Ultrastable metallic glasses(SMGs)exhibit enhanced stability comparable to those of conventional glasses aged for thousands of years.The ability to understand why certain alloy compositions and processing conditions g...Ultrastable metallic glasses(SMGs)exhibit enhanced stability comparable to those of conventional glasses aged for thousands of years.The ability to understand why certain alloy compositions and processing conditions generate an SMG is an emerging challenge.Herein,amplitude-modulation dynamic atomic force microscopy was utilized for tracking the structure of Zr_(50)Cu_(50),Zr_(50)Cu_(44.5)Al_(5.5)and Zr_(50)Cu_(41.5)Al_(5.5)Mo_(3) thin film metallic glasses(TFMGs)that were produced by direct current magnetron sputtering at room temperature with the rate of deposition being the only variable.The transition in stability from bulkto SMG-like behavior resides in the change of relaxation mechanism as the deposition rate is decreased.The formation of SMGs is directly linked with the degree of structural heterogeneity,whereby MGs with greater heterogeneity have a higher potential to form SMGs with more significant enhancement in stability.Slower deposition rates,however,are required to yield the more homogenous structure and lower energy state underlying the ultrastability.Ultrastability is closely linked with the geometric shape and distribution of loosely packed phases,whereby SMGs containing more slender loosely packed phases with a more skewed distribution achieve more significant improvements in stability.This work not only provides direct evidence of the structure of SMGs,but also opens new horizons for the design of SMGs.展开更多
By employing micrometer-diameter microelectrodes, the metastable pitting corrosion behavior of Co_(68.15)Fe_(4.35)Si_(12.5)B_(12)Cr_(3) metallic glasses (MGs) exposed to 0.6 mol/L NaCl solution was investigated to cla...By employing micrometer-diameter microelectrodes, the metastable pitting corrosion behavior of Co_(68.15)Fe_(4.35)Si_(12.5)B_(12)Cr_(3) metallic glasses (MGs) exposed to 0.6 mol/L NaCl solution was investigated to clarify the correlation between metastable pitting and structural heterogeneity in MGs. Thermally induced degeneration of structural heterogeneity inhibits the initiation, decelerates the growth kinetics, and accelerates the repassivation kinetics of metastable pits while also decreasing the probability of transition from metastability to stability. This enhanced resistance to pitting corrosion is attributed to a reduction in active pitting precursor sites and a decrease in electrochemical activity caused by the structural homogenization of MGs.展开更多
Although traditional ferroelectric materials are usually dielectric and nonconductive,GeTe is a typical ferroelectric semiconductor,possessing both ferroelectric and semiconducting properties.GeTe is also a widely stu...Although traditional ferroelectric materials are usually dielectric and nonconductive,GeTe is a typical ferroelectric semiconductor,possessing both ferroelectric and semiconducting properties.GeTe is also a widely studied thermoelectric material,whose performance has been optimized by doping with various elements.However,the impact of the ferroelectric domains on the thermoelectric properties remains unclear due to the difficulty to directly observe the ferroelectric domains and their evolutions under actual working conditions where the material is exposed to high temperatures and electric currents.Herein,based on in-situ investigations of the ferroelectric domains and domain walls in both pure and Sb-doped GeTe crystals,we have been able to analyze the dynamic evolution of the ferroelectric domains and domain walls,exposed to an electric field and temperature.Local structural heterogeneities and nano-sized ferroelectric domains are generated due to the interplay of the Sb^(3+)dopant and the Ge-vacancies,leading to the increased number of charged domain walls and a much improved thermoelectric performance.This work reveals the fundamental mechanism of ferroelectric thermoelectrics and provides insights into the decoupling of previously interdependent properties such as thermo-power and electrical conductivity.展开更多
The atomic structure and associated deformation behavior of metallic glasses(MGs)have been long standing issues.Although recent computational/experimental results indicate that the structure of MGs is heterogeneous at...The atomic structure and associated deformation behavior of metallic glasses(MGs)have been long standing issues.Although recent computational/experimental results indicate that the structure of MGs is heterogeneous at the nano scale,the fundamental knowledge of the atomic basis for such structural heterogeneity and its impact on the overall properties of MGs is still lacking.We reviewed recent research on unraveling the structure heterogeneity in MGs,with emphases on the use of dynamic atomic force microscopy,the characterization of glass anelasticity by nanoindentation,and the establishment of numerous correlations with structural heterogeneity.展开更多
Understanding mechanical relaxation, such as primary(α) and secondary(β) relaxation, is key to unravel the intertwined relation between the atomic dynamics and non-equilibrium thermodynamics in metallic glasses....Understanding mechanical relaxation, such as primary(α) and secondary(β) relaxation, is key to unravel the intertwined relation between the atomic dynamics and non-equilibrium thermodynamics in metallic glasses. At a fundamental level, relaxation, plastic deformation, glass transition, and crystallization of metallic glasses are intimately linked to each other, which can be related to atomic packing, inter-atomic diffusion, and cooperative atom movement. Conceptually, βrelaxation is usually associated with structural heterogeneities intrinsic to metallic glasses. However, the details of such structural heterogeneities, being masked by the meta-stable disordered long-range structure, are yet to be understood. In this paper, we briefly review the recent experimental and simulation results that were attempted to elucidate structural heterogeneities in metallic glasses within the framework of β relaxation. In particular, we will discuss the correlation amongβ relaxation, structural heterogeneity, and mechanical properties of metallic glasses.展开更多
Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based o...Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based on the combination of discrete fracture network(DFN)and finite-discrete element method(FDEM)is applied to characterizing the amygdaloidal basalt,and to systematically exploring the effects of the development characteristics of amygdales and sample sizes on the mechanical properties of basalt.The results show that with increasing amygdale content,the elastic modulus(E)increases linearly,while the uniaxial compressive strength(UCS)shows an exponential or logarithmic decay.When the orientation of amygdales is between 0°and 90°,basalt shows a relatively pronounced strength and stiffness anisotropy.Based on the analysis of the geometric and mechanical properties,the representative element volume(REV)size of amygdaloidal basalt blocks is determined to be 200 mm,and the mechanical properties obtained on this scale can be regarded as the properties of the equivalent continuum.The results of this research are of value to the understanding of the mechanical properties of amygdaloidal basalt,so as to guide the formulation of engineering design schemes more accurately.展开更多
Metallic glasses are spatially heterogeneous at the nanometer scale.However,the effects of external excitation on their structural and mechanical heterogeneity and the correlation to their properties are still unresol...Metallic glasses are spatially heterogeneous at the nanometer scale.However,the effects of external excitation on their structural and mechanical heterogeneity and the correlation to their properties are still unresolved.Nanoindentation,atomic force microscopy(AFM) and high-resolution transmis sion elec tron micro scopy(HRTEM) were carried out to explore the effects of cryogenic thermal cycling(CTC) on mechanical/structural heterogeneity,nano sc ale creep deformation and optical properties of nano structured metallic glass thin films(MGTFs).The results indicate that CTC treatment alters the distribution fluctuations of hardness/modulus and energy dissipation and results in an increase-then-decrease variation in mechanical heterogeneity.By applying Maxwell-Voigt model,it can be shown that CTC treatment results in a remarkable activation of more defects with longer relaxation time in soft regions but has only a slight effect on defects in hard regions.In addition,CTC treatment increases the transition time from primary-state stage to steady-state stage during creep deformation.The enhanced optical reflectivity of the MGTFs after 15 thermal cycles can be attributed to increased aggregation of Cu and Ni elements.The results of this study shed new light on understanding mechanical/structural heterogeneity and its influence on nanoscale creep deformation and optical characteristics of nanostructured MGTFs,and facilitate the design of high-performance nanostructured MGTFs.展开更多
Despite the great efforts dedicated to metallic glasses (MGs), their structure still remains a mystery to be understood. With comparison to the existing mJciomechanical models, such as the free-volume and shear tran...Despite the great efforts dedicated to metallic glasses (MGs), their structure still remains a mystery to be understood. With comparison to the existing mJciomechanical models, such as the free-volume and shear transformation zone (STZ) models, we first discuss in this article our recently proposed 'core-shell' model, which contains a solid-like matrix and liquid-like inclusions. This serves as the theoretical basis to understand the structural heterogeneity in MGs in our analytical framework. After that, a scanning ultrafast nanoindentation technique is used to map out the structure heterogeneity in a Zr-based bulk metallic glass (BMG). With these ongoing research efforts, we hope that more research work could be stimulated in the pursuit of the structure-property relation in MGs.展开更多
The seismicity along the Himalayan arc varies significantly with some well defined patterns of segmentations.We show that the earthquakes along the Himalayan Seismic Belt(HSB)are influenced by the structural heterogen...The seismicity along the Himalayan arc varies significantly with some well defined patterns of segmentations.We show that the earthquakes along the Himalayan Seismic Belt(HSB)are influenced by the structural heterogeneities existing in the underthrusting Indian plate as well as by the presence of various north-south trending active rifts in the overriding wedge of the Himalaya.Model calculations of stress distribution show that stress change due to strain accumulation is more on moderately steeper fault,simulating the midcrustal ramp under the southern Higher Himalaya,than on the sub-horizontal thrust.Thus it is surmised that the presence of the ramp which connects the shallow section of seismically active detachment to the aseismically slipping deeper section of the detachment,causes high seismicity in the HSB region.It implies that the seismicity variation along the HSB may also be linked to the presence or absence of the ramp.Further,subsurface ridges on the down-going Indian plate probably control the rupture extent of the great Himalayan earthquakes.Over these ridges the seismicity of the HSB is generally low and it may imply that ramp may be absent in those regions.Finally,we show that the approximately north-south extending active rifts of the Tibetan and Higher Himalaya,cause stress shadow near their southern extent in the HSB which inhibit the occurrence of small and moderate magnitude thrust earthquakes.展开更多
