期刊文献+
共找到2,064篇文章
< 1 2 104 >
每页显示 20 50 100
基于PSNR和SSIM方法评估双能量CT肝脏虚拟平扫图像质量研究 被引量:2
1
作者 李亚光 李洁 +5 位作者 薛廷玉 母建奎 王强 郑立冬 王勇 雷立存 《CT理论与应用研究(中英文)》 2025年第1期51-57,共7页
目的:采用峰值信噪比(PSNR)和结构相似性指数(SSIM)联合图像评价方法,探讨双能量CT的肝脏虚拟平扫(VNC)图像替代真实平扫(TNC)图像的可行性。方法:前瞻性分析33例肝脏CT平扫及Ⅲ期双能量增强扫描的影像学资料。经后处理获得动脉期VNC图... 目的:采用峰值信噪比(PSNR)和结构相似性指数(SSIM)联合图像评价方法,探讨双能量CT的肝脏虚拟平扫(VNC)图像替代真实平扫(TNC)图像的可行性。方法:前瞻性分析33例肝脏CT平扫及Ⅲ期双能量增强扫描的影像学资料。经后处理获得动脉期VNC图像(VNCa)、静脉期VNC图像(VNCv)及延迟期VNC图像(VNCd)。将肝脏Ⅲ期VNC图像与TNC图像应用PSNR和SSIM方法进行整体及局部比对分析。测量肝脏及竖脊肌的CT值与噪声值(SD),计算信噪比(SNR)和对比噪声比(CNR),记录肝脏真实CT平扫及增强扫描的剂量长度乘积,比较Ⅲ期VNC与TNC图像质量的客观评价指标及辐射剂量,并绘制肝脏CT值、SNR和CNR的Bland-Altman散点图进行一致性分析。结果:整体图像评价Ⅲ期VNC与TNC图像比对的PSNR分别为(18.01±1.06)、(18.33±0.99)、(18.20±1.04),SSIM分别为(0.76±0.04)、(0.77±0.03)、(0.78±0.04);局部图像评价Ⅲ期VNC与TNC图像比对的PSNR为(29.90±2.50)、(30.97±2.34)、(30.61±2.76),SSIM为(0.75±0.04)、(0.77±0.03)、(0.77±0.04);Ⅲ期VNC与TNC图像整体及局部比对的PSNR、SSIM的差异没有统计学意义。Ⅲ期VNC的肝脏CT值高于TNC;Ⅲ期VNC的CNR及VNCv的SNR与TNC图像相比无统计学差异;肝脏CT值、SNR及CNR在Ⅲ期VNC与TNC图像之间均具有良好的一致性。去除真实平扫环节,采用VNC+Ⅲ期增强方案可降低约29.63%的辐射剂量。结论:双能量CT的肝脏VNC图像具有良好的图像质量,可以较真实地还原TNC图像,满足临床的诊断需求。 展开更多
关键词 双能量CT 虚拟平扫 结构相似性指数 峰值信噪比
原文传递
Structural similarity of lithospheric velocity models of Chinese mainland 被引量:2
2
作者 Feng Huang Xueyang Bao +1 位作者 Qili Andy Dai Xinfu Li 《Earthquake Science》 2024年第6期514-528,共15页
Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantifi... Existing lithospheric velocity models exhibit similar structures typically associated with the first-order tectonic features,with dissimilarities due to different data and methods used in model generation.The quantification of model structural similarity can help in interpreting the geophysical properties of Earth's interior and establishing unified models crucial in natural hazard assessment and resource exploration.Here we employ the complex wavelet structural similarity index measure(CW-SSIM)active in computer image processing to analyze the structural similarity of four lithospheric velocity models of Chinese mainland published in the past decade.We take advantage of this method in its multiscale definition and insensitivity to slight geometrical distortion like translation and scaling,which is particularly crucial in the structural similarity analysis of velocity models accounting for uncertainty and resolution.Our results show that the CW-SSIM values vary in different model pairs,horizontal locations,and depths.While variations in the inter-model CW-SSIM are partly owing to different databases in the model generation,the difference of tomography methods may significantly impact the similar structural features of models,such as the low similarities between the full-wave based FWEA18 and other three models in northeastern China.We finally suggest potential solutions for the next generation of tomographic modeling in different areas according to corresponding structural similarities of existing models. 展开更多
关键词 structural similarity LITHOSPHERE TOMOGRAPHY velocity model Chinese mainland
在线阅读 下载PDF
