distribution characteristics of gas reservoirs were studied.Finally,the preservation conditions of shale gas in the Wufeng Formation of Upper Ordovician and the Longmaxi Formation of Lower Silurian were discussed.And the following research results were ob-tained.First,in the Zhaotong National Shale Gas Demonstration Area,three structural deformation patterns are developed from south to north,including trough type,equal amplitude type and baffle type,which are distributed in three major deformation zones,respectively,i.e.,the shear deformation zone of Central Guizhou Uplift,the compressionetorsion deformation zone of northern YunnaneGuizhou Depression and the compression deformation zone of Southern Sichuan Depression.Second,three types of joints and fractures whose relationships with the di-rection of strata are high angle,middleelow angle and bedding intersection are developed in the WufengeLongmaxi formations and its overlying strata,and their occurrence characteristics are basically consistent with those of the three major deformation zones.Third,the shale of WufengeLongmaxi formations is thick in the north and thin in the south and possesses the preservation conditions of sourceereservoir inte-gration and self-sealing hydrocarbon accumulation.And combined with the sealing ability of the overburden strata and the roof andfloor,its preservation conditions are overall better.Fourth,from the perspective of shale gas component,this area can be divided into three belts,i.e.,methane,methaneþnitrogen mixture and nitrogen from north to south.And the preservation conditions of shale gas are generally better in the north and worse in the south.In conclusion,the shale in the centralenorthern part of Zhaotong National Shale Gas Demonstration Area(compression deformation area and its southern margin)is the most favorable area because of its large shale thickness,weak reformation and deformation,bedding development of joints and fractures,good sealing performance and excellent preservation conditions.The compressionetorsion deformation zone of northern YunnaneGuizhou Depression in the central part is moderate in preservation conditions,and it is the relatively favorable area.The shear deformation zone of Central Guizhou Uplift in the southern part has poor preservation conditions,and it is a prospective area. 展开更多
关键词 Zhaotong National Shale Gas Demonstration Area Shale gas Preservation condition structural deformation characteristics FRACTURE Joint Displacement pressure Late OrdovicianeEarly silurian
在线阅读 下载PDF
Structure deformation of Ni-Fe-Se enables efficient oxygen evolution via RE atoms doping
8
作者 Hong-Rui Zhao Cheng-Zong Yuan +7 位作者 Cong-Hui Li Wen-Kai Zhao Fu-Ling Wu Lei Xin Hong Yin Shu-Feng Ye Xiao-Meng Zhang Yun-Fa Chen 《Rare Metals》 2025年第1期336-348,共13页
The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode compri... The development of cost-effective and highly stable electrocatalysts for oxygen evolution reactions holds paramount importance in practical hydrogen production.Herein,we present a novel self-supported electrode comprising Ce-doped Ni-Fe-Se nanosheets grown on carbon cloth(Ni-Fe-Ce-Se/CC).This electrode was synthesized through a selenylation process,utilizing Ni-Fe-Ce-layered double hydroxide/carbon cloth(Ni-Fe-Ce LDH/CC)as the precursor.Notably,Ni-Fe-Ce-Se/CC electrode demonstrates remarkable performance,requiring a low overpotential of 300 mV to attain a current density of 100 mA·cm^(-2)under harsh alkaline conditions.Furthermore,the electrode exhibits exceptional stability during continuous operation for 100 h.Insight into the underlying mechanisms was gained through a combination of experimental results and density functional theory calculations.Our findings reveal that Ce doping induces crystal structure deformation in Ni-Fe-Se and enhances electron enrichment around Ni atoms.This structural modification optimizes the adsorption energy of oxygen-based intermediates on the Ni-Fe-Se surface.This work offers a valuable strategy for regulating the electron transfer and adsorption capabilities of transition metal selenide electrocatalysts through RE atoms doping,opening new avenues for enhanced electrocatalytic performance. 展开更多
关键词 Ce doping Structure deformation Ni-Fe-Se Electron transfer Oxygen evolution
原文传递
Early Mesozoic structural deformation in the Chuandian N-S Tectonic Belt,China 被引量:3
9
作者 CHEN Hong HU JianMin +1 位作者 QU HongJie WU GuoLi 《Science China Earth Sciences》 SCIE EI CAS 2011年第11期1651-1664,共14页