In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal i...In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal insurance contract when maxing the insured’s expected utility of his/her remaining wealth under the smooth ambiguity model and the heterogeneous belief form satisfying the MHR condition. We calculate the insurance premium by using generalized Wang’s premium and also introduce a series of stochastic orders proposed by [1] to describe the relationships among the insurable risk, background risk and ambiguity parameter. We obtain the deductible insurance is the optimal insurance while they meet specific dependence structures.展开更多
Deep Underground Science and Engineering(DUSE)is pleased to present this special issue on Groundwater and Stability in Deep Mining.As mining operations progress to greater depths to meet the growing global demand for ...Deep Underground Science and Engineering(DUSE)is pleased to present this special issue on Groundwater and Stability in Deep Mining.As mining operations progress to greater depths to meet the growing global demand for mineral resources and energy,the challenges associated with groundwater control and rock mass stability have grown increasingly critical.These challenges are exacerbated by complex geological conditions,structural heterogeneity,and intense mining-induced disturbances.This special issue seeks to address these challenges by showcasing cutting-edge research and technological advancements in the field.展开更多
The Eurasian beaver(Castor fiber Linnaeus,1758)can be considered a hydrological ecosystem engineer as it shapes environmental characteristics through its building activities and feeding behaviour.Even if several studi...The Eurasian beaver(Castor fiber Linnaeus,1758)can be considered a hydrological ecosystem engineer as it shapes environmental characteristics through its building activities and feeding behaviour.Even if several studies have so far reported beaver impact on multi-taxon biodiversity and forest regeneration,there is a lack of research on forest stand structure evolution following beaver direct activity on trees.This represents a pivotal topic for predicting restoration outcomes and reccommending sound silvicultural and management practices to maintain specific forest conditions.Specifically,the study aims at investigating forest stand structure and tree species diversity changes considering river variability,distance from the riverbank and beaver's gnawing activity intensity.The Eurasian beaver is only recently recolonising the three analysed Mediterranean rivers,but stand structure seems to be already significantly impacted by the species.The number of trees was reduced,increasing mean diameter at breast height at stand level,as most of the youngest and/or smaller trees are entirely cut down.Strongest structural variations can be detected in intensively impacted stands and in the forest portions closer to the riverbank.The absence of a significant effect on most of the diversity indices is likely due to the initially homogeneous composition of the tree layer in each stand and to the limited variety of beaver's diet within the sites.Future resprouting of secondary tree shoots,as well as beaver gnawing activity changes in intensity over time and space,can further produce variations in structural parameters and woody species diversity in the medium-and long-term period.Therefore,it will be crucial to further monitor the long-term effects,as structural shifts can produce significant effects on riparian ecosystem functions.展开更多
Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity ca...Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites.展开更多
A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,...A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.展开更多
Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstra...Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range.展开更多
In this work,a heterogeneous structure(HS)with an alternating distribution of coarse and fineαlamella is fabricated in bimodal Ti6242 alloy via insufficient diffusion of alloying elements induced by fast heat-ing tre...In this work,a heterogeneous structure(HS)with an alternating distribution of coarse and fineαlamella is fabricated in bimodal Ti6242 alloy via insufficient diffusion of alloying elements induced by fast heat-ing treatment.Instead of a distinct interface between the primaryα_(p)hase(α_(p))andβ_(t)ransformation microstructure(β_(t))in the equiaxed microstructure(EM),allα_(p)/β_(t)interfaces are eliminated in the HS,and the largeα_(p)phases are replaced by coarseαlamella.Compared to the EM alloy,the heterostruc-tured alloy exhibits a superior strength-ductility combination.The enhanced strength is predominantly attributed to the increased interfaces ofα/βplates and hetero-deformation induced(HDI)strengthening caused by back stress.Meanwhile,good ductility is ascribed to its uniform distribution of coarse and fineαlamella,which effectively inhibits strain localization and generates an extra HDI hardening.This can be evidenced by the accumulated geometrically necessary dislocations(GNDs)induced by strain partitioning of the heterostructure.Significantly,the HDI causes extra<c+a>dislocations piling up in the coarseαlamella,which generates an extra strain hardening to further improve the ductility.Such hetero-interface coordinated deformation mechanism sheds light on a new perspective for tailoring bimodal titanium al-loys with excellent mechanical properties.展开更多
The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstru...The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs.展开更多