Color Image Quality Assessment Based on Structural Similarity 被引量:2
3
作者 卢芳芳 赵群飞 杨根科 《Journal of Donghua University(English Edition)》 EI CAS 2010年第4期443-450,共8页
It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural si... It is well-known that classical quality measures,such as Mean Squared Error(MSE),Weighted Mean Squared Error(WMSE)or Peak Signal-to-Noise Ratio(PSNR),are not always corresponding with visual observations.Structural similarity based image quality assessment was proposed under the assumption that the Human Visual System(HVS)is highly adapted for extracting structural information from an image.While the demand on high color quality increases in the media industry,color loss will make the visual quality different.In this paper,we proposed an improved quality assessment(QA)method by adding color comparison into the structural similarity(SSIM)measurement system for evaluating color image quality.Then we divided the task of similarity measurement into four comparisons:luminance,contrast,structure,and color.Experimental results show that the predicted quality scores of the proposed method are more effective and consistent with visual quality than the classical methods using five different distortion types of color image sets. 展开更多
关键词 image quality assessment structural similarity difference mean opinion score color image
在线阅读 下载PDF
USSL Net:Focusing on Structural Similarity with Light U-Structure for Stroke Lesion Segmentation 被引量:1
4
作者 JIANG Zhiguo CHANG Qing 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第4期485-497,共13页
Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image ... Automatic segmentation of ischemic stroke lesions from computed tomography(CT)images is of great significance for identifying and curing this life-threatening condition.However,in addition to the problem of low image contrast,it is also challenged by the complex changes in the appearance of the stroke area and the difficulty in obtaining image data.Considering that it is difficult to obtain stroke data and labels,a data enhancement algorithm for one-shot medical image segmentation based on data augmentation using learned transformation was proposed to increase the number of data sets for more accurate segmentation.A deep convolutional neural network based algorithm for stroke lesion segmentation,called structural similarity with light U-structure(USSL)Net,was proposed.We embedded a convolution module that combines switchable normalization,multi-scale convolution and dilated convolution in the network for better segmentation performance.Besides,considering the strong structural similarity between multi-modal stroke CT images,the USSL Net uses the correlation maximized structural similarity loss(SSL)function as the loss function to learn the varying shapes of the lesions.The experimental results show that our framework has achieved results in the following aspects.First,the data obtained by adding our data enhancement algorithm is better than the data directly segmented from the multi-modal image.Second,the performance of our network model is better than that of other models for stroke segmentation tasks.Third,the way SSL functioned as a loss function is more helpful to the improvement of segmentation accuracy than the cross-entropy loss function. 展开更多