The Helan-Chuandian N-S Tectonic Belt is a mantle transitional belt in China. The southem part, forming the Chuandian N-S Tectonic Belt, comprises several tectonic systems, each displaying different characteristics. T... The Helan-Chuandian N-S Tectonic Belt is a mantle transitional belt in China. The southem part, forming the Chuandian N-S Tectonic Belt, comprises several tectonic systems, each displaying different characteristics. The Chuandian N-S Tectonic Belt along the western margin of yangtze Block is a strike-slip tectonic belt with a series of echelon left-lateral slip faults. The strike-slip fault systems experienced two stages of structural deformation: early NW-SE striking thrust faults formed under a NE-SW compression stress field, and later sinistral strike-slip structures formed along thrust faults under a NW-SE compression stress field. Mesozoic basins developed between the left-lateral slip faults. Sedimentary facies and paleocurrent directions indicate that basin development was controlled by the strike-slip faults. The oldest strata in the Chuandian N-S Tectonic Belt constrain its formation to early Mesozoic. In fact, The slip tectonic belt formed by clockwise rotation and north-directed subduction-collision of the Yangtze Block in Late Triassic-Jurassic. The strike-slip faults that developed within the belt also formed at this time. 展开更多
关键词 Chuandian N-S Tectonic Belt western Yangtze Block early Mesozoic structural deformation Mesozoic basin sinistralslip fault
原文传递
Structural deformation, metallogenic epoch and genetic mechanism of the Woxi Au-Sb-W deposit, Western Hunan Province, South China 被引量:2
10
作者 Bin LI Deru XU +10 位作者 Daoyuan BAI Guoxiang CHI Junfeng DAI Cheng GAO Teng DENG Shaohao ZOU Wen MA Guojian WANG Yuexin LING Guangqian ZENG Yinmin LI 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第12期2358-2384,共27页
The remobilization,migration,precipitation,and enrichment of ore-forming elements are closely related to structures.Therefore,detailed regional and ore-field structural analyses are critical for determining the genesi... The remobilization,migration,precipitation,and enrichment of ore-forming elements are closely related to structures.Therefore,detailed regional and ore-field structural analyses are critical for determining the genesis of a mineral deposit.The Jiangnan Orogenic Belt(JOB)is an important gold polymetallic metallogenic belt in South China,which is characterized by multiple periods of gold mineralization in the Paleozoic and Mesozoic.However,the genesis of these gold polymetallic deposits is still not well understood due to a lack of systematic research on the regional geology,ore-controlling structures and metallogenic mechanism.In this study,a detailed structural survey at the surface and in the subsurface tunnels was conducted on the Woxi Au-Sb-W deposit,the genesis of which is relatively controversial among the gold polymetallic deposits in the JOB due to poor structural constraints.In addition,a wolframite U-Pb dating was carried out to further constrain the relationship between structures and mineralization.Based on the results of these studies,together with those from previous studies,it is proposed that the Woxi deposit and surrounding areas likely underwent six periods of regional deformation,which are constrained in time and geodynamic setting.Furthermore,we present a systematic discussion on the roles of ore-controlling structures in the transportation,distribution,and deposition of ore-forming elements and localization of orebodies.According to the wolframite dating results,structural analyses,and previous data,we propose that the Woxi Au-Sb-W deposit was formed in two stages during the Yanshanian:a W(wolframite)-Au mineralization stage at ca.140 Ma and an Au-Sb-W(scheelite)mineralization stage at<130 Ma.These mineralizing events are interpreted to have a tight relationship with tectonic reactivation,and the ore-forming fluids were derived from deep sources,including those of magmatic or metamorphic origins.The Woxi deposit can therefore be classified as an“intracontinental reactivation-type”,and the mineralization is related to lithospheric extension caused by plate retreat,retention,and delamination following the cessation of westward subduction of the Paleo-Pacific Plate beneath the East Asian continent. 展开更多
关键词 structural deformation Wolframite U-Pb age Metallogenic epoch Genetic mechanism Woxi Au-Sb-W deposit Western Hunan Province Jiangnan orogen
原文传递
Numerical simulation of fluid-thermal-structural coupling characteristics of stratospheric non-rigid airship
11
作者 Huafei DU Mingyun LYU +3 位作者 Chuan YU Yifei WU Yongmei WU Kangwen SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第9期224-236,共13页