To advance materials with superior performance,the construction of gradient structures has emerged as a promising strategy.In this study,a gradient nanocrystalline-amorphous structure was induced in Zr46Cu46Al8 bulk m...To advance materials with superior performance,the construction of gradient structures has emerged as a promising strategy.In this study,a gradient nanocrystalline-amorphous structure was induced in Zr46Cu46Al8 bulk metallic glass(BMG)through ultrasonic vibration(UV)treatment.Applying a 20 kHz ultrasonic cyclic loading in the elastic regime,controllable gradient structures with varying crystallized volume fractions can be achieved in less than 2 s by adjusting the input UV energy.In contrast to tradi-tional methods of inducing structural gradients in BMGs,this novel approach offers distinct advantages:it is exceptionally rapid,requires minimal stress,and allows for easy tuning of the extent of structural gradients through precise adjustment of processing parameters.Nanoindentation tests reveal higher hard-ness near the struck surface,attributed to a greater degree of nanocrystal formation,which gradually di-minishes with depth.As a result of the gradient dispersion of nanocrystals,an increased plasticity was found after UV treatment,characterized by the formation of multiple shear bands.Microstructural in-vestigations suggest that UV-induced nanocrystallization originates from local atomic rearrangements in phase-separated Cu-rich regions with high diffusional mobility.Our study underscores the tunability of structural gradients and corresponding performance improvements in BMGs through ultrasonic energy modulation,offering valuable insights for designing advanced metallic materials with tailored mechanical properties.展开更多
Tight glutenite reservoirs are known for strong heterogeneity,complex wettability,and challenging development.Gas-Assisted Gravity Drainage(GAGD)technology has the potential to significantly improve recovery efficienc...Tight glutenite reservoirs are known for strong heterogeneity,complex wettability,and challenging development.Gas-Assisted Gravity Drainage(GAGD)technology has the potential to significantly improve recovery efficiency in glutenite reservoir.However,there is currently limited research on GAGD processes specifically designed for glutenite reservoirs,and there is a lack of relevant dimensionless numbers for predicting recovery efficiency.In this study,we developed a theoretical model based on the characteristics of glutenite reservoirs and used phase-field method to track the oil-gas interface for numerical simulations of dynamic GAGD processes.To explore the factors influencing gas-driven recovery,we simulated the effects of strong heterogeneity and dynamic wettability on the construction process under gravity assistance.Additionally,we introduced multiple dimensionless numbers(including capillary number,viscosity ratio,and Bond number)and conducted a series of numerical simulations.The results demonstrate that gravity enhances the stability of the oil-gas interface but causes unstable pressure fluctuations when passing through different-sized throat regions,particularly leading to front advancement in smaller throats.Although strong heterogeneity has negative impacts on GAGD,they can be mitigated by reducing injection velocity.Increasing oil-wettability promotes oil displacement by overcoming capillary forces,particularly in narrower pores,allowing residual oils to be expelled.Among the dimensionless numbers,the recovery efficiency is directly proportional to the Bond number and inversely proportional to the capillary number and viscosity ratio.Through sensitivity analysis of the dimensionless numbers’impact on the recovery efficiency,a new dimensionless N_(Glu) considering heterogeneity is proposed to accurately predict GAGD recovery of tight glutenite reservoirs.展开更多
Metastable β titanium alloy is an ideal material for lightweight and high strength due to its excellent comprehensive mechanical properties.However,overcoming the trade-off relation between strength and ductility rem...Metastable β titanium alloy is an ideal material for lightweight and high strength due to its excellent comprehensive mechanical properties.However,overcoming the trade-off relation between strength and ductility remains a significant challenge.In this study,the mechanical properties of Ti-38644 alloy were optimized by introducing a heterogeneous bi-grain bi-lamella(BG-BL)structure through a well-designed combination of rolling,drawing and heat treatment.The results demonstrate that the present BG-BL Ti-38644 alloy shows a tensile strength of~1500 MPa and a total elongation of 18%.In particular,the high strength-elongation combination of the BG-BL Ti-38644 alloy breakthroughs the trade-off relation in all the titanium alloys available.The recrystallized grains with low dislocation enhance the ductility of the Ti-38644 alloy,while the highly distorted elongated grains mainly contribute to the high strength.The present study provides a new principle for designing Ti alloys with superior strength and ductility.展开更多
文摘Ultrastable metallic glasses(SMGs)exhibit enhanced stability comparable to those of conventional glasses aged for thousands of years.The ability to understand why certain alloy compositions and processing conditions generate an SMG is an emerging challenge.Herein,amplitude-modulation dynamic atomic force microscopy was utilized for tracking the structure of Zr_(50)Cu_(50),Zr_(50)Cu_(44.5)Al_(5.5)and Zr_(50)Cu_(41.5)Al_(5.5)Mo_(3) thin film metallic glasses(TFMGs)that were produced by direct current magnetron sputtering at room temperature with the rate of deposition being the only variable.The transition in stability from bulkto SMG-like behavior resides in the change of relaxation mechanism as the deposition rate is decreased.The formation of SMGs is directly linked with the degree of structural heterogeneity,whereby MGs with greater heterogeneity have a higher potential to form SMGs with more significant enhancement in stability.Slower deposition rates,however,are required to yield the more homogenous structure and lower energy state underlying the ultrastability.Ultrastability is closely linked with the geometric shape and distribution of loosely packed phases,whereby SMGs containing more slender loosely packed phases with a more skewed distribution achieve more significant improvements in stability.This work not only provides direct evidence of the structure of SMGs,but also opens new horizons for the design of SMGs.