关键词 structural similarity medical image segmentation deep convolution neural network automatic data enhancement algorithm
原文传递
A video structural similarity quality metric based on a joint spatial-temporal visual attention model
5
作者 Hua ZHANG Xiang TIAN Yao-wu CHEN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1696-1704,共9页
Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effect... Objective video quality assessment plays a very important role in multimedia signal processing. Several extensions of the structural similarity (SSIM) index could not predict the quality of the video sequence effectively. In this paper we propose a structural similarity quality metric for videos based on a spatial-temporal visual attention model. This model acquires the motion attended region and the distortion attended region by computing the motion features and the distortion contrast. It mimics the visual attention shifting between the two attended regions and takes the burst of error into account by introducing the non-linear weighting fimctions to give a much higher weighting factor to the extremely damaged frames. The proposed metric based on the model renders the final object quality rating of the whole video sequence and is validated using the 50 Hz video sequences of Video Quality Experts Group Phase I test database. 展开更多
关键词 Quality assessment structural similarity ssim index Attended region Visual attention shift
原文传递
Joint inversion of gravity and vertical gradient data based on modified structural similarity index for the structural and petrophysical consistency constraint
6
作者 Sheng Liu Xiangyun Wan +6 位作者 Shuanggen Jin Bin Jia Quan Lou Songbai Xuan Binbin Qin Yiju Tang Dali Sun 《Geodesy and Geodynamics》 EI CSCD 2023年第5期485-499,共15页
Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysica... Joint inversion is one of the most effective methods for reducing non-uniqueness for geophysical inversion.The current joint inversion methods can be divided into the structural consistency constraint and petrophysical consistency constraint methods,which are mutually independent.Currently,there is a need for joint inversion methods that can comprehensively consider the structural consistency constraints and petrophysical consistency constraints.This paper develops the structural similarity index(SSIM)as a new structural and petrophysical consistency constraint for the joint inversion of gravity and vertical gradient data.The SSIM constraint is in the form of a fraction,which may have analytical singularities.Therefore,converting the fractional form to the subtractive form can solve the problem of analytic singularity