The construction of the new tunnel under the existing railway will break the original stress balance in the engineering area, resulting in the secondary redistribution of surrounding rock stress. The large amount of e...The construction of the new tunnel under the existing railway will break the original stress balance in the engineering area, resulting in the secondary redistribution of surrounding rock stress. The large amount of excavation unloading of the soil below is also easy to induce the uneven settlement deformation of the existing structure above, affecting the safety of driving. Based on the shield tunnel project between Caoqiao Station and Lize Business District Station of Beijing Metro, this paper restores the construction site by constructing the finite element numerical model of the project area, calculates and analyzes the deformation and stress of the existing railway structure before and after the construction of the tunnel, and determines the safety impact of the new structure on the existing railway. The results show that the shield tunnel undercrossing construction will cause the “concave” settlement of the railway subgrade above. Under the condition of grouting reinforcement, the “concave” settlement curve is slower and the distribution range is wider. With the advancement of the construction step, the settlement deformation of the subgrade gradually increases. When the tunnel approaches and passes directly below the subgrade, the settlement deformation curve of the subgrade changes from slow to steep. After the tunnel passes away, the curve changes from steep to slow, and the deformation of the subgrade reaches the maximum after the tunnel is connected. Under the grouting condition, the maximum settlement deformation of the subgrade is 2.08 mm, which is about 45% of the settlement deformation of the subgrade under the non-grouting condition. The ground grouting reinforcement can effectively control the subgrade settlement, and the field monitoring verifies the rationality of the calculation results. After the tunnel passes underneath, the most unfavorable section of the existing railway frame bridge is located at the top plate of the structure, and the maximum crack width is 0.178 mm. After grouting reinforcement, the stress environment of the structure is improved, the crack width generated by the structure is smaller, the reinforcement area required for calculation is less, and the structural safety meets the requirements.展开更多
In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an importan...In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an important role.Calculated according to statics and relevant contents,the structure had the same total volume as the traditional segmented structure,but had shorter length,wider width and greater height.Those prevented the structure from stress or deformation failure.Some reinforcing ribs with enough moments of inertia were welded in the external shell.Because of the one-piece structure,this refuge chamber reduced the risk of sealing which was a serious problem of segmented structure.Impact load with 300 ms duration and0.6 MPa over-pressure was settled.Explicit nonlinear dynamic analysis program was used to simulate the response of the refuge chamber.The maximum stress and the maximum displacement were obtained.The refuge chamber including blast airtight doors could meet the rigidity requirement.Weak parts of the chamber were the front and back end shell where bigger displacement values occurred than others.Thus,the calculation indicated that the refuge chamber could meet structural safety requirements.Based on the numerical analysis,suggestions were put forward for further resistance ability improvement.Only large inclined shaft with larger wellhead was suitable for this one-piece coal mine mobile refuge chamber.展开更多
文摘The construction of the new tunnel under the existing railway will break the original stress balance in the engineering area, resulting in the secondary redistribution of surrounding rock stress. The large amount of excavation unloading of the soil below is also easy to induce the uneven settlement deformation of the existing structure above, affecting the safety of driving. Based on the shield tunnel project between Caoqiao Station and Lize Business District Station of Beijing Metro, this paper restores the construction site by constructing the finite element numerical model of the project area, calculates and analyzes the deformation and stress of the existing railway structure before and after the construction of the tunnel, and determines the safety impact of the new structure on the existing railway. The results show that the shield tunnel undercrossing construction will cause the “concave” settlement of the railway subgrade above. Under the condition of grouting reinforcement, the “concave” settlement curve is slower and the distribution range is wider. With the advancement of the construction step, the settlement deformation of the subgrade gradually increases. When the tunnel approaches and passes directly below the subgrade, the settlement deformation curve of the subgrade changes from slow to steep. After the tunnel passes away, the curve changes from steep to slow, and the deformation of the subgrade reaches the maximum after the tunnel is connected. Under the grouting condition, the maximum settlement deformation of the subgrade is 2.08 mm, which is about 45% of the settlement deformation of the subgrade under the non-grouting condition. The ground grouting reinforcement can effectively control the subgrade settlement, and the field monitoring verifies the rationality of the calculation results. After the tunnel passes underneath, the most unfavorable section of the existing railway frame bridge is located at the top plate of the structure, and the maximum crack width is 0.178 mm. After grouting reinforcement, the stress environment of the structure is improved, the crack width generated by the structure is smaller, the reinforcement area required for calculation is less, and the structural safety meets the requirements.
基金Supported by the Major State Basic Research Development Program of China(973Project)(2011CB706900)
文摘In order to reduce the risk of sealing and improve the structural strength for a coal mine mobile refuge chamber,a new type of one-piece model was designed.Mechanical and mathematical calculation performed an important role.Calculated according to statics and relevant contents,the structure had the same total volume as the traditional segmented structure,but had shorter length,wider width and greater height.Those prevented the structure from stress or deformation failure.Some reinforcing ribs with enough moments of inertia were welded in the external shell.Because of the one-piece structure,this refuge chamber reduced the risk of sealing which was a serious problem of segmented structure.Impact load with 300 ms duration and0.6 MPa over-pressure was settled.Explicit nonlinear dynamic analysis program was used to simulate the response of the refuge chamber.The maximum stress and the maximum displacement were obtained.The refuge chamber including blast airtight doors could meet the rigidity requirement.Weak parts of the chamber were the front and back end shell where bigger displacement values occurred than others.Thus,the calculation indicated that the refuge chamber could meet structural safety requirements.Based on the numerical analysis,suggestions were put forward for further resistance ability improvement.Only large inclined shaft with larger wellhead was suitable for this one-piece coal mine mobile refuge chamber.