The voluminous stratospheric non-rigid airship is very sensitive to the external thermal environment.The temperature change of internal gas caused by the variation in the external ther-mal environment and wind speed w... The voluminous stratospheric non-rigid airship is very sensitive to the external thermal environment.The temperature change of internal gas caused by the variation in the external ther-mal environment and wind speed will lead to a change in the shape and buoyancy of the airship,thereby affecting its flight control.The traditional static analysis method is difficult to accurately reflect this fuid-thermal-structural coupling process.In this paper,the iterative analysis method was established for the fluid-thermal-structural coupling effect of stratospheric non-rigid airship based on the models of fluid,thermal,and structural deformation.Considering the load such as the internal thermal effect and external flow field of the airship,the simulation of the thermo-induced structural deformation effect was conducted using Fluent and Abaqus software.The influ-ence of local time and external wind speed on the structural deformation,volume,and equilibrium altitude of the airship was analyzed.The results demonstrate that,at low wind speed,the influence of aerodynamic pressure on the deformation of the airship is negligible.However,a great amount of heat is carried away by the wind,then the structural deformation caused by internal and external pressure difference is alleviated and the equilibrium altitude of the airship change obviously.This can serve as a guideline for the design and flight test of the long-endurance stratospheric non-rigid airship. 展开更多
关键词 Altitude change Fluid-thermal-structural coupling Stratospheric non-rigid airship structural deformation Wind speed
原文传递
Identification of seismic activity and basin inversion based on soft-sediment deformation structures:an example from SE Korea
12
作者 Jinhyun Lee Sambit Prasanajit Naik +3 位作者 Ho-Seok Choi Jinhyeon So Donghwa Yun Young-Seog Kim 《Episodes》 2024年第3期595-610,共16页
Deformed soft-sediment deformation structures(SSDS)can indicate polyphase deformation events and provide valuable insights into the inversion process of a basin.Herein,we present the Miocene–Quaternary deformation in... Deformed soft-sediment deformation structures(SSDS)can indicate polyphase deformation events and provide valuable insights into the inversion process of a basin.Herein,we present the Miocene–Quaternary deformation inversion history of the Bomun sub-basin in the Gyeongju area of SE Korea.The inferred ENE compression direction(σHmax)based on paleostress analysis of the fault system,displacing Miocene sediments and SSDS,corresponds to the current stress field.The widespread occurrence of clear liquefaction structures and the vertical repetition of SSDS indicate substantial seismic activity during the basin opening stage.Brittle deformation features observed at both outcrop-and microstructural-scale along the faults suggest a reactivation as reverse faulting associated with a tilting process.The tectonic history of the study area is distinguished by SSDS associated with seismic activity,and reverse faulting associated with inversion process under ENE orientedσHmax.The Environmental Seismic Intensity Scale(ESI-07)based on the SSDS indicates seismic intensity of IX-X,which might be related with the opening of the Bomun sub-basin.Therefore,detailed analyses of SSDS could provide valuable insights on the dynamics of local geology and contribute to further extensive research on seismic hazards and basin inversion. 展开更多
关键词 Miocene Quaternary seismic activity polyphase deformation events basin inversion soft sediment deformation structures clear liquefaction struc paleostress analysis
在线阅读 下载PDF
Comparative study on the oblique water-entry of high-speed projectile based on rigid-body and elastic-plastic body model 被引量:1
13
作者 Xiangyan Liu Xiaowei Cai +3 位作者 Zhengui Huang Yu Hou Jian Qin Zhihua Chen 《Defence Technology(防务技术)》 2025年第4期133-155,共23页
To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conduc... To examine the similarities and differences in the evolution of cavity,wetting and dynamics of a highspeed,oblique water-entry projectile with different positive angles of attack,a comparative analysis has been conducted based on the numerical results of two mathematical models,the rigid-body model and fluid-structure interaction model.In addition,the applicable scope of the above two methods,and the structural response characteristics of the projectile have also been investigated.Our results demonstrate that:(1) The impact loads and angular motion of the projectile of the rigid-body method are more likely to exhibit periodic variations due to the periodic tail slap,its range of positive angles of attack is about α<2°.(2) When the projectile undergone significant wetting,a strong coupling effect is observed among wetting,structural deformation,and projectile motion.With the applied projectile shape,it is observed that,when the projectile bends,the final wetting position is that of Part B(cylinder of body).With the occu rrence of this phenomenon,the projectile ballistics beco me completely unstable.(3) The force exerted on the lower surface of the projectile induced by wetting is the primary reason of the destabilization of the projectile traj ectory and structu ral deformation failure.Bending deformation is most likely to appear at the junction of Part C(cone of body) and Part D(tail).The safe angles of attack of the projectile stability are found to be about α≤2°. 展开更多