and finally form a modified structural consistency index of the joint inversion,which enhances the stability of the SSIM constraint applied to the joint inversion.Compared to the reconstructed results from the cross-gradient inversion,the proposed method presents good performance and stability.The SSIM algorithm is a new joint inversion method for petrophysical and structural constraints.It can promote the consistency of the recovered models from the distribution and the structure of the physical property values.Then,applications to synthetic data illustrate that the algorithm proposed in this paper can well process the synthetic data and acquire good reconstructed results. 展开更多
关键词 Joint inversion Gravity and vertical gradient data Modified structural similarity index
原文传递
An Improved Image Denoising Algorithm Based on Structural Similarity and Curvelet 被引量:1
7
作者 HE Ruo-nan YANG Wei-wei LI Mei 《科技信息》 2013年第1期60-60,38,共2页
An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its s... An image denoising method based on curvelet within the framework of non-local means(NLM) is proposed in this paper. We use Structural Similarity(SSIM) to compute the value of SSIM between the reference patch and its similar versions, and remove the dissimilar pixels. Besides, the curvelet is adopted to adjust the coefficients of these patches with low SSIM. Experiments show that the proposed method has the capacity to denoise effectively, improves the peak signal-to-noise ratio of the image, and keeps better visual result in edges information reservation as well. 展开更多
关键词 图像处理 ssim NLM 计算机
在线阅读 下载PDF
基于SSIMGAN和时间序列Transformer的内部威胁检测模型
8
作者 冯克俊 黄晓芳 +1 位作者 宋鲁华 殷明勇 《信息安全研究》 北大核心 2025年第12期1108-1116,共9页
内部威胁检测是信息安全的重要环节,旨在保护企业网络和数据安全,避免因内部人员不当行为导致的破坏.基于CERT4.2数据集提出了一种新的内部威胁检测模型,首先构建了相应的多变量时间序列数据,提出了引入结构相似度指数的辅助分类器生成... 内部威胁检测是信息安全的重要环节,旨在保护企业网络和数据安全,避免因内部人员不当行为导致的破坏.基于CERT4.2数据集提出了一种新的内部威胁检测模型,首先构建了相应的多变量时间序列数据,提出了引入结构相似度指数的辅助分类器生成对抗网络(SSIM结合ACGAN,简称SSIMGAN)对威胁数据按照不同场景进行增强,针对CERT4.2数据集中样本不平衡问题,生成更贴近原始数据分布的样本.然后,采用Focal Loss作为损失函数的时间序列Transformer(time series Transformer,TST)模型进行分类任务,使得模型更能注意到那些难分类的数据和少数样本的数据.最后,以精确率、召回率和F 1值作为模型性能的评价指标进行测试.实验结果表明,相较于其他模型,该方法在CERT4.2数据集上将召回率提升至96.22%,F 1值达到94.22%,验证了其在应对数据不均衡和降低漏报风险方面的有效性. 展开更多
关键词 内部威胁检测 生成对抗网络 TRANSFORMER 结构相似度指数 数据增强
在线阅读 下载PDF
Graph Similarity Learning Based on Learnable Augmentation and Multi-Level Contrastive Learning
9
作者 Jian Feng Yifan Guo Cailing Du 《Computers, Materials & Continua》 2025年第3期5135-5151,共17页
Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph aug... Graph similarity learning aims to calculate the similarity between pairs of graphs.Existing unsupervised graph similarity learning methods based on contrastive learning encounter challenges related to random graph augmentation strategies,which can harm the semantic and structural information of graphs and overlook the rich structural information present in subgraphs.To address these issues,we propose a graph similarity learning