基金supported by the National Natural Science Foun-dation of China(No.52401222)Zhejiang Provincial Natural Sci-ence Foundation(LQN25E010011)+2 种基金Ningbo Natural Science Founda-tion(2024J073)Ningbo Major Special Projects of the Plan“Science and Technology Innovation 2025"(No.2022Z107)Ningbo Key Research and Development Program(No.2023Z097).
文摘By employing micrometer-diameter microelectrodes, the metastable pitting corrosion behavior of Co_(68.15)Fe_(4.35)Si_(12.5)B_(12)Cr_(3) metallic glasses (MGs) exposed to 0.6 mol/L NaCl solution was investigated to clarify the correlation between metastable pitting and structural heterogeneity in MGs. Thermally induced degeneration of structural heterogeneity inhibits the initiation, decelerates the growth kinetics, and accelerates the repassivation kinetics of metastable pits while also decreasing the probability of transition from metastability to stability. This enhanced resistance to pitting corrosion is attributed to a reduction in active pitting precursor sites and a decrease in electrochemical activity caused by the structural homogenization of MGs.
基金supported by the National Natural Science Foundation of China(52072282)the National Key Research and Development Program of China(2019YFA0704900)performed at the Nanostructure Research Center(NRC),which is supported by the Fundamental Research Funds for the Central Universities(WUT:2021Ⅲ016GX)。
文摘Although traditional ferroelectric materials are usually dielectric and nonconductive,GeTe is a typical ferroelectric semiconductor,possessing both ferroelectric and semiconducting properties.GeTe is also a widely studied thermoelectric material,whose performance has been optimized by doping with various elements.However,the impact of the ferroelectric domains on the thermoelectric properties remains unclear due to the difficulty to directly observe the ferroelectric domains and their evolutions under actual working conditions where the material is exposed to high temperatures and electric currents.Herein,based on in-situ investigations of the ferroelectric domains and domain walls in both pure and Sb-doped GeTe crystals,we have been able to analyze the dynamic evolution of the ferroelectric domains and domain walls,exposed to an electric field and temperature.Local structural heterogeneities and nano-sized ferroelectric domains are generated due to the interplay of the Sb^(3+)dopant and the Ge-vacancies,leading to the increased number of charged domain walls and a much improved thermoelectric performance.This work reveals the fundamental mechanism of ferroelectric thermoelectrics and provides insights into the decoupling of previously interdependent properties such as thermo-power and electrical conductivity.
基金supported by the Research Grant Council(RGC)of the government of Hong Kong through the General Research Fund(Grant No.City U 117612)GRC(Grant No.City U 530711)
文摘The atomic structure and associated deformation behavior of metallic glasses(MGs)have been long standing issues.Although recent computational/experimental results indicate that the structure of MGs is heterogeneous at the nano scale,the fundamental knowledge of the atomic basis for such structural heterogeneity and its impact on the overall properties of MGs is still lacking.We reviewed recent research on unraveling the structure heterogeneity in MGs,with emphases on the use of dynamic atomic force microscopy,the characterization of glass anelasticity by nanoindentation,and the establishment of numerous correlations with structural heterogeneity.
基金supported by the National Natural Science Foundation of China(Grant Nos.51401192 and 51611130120)the Natural Science Foundation of Shaanxi Province,China(Grant No.2016JM5009)+5 种基金the Fundamental Research Funds for the Central Universities of China(Grant Nos.3102015ZY027 and 3102015BJ(Ⅱ)JGZ019)the Aeronautical Science Foundation of China(Grant No.2015ZF53072)supported by the Hong Kong Scholar Program of China(Grant No.XJ2015056)the support of MINECO(Grant No.FIS2014-54734-P)Generalitat de Catalunya(Grant No.2014SGR00581)supported by the Research Grant Council,the Hong Kong City of China,through the General Research Fund(Grant No.City U11214914)
文摘Understanding mechanical relaxation, such as primary(α) and secondary(β) relaxation, is key to unravel the intertwined relation between the atomic dynamics and non-equilibrium thermodynamics in metallic glasses. At a fundamental level, relaxation, plastic deformation, glass transition, and crystallization of metallic glasses are intimately linked to each other, which can be related to atomic packing, inter-atomic diffusion, and cooperative atom movement. Conceptually, βrelaxation is usually associated with structural heterogeneities intrinsic to metallic glasses. However, the details of such structural heterogeneities, being masked by the meta-stable disordered long-range structure, are yet to be understood. In this paper, we briefly review the recent experimental and simulation results that were attempted to elucidate structural heterogeneities in metallic glasses within the framework of β relaxation. In particular, we will discuss the correlation amongβ relaxation, structural heterogeneity, and mechanical properties of metallic glasses.