关键词 Fluid-structure interaction Rigid-body model Elastic-plastic model structural deformation Impact loads structural safety of projectile
在线阅读 下载PDF
New progress and future exploration targets in petroleum geological research of ultra-deep clastic rocks in Kuqa Depression,Tarim Basin,NW China
14
作者 WANG Qinghua YANG Haijun YANG Wei 《Petroleum Exploration and Development》 2025年第1期79-94,共16页
Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Es... Significant exploration progress has been made in ultra-deep clastic rocks in the Kuqa Depression,Tarim Basin,over recent years.A new round of comprehensive geological research has formed four new understandings:(1)Establish structural model consisting of multi-detachment composite,multi-stage structural superposition and multi-layer deformation.Multi-stage structural traps are overlapped vertically,and a series of structural traps are discovered in underlying ultra-deep layers.(2)Five sets of high-quality large-scale source rocks of three types of organic phases are developed in the Triassic and Jurassic systems,and forming a good combination of source-reservoir-cap rocks in ultra-deep layers with three sets of large-scale regional reservoir and cap rocks.(3)The formation of large oil and gas fields is controlled by four factors which are source,reservoir,cap rocks and fault.Based on the spatial configuration relationship of these four factors,a new three-dimensional reservoir formation model for ultra-deep clastic rocks in the Kuqa Depression has been established.(4)The next key exploration fields for ultra-deep clastic rocks in the Kuqa Depression include conventional and unconventional oil and gas.The conventional oil and gas fields include the deep multi-layer oil-gas accumulation zone in Kelasu,tight sandstone gas of Jurassic Ahe Formation in the northern structural zone,multi-target layer lithological oil and gas reservoirs in Zhongqiu–Dina structural zone,lithologic-stratigraphic and buried hill composite reservoirs in south slope and other favorable areas.Unconventional oil and gas fields include deep coal rock gas of Jurassic Kezilenuer and Yangxia formations,Triassic Tariqike Formation and Middle-Lower Jurassic and Upper Triassic continental shale gas.The achievements have important reference significance for enriching the theory of ultra-deep clastic rock oil and gas exploration and guiding the future oil and gas exploration deployment. 展开更多
关键词 Tarim Basin Kuqa Depression ultra-deep layers clastic rock multi-layer structural deformation multilayered migration and accumulation new three-dimensional accumulation model
在线阅读 下载PDF
Multi-detachment-controlled thrust structures and deep hydrocarbon exploration targets in southern margin of Junggar Basin,NW China
15
作者 YU Baoli JIA Chengzao +6 位作者 LIU Keyu DENG Yong WANG Wei CHEN Peng LI Chao CHEN Jia GUO Boyang 《Petroleum Exploration and Development》 2025年第3期663-679,共17页
For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distr... For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distribution of major hydrocarbon source rocks.Based on the latest 3D seismic,gravity-magnetic,and drilling data,together with the results of previous structural physical simulation and discrete element numerical simulation experiments,the spatial distribution of pre-existing paleo-structures and detachment layers in deep strata of southern Junggar Basin were systematically characterized,the structural deformation characteristics and formation mechanisms were analyzed,the distribution patterns of multiple hydrocarbon source rock suites were clarified,and hydrocarbon accumulation features in key zones were reassessed.The exploration targets in deep lower assemblages with possibility of breakthrough were expected.Key results are obtained in three aspects.First,structural deformation is controlled by two-stage paleo-structures and three detachment layers with distinct lateral variations:the Jurassic layer(moderate thickness,wide distribution),the Cretaceous layer(thickest but weak detachment),and the Paleogene layer(thin but long-distance lateral thrusting).Accordingly,a four-layer composite deformation sequence was identified,and the structural genetic model with paleo-bulge controlling zonation by segments