model based on learnable augmentation and multi-level contrastive learning.First,to tackle the problem of random augmentation disrupting the semantics and structure of the graph,we design a learnable augmentation method to selectively choose nodes and edges within the graph.To enhance contrastive levels,we employ a biased random walk method to generate corresponding subgraphs,enriching the contrastive hierarchy.Second,to solve the issue of previous work not considering multi-level contrastive learning,we utilize graph convolutional networks to learn node representations of augmented views and the original graph and calculate the interaction information between the attribute-augmented and structure-augmented views and the original graph.The goal is to maximize node consistency between different views and learn node matching between different graphs,resulting in node-level representations for each graph.Subgraph representations are then obtained through pooling operations,and we conduct contrastive learning utilizing both node and subgraph representations.Finally,the graph similarity score is computed according to different downstream tasks.We conducted three sets of experiments across eight datasets,and the results demonstrate that the proposed model effectively mitigates the issues of random augmentation damaging the original graph’s semantics and structure,as well as the insufficiency of contrastive levels.Additionally,the model achieves the best overall performance. 展开更多
关键词 Graph similarity learning contrastive learning attributes STRUCTURE
在线阅读 下载PDF
Effects of Normalised SSIM Loss on Super-Resolution Tasks
10
作者 Adéla Hamplová TomášNovák +1 位作者 MiroslavŽácek JiríBrožek 《Computer Modeling in Engineering & Sciences》 2025年第6期3329-3349,共21页
This study proposes a new component of the composite loss function minimised during training of the Super-Resolution(SR)algorithms—the normalised structural similarity index loss LSSIMN,which has the potential to imp... This study proposes a new component of the composite loss function minimised during training of the Super-Resolution(SR)algorithms—the normalised structural similarity index loss LSSIMN,which has the potential to improve the natural appearance of reconstructed images.Deep learning-based super-resolution(SR)algorithms reconstruct high-resolution images from low-resolution inputs,offering a practical means to enhance image quality without requiring superior imaging hardware,which is particularly important in medical applications where diagnostic accuracy is critical.Although recent SR methods employing convolutional and generative adversarial networks achieve high pixel fidelity,visual artefacts may persist,making the design of the loss function during training essential for ensuring reliable and naturalistic image reconstruction.Our research shows on two models—SR and Invertible Rescaling Neural Network(IRN)—trained on multiple benchmark datasets that the function LSSIMN significantly contributes to the visual quality,preserving the structural fidelity on the reference datasets.The quantitative analysis of results while incorporating LSSIMN shows that including this loss function component has a mean 2.88%impact on the improvement of the final structural similarity of the reconstructed images in the validation set,in comparison to leaving it out and 0.218%in comparison when this component is non-normalised. 展开更多