基金the Key Projects of the Yalong River Joint Fund of the National Natural Science Foundation of China(Grant No.U1865203)the Key Program of National Natural Science Foundation of China(Grant No.41931286)the China Postdoctoral Science Foundation(Grant No.2021M691147)。
文摘Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based on the combination of discrete fracture network(DFN)and finite-discrete element method(FDEM)is applied to characterizing the amygdaloidal basalt,and to systematically exploring the effects of the development characteristics of amygdales and sample sizes on the mechanical properties of basalt.The results show that with increasing amygdale content,the elastic modulus(E)increases linearly,while the uniaxial compressive strength(UCS)shows an exponential or logarithmic decay.When the orientation of amygdales is between 0°and 90°,basalt shows a relatively pronounced strength and stiffness anisotropy.Based on the analysis of the geometric and mechanical properties,the representative element volume(REV)size of amygdaloidal basalt blocks is determined to be 200 mm,and the mechanical properties obtained on this scale can be regarded as the properties of the equivalent continuum.The results of this research are of value to the understanding of the mechanical properties of amygdaloidal basalt,so as to guide the formulation of engineering design schemes more accurately.
基金financially supported by the National Natural Science Foundation of China (Nos. 51971061 and 52231005)the Natural Science Foundation of Jiangsu Province (No. BK20221474)。
文摘Metallic glasses are spatially heterogeneous at the nanometer scale.However,the effects of external excitation on their structural and mechanical heterogeneity and the correlation to their properties are still unresolved.Nanoindentation,atomic force microscopy(AFM) and high-resolution transmis sion elec tron micro scopy(HRTEM) were carried out to explore the effects of cryogenic thermal cycling(CTC) on mechanical/structural heterogeneity,nano sc ale creep deformation and optical properties of nano structured metallic glass thin films(MGTFs).The results indicate that CTC treatment alters the distribution fluctuations of hardness/modulus and energy dissipation and results in an increase-then-decrease variation in mechanical heterogeneity.By applying Maxwell-Voigt model,it can be shown that CTC treatment results in a remarkable activation of more defects with longer relaxation time in soft regions but has only a slight effect on defects in hard regions.In addition,CTC treatment increases the transition time from primary-state stage to steady-state stage during creep deformation.The enhanced optical reflectivity of the MGTFs after 15 thermal cycles can be attributed to increased aggregation of Cu and Ni elements.The results of this study shed new light on understanding mechanical/structural heterogeneity and its influence on nanoscale creep deformation and optical characteristics of nanostructured MGTFs,and facilitate the design of high-performance nanostructured MGTFs.
基金support provided by City University of Hong Kong (CityU) through the start-up grant for newly recruited faculty members (Project No. 7200303)the research of C.T. Liu is also supported by CityU (Project No. CityU117612)
文摘Despite the great efforts dedicated to metallic glasses (MGs), their structure still remains a mystery to be understood. With comparison to the existing mJciomechanical models, such as the free-volume and shear transformation zone (STZ) models, we first discuss in this article our recently proposed 'core-shell' model, which contains a solid-like matrix and liquid-like inclusions. This serves as the theoretical basis to understand the structural heterogeneity in MGs in our analytical framework. After that, a scanning ultrafast nanoindentation technique is used to map out the structure heterogeneity in a Zr-based bulk metallic glass (BMG). With these ongoing research efforts, we hope that more research work could be stimulated in the pursuit of the structure-property relation in MGs.
文摘The seismicity along the Himalayan arc varies significantly with some well defined patterns of segmentations.We show that the earthquakes along the Himalayan Seismic Belt(HSB)are influenced by the structural heterogeneities existing in the underthrusting Indian plate as well as by the presence of various north-south trending active rifts in the overriding wedge of the Himalaya.Model calculations of stress distribution show that stress change due to strain accumulation is more on moderately steeper fault,simulating the midcrustal ramp under the southern Higher Himalaya,than on the sub-horizontal thrust.Thus it is surmised that the presence of the ramp which connects the shallow section of seismically active detachment to the aseismically slipping deeper section of the detachment,causes high seismicity in the HSB region.It implies that the seismicity variation along the HSB may also be linked to the presence or absence of the ramp.Further,subsurface ridges on the down-going Indian plate probably control the rupture extent of the great Himalayan earthquakes.Over these ridges the seismicity of the HSB is generally low and it may imply that ramp may be absent in those regions.Finally,we show that the approximately north-south extending active rifts of the Tibetan and Higher Himalaya,cause stress shadow near their southern extent in the HSB which inhibit the occurrence of small and moderate magnitude thrust earthquakes.
文摘In this paper, we discuss the optimal insurance in the presence of background risk while the insured is ambiguity averse and there exists belief heterogeneity between the insured and the insurer. We give the optimal insurance contract when maxing the insured’s expected utility of his/her remaining wealth under the smooth ambiguity model and the heterogeneous belief form satisfying the MHR condition. We calculate the insurance premium by using generalized Wang’s premium and also introduce a series of stochastic orders proposed by [1] to describe the relationships among the insurable risk, background risk and ambiguity parameter. We obtain the deductible insurance is the optimal insurance while they meet specific dependence structures.
文摘Deep Underground Science and Engineering(DUSE)is pleased to present this special issue on Groundwater and Stability in Deep Mining.As mining operations progress to greater depths to meet the growing global demand for mineral resources and energy,the challenges associated with groundwater control and rock mass stability have grown increasingly critical.These challenges are exacerbated by complex geological conditions,structural heterogeneity,and intense mining-induced disturbances.This special issue seeks to address these challenges by showcasing cutting-edge research and technological advancements in the field.