laterally and multiple detachment layers controlling sequence vertically.Second,the Permian source rocks show a distribution pattern with narrow trough(west),multiple sags(central),and broad basin(east),which is depicted by combining high-precision gravity-magnetic data and time-frequency electromagnetic data for the first time,and the Jurassic source rocks feature thicker mudstones in the west and rich coals in the east according to the reassessment.Third,two petroleum systems and a four-layer composite hydrocarbon accumulation model are established depending on the structural deformation strength,trap effectiveness and source-trap configuration.The southern Junggar Basin is divided into three segments with ten zones,and a hierarchical exploration strategy is proposed for deep lower assemblages in this region,that is,focusing on five priority zones,expanding to three potential areas,and challenging two high-risk targets. 展开更多
关键词 southern margin of Junggar Basin foreland thrust belt trust structure detachment layer structural deformation mechanism structural evolution deep lower assemblages hydrocarbon accumulation deep hydrocarbon exploration target
在线阅读 下载PDF
^(40)Ar/^(39)Ar Dating of Deformation Events and Reconstruction of Exhumation of Ultrahigh-Pressure Metamorphic Rocks in Donghai, East China 被引量:17
16
作者 LI Jinyi, YANG Tiannan, CHEN Wen and ZHANG Sihong Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037E-mail: jyli@cags.net.cn 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2003年第2期155-168,共14页
Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The e... Recent investigations reveal that the ultrahigh-pressure metamorphic (UHPM) rocks in the Donghai region of East China underwent ductile and transitional ductile-brittle structural events during their exhumation. The earlier ductile deformation took place under the condition of amphibolite facies and the later transitional ductile-brittle deformation under the condition of greenschist facies. The hanging walls moved southeastward during both of these two events. The 40Ar/39Ar dating of muscovites from muscovite-plagioclase schists in the Haizhou phosphorous mine, which are structurally overlain by UHPM rocks, yields a plateau age of 218.0±2.9 Ma and isochron age of 219.8Ma, indicating that the earlier event of the ampibolite-facies deformation probably took place about 220 Ma ago. The 40Ar/39Ar dating of oriented amphiboles parallel to the movement direction of the hanging wall on a decollement plane yields a plateau age of 213.1±0.3 Ma and isochron age of 213.4±4.1 Ma, probably representing the age of the later event. The dating of pegmatitic biotites and K-feldspars near the decollement plane from the eastern Fangshan area yield plateau ages of 203.4±0.3 Ma, 203.6±0.4 Ma and 204.8±2.2 Ma, and isochron ages of 204.0±2.0 Ma, 200.6±3.1 Ma and 204.0±5.0 Ma, respectively, implying that the rocks in the studied area had not been cooled down to closing temperature of the dated biotites and K-feldspars until the beginning of the Jurassic (about 204 Ma). The integration of these data with previous chronological ages on the ultrahigh-pressure metamorphism lead to a new inference on the exhumation of the UHPM rocks. The UHPM rocks in the area were exhumed at the rate of 3-4 km/Ma from the mantle (about 80-100 km below the earth's surface at about 240 Ma) to the lower crust (at the depth of about 20-30km at 220 Ma), and at the rate of 1-2 km/Ma to the middle crust (at the depth of about 15 km at 213 Ma), and then at the rate of less than 1 km/Ma to the upper crust about 10 km deep at about 204 Ma. 展开更多
关键词 ultrahigh-pressure metamorphic rocks structural deformation 40Ar/39Ar dating EXHUMATION Donghai East China
在线阅读 下载PDF
Superplastic extensibility deformation of Al-3%Mn alloy with submicrometer grain size
17
作者 肖旋 高慈 +1 位作者 侯介山 郭建亭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1035-1040,共6页
Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1&#... Submicrometer-grained (SMG) Al-3%Mn (mass fraction) alloy specimens with initial grain size of -0.3 μm were produced by ball milling for 3 h. The Al-3%Mn specimens which were cold rolled with a strain rate of 1×10^-3- 1×10^-2 s-1 at room temperature show high extensibility to failure more than 2500%. Microstructures of pure Al and Al-3%Mn alloy at as-milled and cold-rolled state were examined using X-ray diffraction and transmission electron microscopy (TEM). Based on the microstructure analysis, it is established that the mechanism of the continued plastic deformation in SMG Al-3%Mn alloy consists of dislocation slip, grain boundary sliding companied by dynamic recovery and recrystallization, and dynamic recrystallization is a main control factor of the large plastic deformation. 展开更多