关键词 SUPER-RESOLUTION convolutional neural networks composite loss function structural similarity normalisation training optimisation
在线阅读 下载PDF
基于加权SSIM算法的文档中图像相似度检测方法
11
作者 汤力 潘媛 +1 位作者 王菁 刘跃龙 《自动化技术与应用》 2025年第7期85-88,共4页
为了提高文档中图像相似度检测的准确性,提出一种基于加权结构相似性指数算法(structural similarity index,SSIM)算法的文档中图像相似度检测方法。将含有噪声的文档中图像采用小波变换的阈值去噪处理,采用小波变换完成局部重构,提取... 为了提高文档中图像相似度检测的准确性,提出一种基于加权结构相似性指数算法(structural similarity index,SSIM)算法的文档中图像相似度检测方法。将含有噪声的文档中图像采用小波变换的阈值去噪处理,采用小波变换完成局部重构,提取图像的低频和高频细节。将高频和低频信号两者实行小波重构处理,获取去噪后的图像。同时提取采用K-means算法提取图像的边缘特征,将全部边缘特征融合处理。采用加权SSIM算法计算文档中图像相似度,最终实现文档中图像相似度检测。经实验测试结果表明,所提方法可以有效提升文档中图像相似度检测结果的准确性,同时还可以大幅度降低检测用时。 展开更多
关键词 加权ssim算法 文档中图像 相似度检测 去噪
在线阅读 下载PDF
医学图像质量评价中的梯度加权SSIM 被引量:14
12
作者 段影影 陈武凡 +1 位作者 冯前进 马建华 《计算机工程与应用》 CSCD 北大核心 2011年第24期205-210,共6页
Zhou Wang等人提出了著名的图像客观质量评价方法:结构相似度(SSIM),其理论基础是人眼视觉系统能高度自适应地提取场景中的结构信息,大量实验证明SSIM的评价性能多优于PSNR(或MSE)。然而,由于视觉掩盖效应的影响,且SSIM规避了HVS底层视... Zhou Wang等人提出了著名的图像客观质量评价方法:结构相似度(SSIM),其理论基础是人眼视觉系统能高度自适应地提取场景中的结构信息,大量实验证明SSIM的评价性能多优于PSNR(或MSE)。然而,由于视觉掩盖效应的影响,且SSIM规避了HVS底层视觉特性,直接导致SSIM的评价常与主观评价不符。在深入研究SSIM算法的基础上,根据人眼视觉的掩盖效应之特性,提出图像中不同区域的失真程度引导的权值设计方案:基于梯度加权的SSIM图像质量评价方法(GWSSIM)。实验结果表明,GWSSIM的图像质量评价准确性高于PSNR和SSIM,尤其适用于医学图像。 展开更多
关键词 结构相似(ssim) 梯度加权 视觉掩盖效应
在线阅读 下载PDF
基于SSE和SSIM的H.264帧内预测模式选择改进算法 被引量:14
13
作者 杨春玲 肖冬琴 《电子与信息学报》 EI CSCD 北大核心 2011年第2期289-294,共6页
在H.264的帧内预测模式选择过程中,率失真优化(RDO)的失真测度用当前编码块和预测块之间的平方误差和(SSE)或绝对误差和(SAD)来度量,而这两种失真测度被证明不能很好地符合人眼视觉(HVS)。该文参考软件JM16.2,提出了联合SSE和结构相似度... 在H.264的帧内预测模式选择过程中,率失真优化(RDO)的失真测度用当前编码块和预测块之间的平方误差和(SSE)或绝对误差和(SAD)来度量,而这两种失真测度被证明不能很好地符合人眼视觉(HVS)。该文参考软件JM16.2,提出了联合SSE和结构相似度(SSIM)作为失真测度用于RDO的方法(CSSRDO)。算法首先找到SSIM和码率的近似关系,然后综合以SSE作为失真测度的RDO函数,并结合人眼视觉特性,建立了联合SSE和SSIM作为失真测度的RDO模型。实验表明,将CSSRDO用于H.264帧内预测模式选择获得了比JM16.2更高的编码效率和更好的重建图像质量。 展开更多
关键词 视频编码 模式选择 率失真优化 结构相似度
在线阅读 下载PDF
基于非局部结构张量的SSIM图像质量评价方法 被引量:10
14
作者 张文娟 张丽丽 王艳红 《计算机应用研究》 CSCD 北大核心 2017年第10期3162-3164,3170,共4页
针对基于局部运算的图像质量评价方法的局限性,提出一种基于非局部结构张量的SSIM图像质量评价方法。图像在各像素点的非局部结构张量的主特征值大小很好地反映了该像素点的结构强度信息,特别是纹理结构等细节信息;主特征向量的方向反... 针对基于局部运算的图像质量评价方法的局限性,提出一种基于非局部结构张量的SSIM图像质量评价方法。图像在各像素点的非局部结构张量的主特征值大小很好地反映了该像素点的结构强度信息,特别是纹理结构等细节信息;主特征向量的方向反映了该像素点的结构方向信息。利用退化图像和参考图像的非局部结构张量的主特征值相似度刻画结构强度相似度,利用主特征向量夹角的余弦刻画结构方向相似度。数值实验结果显示,利用该方法对TID2008数据库中的图像进行评价的平均运算时间为778.43 s,且评价结果与主观评价接近。 展开更多
关键词 图像质量评价 结构相似性 非局部结构张量 结构强度 结构方向
在线阅读 下载PDF
基于支持向量回归的无参考MS-SSIM视频质量评价模型 被引量:3
15
作者 卓力 张美娜 +1 位作者 王贯瑶 李嘉锋 《北京工业大学学报》 CAS CSCD 北大核心 2018年第12期1486-1493,共8页