基金support of the National Biodiversity Future Center (NBFC) to the University of Padova,the Research Centre for Plant ProtectionCertification (CREA),and the National Research Council (CNR),funded under the National Recovery and Resilience Plan (NRRP)+2 种基金Mission 4 Component 2 Investment 1.4-Call for tender No.3138 of 16 December 2021,rectified by Decree n.3175 of 18 December 2021 of Italian Ministry of University and Research funded by the European Union–NextGenerationEUProject code CN_00000033,Concession Decree No.1034 of 17 June 2022adopted by the Italian Ministry of University and Research,CUP:C93C22002810006,CUP:B83D21014060006,CUP:B83C22002930006,Project title“National Biodiversity Future CenterNBFC”support by Beaver Trust,grant number:1185451
文摘The Eurasian beaver(Castor fiber Linnaeus,1758)can be considered a hydrological ecosystem engineer as it shapes environmental characteristics through its building activities and feeding behaviour.Even if several studies have so far reported beaver impact on multi-taxon biodiversity and forest regeneration,there is a lack of research on forest stand structure evolution following beaver direct activity on trees.This represents a pivotal topic for predicting restoration outcomes and reccommending sound silvicultural and management practices to maintain specific forest conditions.Specifically,the study aims at investigating forest stand structure and tree species diversity changes considering river variability,distance from the riverbank and beaver's gnawing activity intensity.The Eurasian beaver is only recently recolonising the three analysed Mediterranean rivers,but stand structure seems to be already significantly impacted by the species.The number of trees was reduced,increasing mean diameter at breast height at stand level,as most of the youngest and/or smaller trees are entirely cut down.Strongest structural variations can be detected in intensively impacted stands and in the forest portions closer to the riverbank.The absence of a significant effect on most of the diversity indices is likely due to the initially homogeneous composition of the tree layer in each stand and to the limited variety of beaver's diet within the sites.Future resprouting of secondary tree shoots,as well as beaver gnawing activity changes in intensity over time and space,can further produce variations in structural parameters and woody species diversity in the medium-and long-term period.Therefore,it will be crucial to further monitor the long-term effects,as structural shifts can produce significant effects on riparian ecosystem functions.
基金support from the National Natural Science Foundation of China(No:52061040)China Postdoctoral Science Foundation(No:2021M692512)+1 种基金Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan Province(No:2023CL01)Open Projects of Key Laboratory of Advanced Technologies of Materials,Ministry of Education China,Southwest Jiaotong University(No:KLATM202003).
文摘Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites.
基金financial support from the National Natural Science Foundation of China(Nos.52104306,52274301,52334009)the Aeronautical Science Foundation of China(No.2023Z0530S6005)+3 种基金the National Key Research and Development Program of China(No.2023YFB3712401)the Science and Technology Commission of Shanghai Municipality(No.21DZ1208900)the Academician Workstation of Kunming University of Science and Technology(2024),the Ningbo Yongjiang Talent-Introduction Programme(No.2022A-023-C)the Zhejiang Phenomenological Materials Technology Co.,Ltd.,China.
文摘A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures.
基金supported by the Tianjin Science and Technology Plan Project(No.22JCQNJC01280)the Central Funds Guiding the Local Science and Technology Development of Hebei Province(Nos.226Z1001G and 226Z1012G)+1 种基金the National Natural Science Foundation of China(No.52002109,52071124)the Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001).
文摘Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range.
基金financially supported by the National Natural Science Foundation of China(Nos.52161019 and 52271054)the Science and Technology Project of Guizhou Province,China(No.[2023]047)+1 种基金the GuiZhou DIIT Innovation Project(No.[2023]153)the One Hundred Person Project of Guizhou Province,China(No.[2020]6006).
文摘In this work,a heterogeneous structure(HS)with an alternating distribution of coarse and fineαlamella is fabricated in bimodal Ti6242 alloy via insufficient diffusion of alloying elements induced by fast heat-ing treatment.Instead of a distinct interface between the primaryα_(p)hase(α_(p))andβ_(t)ransformation microstructure(β_(t))in the equiaxed microstructure(EM),allα_(p)/β_(t)interfaces are eliminated in the HS,and the largeα_(p)phases are replaced by coarseαlamella.Compared to the EM alloy,the heterostruc-tured alloy exhibits a superior strength-ductility combination.The enhanced strength is predominantly attributed to the increased interfaces ofα/βplates and hetero-deformation induced(HDI)strengthening caused by back stress.Meanwhile,good ductility is ascribed to its uniform distribution of coarse and fineαlamella,which effectively inhibits strain localization and generates an extra HDI hardening.This can be evidenced by the accumulated geometrically necessary dislocations(GNDs)induced by strain partitioning of the heterostructure.Significantly,the HDI causes extra<c+a>dislocations piling up in the coarseαlamella,which generates an extra strain hardening to further improve the ductility.Such hetero-interface coordinated deformation mechanism sheds light on a new perspective for tailoring bimodal titanium al-loys with excellent mechanical properties.