关键词 aluminium alloys mechanical alloying cold rolling deformation structure
在线阅读 下载PDF
ROLE OF UNDERGROUND STRUCTURE DEFORMATION VELOCITY IN THE ANALYSIS OF BLAST-RESISTANT STRUCTURES
18
作者 ZHAO Xiao-bing(赵晓兵) +1 位作者 FANG Qin(方秦) 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第4期487-492,共6页
The structural deformation velocity plays a significant role in the dynamic calculation of underground blast-resistant structures. The motion differentiating equation of a structure system taking into account the role... The structural deformation velocity plays a significant role in the dynamic calculation of underground blast-resistant structures. The motion differentiating equation of a structure system taking into account the role of deformation velocity of the structure will truthfully describe the actual situation of structural vibration. With the one-dimensional plane wave theory, the expression of load on the structural periphery is developed, and the generalized variation principle for the dynamic analysis of underground arched-bar structures is given. At the same time, the results of the numerical calculation are compared. 展开更多
关键词 blast-resistant structure dynamic analysis structural deformation velocity generalized variation principle
在线阅读 下载PDF
A Preliminary Study on the Soft–Sediment Deformation Structures in the Late Quaternary Lacustrine Sediments at Tashkorgan, Northeastern Pamir, China 被引量:11
19
作者 LIANG Lianji DAI Fuchu +1 位作者 JIANG Hanchao ZHONG Ning 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第4期1574-1591,共18页
This study identified soft-sediment deformation structures (SSDS) of seismic origin from lacustrine sediments in the late Quaternary paleo-dammed lake at Tashkorgan, northeastern Pamir. The observed deformation stru... This study identified soft-sediment deformation structures (SSDS) of seismic origin from lacustrine sediments in the late Quaternary paleo-dammed lake at Tashkorgan, northeastern Pamir. The observed deformation structures include sand dykes, liquefied diapir and convolute structures, gravity induced SSDS, and thixotropic pillar and tabular structures. We conducted a preliminary study on the morphology, formation and trigger mechanisms of pillar and tabular structures formed by liquefaction of underlying coarse sand and thixotropy of the upper silty clay. The regional tectonic setting and distribution of lacustrine strata indicate that the most probable trigger for the SSDS in lacustrine sediments was seismic activity, with an approximate earthquake magnitude of M〉6.0; the potential seismogenic fault is the southern part of the Kongur normal fault extensional system. AMS ^4C dating results indicate that the SSDS were formed by seismic events occurring between 26050±100 yrBP and 22710±80 yrBP, implying intense fault activity in this region during the late Pleistocene. This study provides new evidence for understanding tectonic activity and regional geodynamics in western China. 展开更多
关键词 soft-sediment deformation structures lacustrine sediment PAMIR LIQUEFACTION THIXOTROPY paleo-seismicity
在线阅读 下载PDF
The Seismic Induced Soft Sediment Deformation Structures in the Middle Jurassic of Western Qaidamu Basin 被引量:4
20
作者 LI Yong SHAO Zhufu +2 位作者 MAO Cui YANG Yuping LIU Shengxin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2013年第4期979-988,共10页
Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, ... Intervals of soft-sediment deformation structures are well-exposed in Jurassic lacustrine deposits in the western Qaidamu basin. Through field observation, many soft-sediment deformation structures can be identified, such as convoluted bedding, liquefied sand veins, load and flame structures, slump structures and sliding-overlapping structures. Based on their genesis, soft-sediment deformation structures can be classified as three types: seismic induced structures, vertical loading structures, and horizontal shear structures. Based on their geometry and genesis analysis, they are seismic-induced structures. According to the characteristics of convoluted bedding structures and liquefied sand veins, it can be inferred that there were earthquakes greater than magnitude 6 in the study area during the middle Jurassic. Furthermore, the study of the slump structures and sliding- overlapping structures indicates that there was a southeastern slope during the middle Jurassic. Since the distance from the study area to the Altyn Mountain and the Altyn fault is no more than 10km, it can be also inferred that the Altyn Mountain existed then and that the AItyn strike-slip fault was active during the middle Jurassic. 展开更多
关键词 Soft-sediments deformation structure sliding-overlapping structure paleoseismology AItyn strike-slip fault
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部