多尺度结构相似度(multi-scale structural similarity,MS-SSIM)是一种常用的全参考视频质量评价准则,由于评价时需要原始视频作为参考,因此无法用于实时的网络视频质量评价中,故提出一种基于H. 264码流的无参考MS-SSIM视频质量评价模型... 多尺度结构相似度(multi-scale structural similarity,MS-SSIM)是一种常用的全参考视频质量评价准则,由于评价时需要原始视频作为参考,因此无法用于实时的网络视频质量评价中,故提出一种基于H. 264码流的无参考MS-SSIM视频质量评价模型.该模型从H. 264码流中提取出I帧和P帧的编码模式、运动矢量等参数,然后对这些参数进行统计分析,来表征视频的纹理丰富程度和运动剧烈与复杂程度;结合量化参数等信息构成码流特征参数集,使用支持向量回归(support vector regression,SVR)方法建立码流特征参数和MS-SSIM之间的映射关系模型,用于预测H. 264码流的MS-SSIM视频质量度量.该模型只使用从H. 264码流中提取的编码参数,无须原始的参考视频,也无须对视频进行解码.与现有的无参考码流预测模型相比,该模型可以获得更高的预测精度. 展开更多
关键词 H.264 码流参数 无参考 支持向量回归 多尺度结构相似度
在线阅读 下载PDF
频率与方向敏感SSIM的图像质量评价方法 被引量:9
16
作者 马丽红 龚紫平 《计算机工程》 CAS CSCD 2012年第5期19-24,共6页
将人眼视觉对比敏感度的空间频率及方向特性,引入到结构相似度(SSIM)计算中,提出一种对频率与方向敏感度加权的结构相似度评价方法。对图像进行多级小波分解并计算各个子带的SSIM值,根据子带能量比重,对同一分解级下不同方向的子带SSIM... 将人眼视觉对比敏感度的空间频率及方向特性,引入到结构相似度(SSIM)计算中,提出一种对频率与方向敏感度加权的结构相似度评价方法。对图像进行多级小波分解并计算各个子带的SSIM值,根据子带能量比重,对同一分解级下不同方向的子带SSIM值进行加权,以对比敏感度函数(CSF)的方向敏感性,根据CSF的子带响应对各个分解级进行加权,显示CSF的频率敏感性。在LIVE2及TID2008图像质量数据库上的仿真结果表明,与其他图像质量评价方法相比,该方法评价结果与主观评价具有较好的一致性。 展开更多
关键词 图像质量评价 主观质量 人类视觉系统 对比敏感度 离散小波变换 结构相似度
在线阅读 下载PDF
基于SSIM算法的动态空化图像处理 被引量:6
17
作者 昝晶 马少杰 屠江锋 《现代电子技术》 北大核心 2016年第17期23-25,共3页
在空化水洞实验中,需要从大量的数字图像中准确获取空化区域的外形、波动周期等重要信息。首先对比了几种常见的图片边缘提取算法,并选择Canny算子提取空泡结构信息,进而研究了采用SSIM算法对空化图像进行分析的可行性,并通过合理调节... 在空化水洞实验中,需要从大量的数字图像中准确获取空化区域的外形、波动周期等重要信息。首先对比了几种常见的图片边缘提取算法,并选择Canny算子提取空泡结构信息,进而研究了采用SSIM算法对空化图像进行分析的可行性,并通过合理调节结构相似度的比重获得更好的效果。此外,设计了图像的循环批处理程序,该程序通过Matlab编程实现。运算结果表明,采用结构系数为主要特征的相关系数进行分析,更能准确获取空化区域的外形、波动周期等重要信息,更有利于对空化形态进行动态分析。针对一组空化数为0.4的高速摄像图像,该相关系数在0.315~0.375之间变化,空化波动频率约为115 Hz。 展开更多
关键词 水洞实验 空化图像 ssim算法 结构相似度
在线阅读 下载PDF
基于修正SSIM的SAR干扰效果评估方法 被引量:15
18
作者 韩国强 李永祯 +2 位作者 王雪松 邢世其 刘庆富 《电子与信息学报》 EI CSCD 北大核心 2011年第3期711-716,共6页
该文提出了一种基于修正结构相似度的合成孔径雷达干扰效果评估方法。该方法不仅巧妙地利用了结构相似度作为主客观评价的连接纽带,而且结合梯度模与人眼视觉系统多通道特性相匹配的特点,通过非线性处理得到了修正的评估指标GSSIM。仿... 该文提出了一种基于修正结构相似度的合成孔径雷达干扰效果评估方法。该方法不仅巧妙地利用了结构相似度作为主客观评价的连接纽带,而且结合梯度模与人眼视觉系统多通道特性相匹配的特点,通过非线性处理得到了修正的评估指标GSSIM。仿真结果表明,GSSIM较均方误差、峰值信噪比及相关系数等传统评估指标具有明显的优势,不仅能够更好地反映出干扰对图像ROI的影响,而且能够与人类视觉系统保持高度一致,进一步提升了整套评估系统的效率和准确率。 展开更多
关键词 合成孔径雷达 评估方法 干扰效果 修正结构相似度
在线阅读 下载PDF
基于TV与SSIM的图像质量评价方法 被引量:2
19
作者 庞璐璐 李从利 罗军 《计算机工程》 CAS CSCD 2012年第3期215-217,共3页
提出一种基于全变分(TV)模型与结构相似度(SSIM)的图像质量评价方法。对待评价图像进行主动定量加噪,得到降质图像,利用自适应的TV去噪模型得到消噪图像,采用SSIM方法对待评价图像与消噪图像进行全参考评价,得到待评价图像的无参考评价... 提出一种基于全变分(TV)模型与结构相似度(SSIM)的图像质量评价方法。对待评价图像进行主动定量加噪,得到降质图像,利用自适应的TV去噪模型得到消噪图像,采用SSIM方法对待评价图像与消噪图像进行全参考评价,得到待评价图像的无参考评价指标。采用标准测试图像和LIVE库的降质图像进行实验,结果表明,该方法可在无参考图像的条件下对图像质量进行评估,评价结果与主观评价结果具有较高的一致性。 展开更多
关键词 图像质量评价 全变分 结构相似度 人眼视觉系统 图像去噪
在线阅读 下载PDF
基于趋势面与SSIM的时空数据相似度算法 被引量:12
20
作者 李建勋 佟瑞 +1 位作者 张永进 唐子豪 《计算机工程》 CAS CSCD 北大核心 2018年第9期52-58,共7页
针对空间位置固定而属性值趋势变化的时空数据相似度评判问题,在采用Biharmonic样条建立趋势面的基础上,提出一种新的时空数据相似度算法。利用网格抽取和色阶映射形成趋势面图像,将时空数据趋势状态表征为图像的结构信息,以趋势面图像... 针对空间位置固定而属性值趋势变化的时空数据相似度评判问题,在采用Biharmonic样条建立趋势面的基础上,提出一种新的时空数据相似度算法。利用网格抽取和色阶映射形成趋势面图像,将时空数据趋势状态表征为图像的结构信息,以趋势面图像之间的相似度来表征时空数据的相似度,并通过结构相似性给出时空数据结构相似度评价方案,实现时间维度的相似度合成,避免传统依靠向量空间分析的片面性,为一定时间窗口下的时空数据相似度分析提供解决方案。实验结果表明,该算法能够有效刻画时空数据所蕴含的趋势信息,提高该类时空数据相似度算法的适用性。 展开更多
关键词 时空数据 趋势面 结构相似度算法 Biharmonic样条 GREEN函数
在线阅读 下载PDF
上一页 1 2 104 下一页 到第
使用帮助 返回顶部