基金National Natural Science Foundation of China(52261032,51861021,51661016)Science and Technology Plan of Gansu Province(21YF5GA074)+2 种基金Public Welfare Project of Zhejiang Natural Science Foundation(LGG22E010008)Wenzhou Basic Public Welfare Scientific Research Project(G2023020)Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology。
文摘The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs.
基金supported by the Key Basic and Applied Research Program of Guangdong Province,China(Grant No.2019B030302010)the NSF of China(Grant Nos.52122105,52271150,52201185,52201186,52371160)+1 种基金the Science and Technology Innovation Commission Shenzhen(Grants Nos.RCJC20221008092730037,20220804091920001)the Research Team Cultivation Program of Shenzhen University,Grant No.2023QNT001.
文摘To advance materials with superior performance,the construction of gradient structures has emerged as a promising strategy.In this study,a gradient nanocrystalline-amorphous structure was induced in Zr46Cu46Al8 bulk metallic glass(BMG)through ultrasonic vibration(UV)treatment.Applying a 20 kHz ultrasonic cyclic loading in the elastic regime,controllable gradient structures with varying crystallized volume fractions can be achieved in less than 2 s by adjusting the input UV energy.In contrast to tradi-tional methods of inducing structural gradients in BMGs,this novel approach offers distinct advantages:it is exceptionally rapid,requires minimal stress,and allows for easy tuning of the extent of structural gradients through precise adjustment of processing parameters.Nanoindentation tests reveal higher hard-ness near the struck surface,attributed to a greater degree of nanocrystal formation,which gradually di-minishes with depth.As a result of the gradient dispersion of nanocrystals,an increased plasticity was found after UV treatment,characterized by the formation of multiple shear bands.Microstructural in-vestigations suggest that UV-induced nanocrystallization originates from local atomic rearrangements in phase-separated Cu-rich regions with high diffusional mobility.Our study underscores the tunability of structural gradients and corresponding performance improvements in BMGs through ultrasonic energy modulation,offering valuable insights for designing advanced metallic materials with tailored mechanical properties.
基金supported by the National Natural Science Foundation of China(U22B2075)the Fundamental Research Funds for the Central Universities(2024ZKPYSB03)support from Beijing University of Science and Technology.
文摘Tight glutenite reservoirs are known for strong heterogeneity,complex wettability,and challenging development.Gas-Assisted Gravity Drainage(GAGD)technology has the potential to significantly improve recovery efficiency in glutenite reservoir.However,there is currently limited research on GAGD processes specifically designed for glutenite reservoirs,and there is a lack of relevant dimensionless numbers for predicting recovery efficiency.In this study,we developed a theoretical model based on the characteristics of glutenite reservoirs and used phase-field method to track the oil-gas interface for numerical simulations of dynamic GAGD processes.To explore the factors influencing gas-driven recovery,we simulated the effects of strong heterogeneity and dynamic wettability on the construction process under gravity assistance.Additionally,we introduced multiple dimensionless numbers(including capillary number,viscosity ratio,and Bond number)and conducted a series of numerical simulations.The results demonstrate that gravity enhances the stability of the oil-gas interface but causes unstable pressure fluctuations when passing through different-sized throat regions,particularly leading to front advancement in smaller throats.Although strong heterogeneity has negative impacts on GAGD,they can be mitigated by reducing injection velocity.Increasing oil-wettability promotes oil displacement by overcoming capillary forces,particularly in narrower pores,allowing residual oils to be expelled.Among the dimensionless numbers,the recovery efficiency is directly proportional to the Bond number and inversely proportional to the capillary number and viscosity ratio.Through sensitivity analysis of the dimensionless numbers’impact on the recovery efficiency,a new dimensionless N_(Glu) considering heterogeneity is proposed to accurately predict GAGD recovery of tight glutenite reservoirs.
基金financially supported by the National Natural Science Foundation of China(Nos.52321001,52322105,52130002,U2241245,52261135634 and 52371084)the Youth Innovation Promotion Association(CAS,No.2021192)the IMR Innovation Fund(No.2023-ZD01).
文摘Metastable β titanium alloy is an ideal material for lightweight and high strength due to its excellent comprehensive mechanical properties.However,overcoming the trade-off relation between strength and ductility remains a significant challenge.In this study,the mechanical properties of Ti-38644 alloy were optimized by introducing a heterogeneous bi-grain bi-lamella(BG-BL)structure through a well-designed combination of rolling,drawing and heat treatment.The results demonstrate that the present BG-BL Ti-38644 alloy shows a tensile strength of~1500 MPa and a total elongation of 18%.In particular,the high strength-elongation combination of the BG-BL Ti-38644 alloy breakthroughs the trade-off relation in all the titanium alloys available.The recrystallized grains with low dislocation enhance the ductility of the Ti-38644 alloy,while the highly distorted elongated grains mainly contribute to the high strength.The present study provides a new principle for designing Ti alloys with superior strength and ductility.