The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclus...The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface.展开更多
For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distr...For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distribution of major hydrocarbon source rocks.Based on the latest 3D seismic,gravity-magnetic,and drilling data,together with the results of previous structural physical simulation and discrete element numerical simulation experiments,the spatial distribution of pre-existing paleo-structures and detachment layers in deep strata of southern Junggar Basin were systematically characterized,the structural deformation characteristics and formation mechanisms were analyzed,the distribution patterns of multiple hydrocarbon source rock suites were clarified,and hydrocarbon accumulation features in key zones were reassessed.The exploration targets in deep lower assemblages with possibility of breakthrough were expected.Key results are obtained in three aspects.First,structural deformation is controlled by two-stage paleo-structures and three detachment layers with distinct lateral variations:the Jurassic layer(moderate thickness,wide distribution),the Cretaceous layer(thickest but weak detachment),and the Paleogene layer(thin but long-distance lateral thrusting).Accordingly,a four-layer composite deformation sequence was identified,and the structural genetic model with paleo-bulge controlling zonation by segments laterally and multiple detachment layers controlling sequence vertically.Second,the Permian source rocks show a distribution pattern with narrow trough(west),multiple sags(central),and broad basin(east),which is depicted by combining high-precision gravity-magnetic data and time-frequency electromagnetic data for the first time,and the Jurassic source rocks feature thicker mudstones in the west and rich coals in the east according to the reassessment.Third,two petroleum systems and a four-layer composite hydrocarbon accumulation model are established depending on the structural deformation strength,trap effectiveness and source-trap configuration.The southern Junggar Basin is divided into three segments with ten zones,and a hierarchical exploration strategy is proposed for deep lower assemblages in this region,that is,focusing on five priority zones,expanding to three potential areas,and challenging two high-risk targets.展开更多
Triggering structural asymmetry can induce charge redistribution and modify electronic structures,which is of great significance for the design of high-performance hydrogen oxidation reaction(HOR)electrocatalysts.Here...Triggering structural asymmetry can induce charge redistribution and modify electronic structures,which is of great significance for the design of high-performance hydrogen oxidation reaction(HOR)electrocatalysts.Herein,we propose a dual anion-induced strategy to create an innovative RuS_(2)-RuO_(2)heterostructure featuring abundant S-Ru-O interfaces(RuS_(2)-RuO_(2)@C).This RuS_(2)-RuO_(2)@C demonstrates an impressive mass activity of 2.61 mAμg_(RU)^(-1)and an exchange current density of 2.96 mA cm^(-2),surpassing Pt/C and other comparative samples by over 20 times.Durability assessments confirm the superior stability of RuS_(2)-RuO_(2)@C,with only minimal performance loss during operation.Density functional theory(DFT)calculations indicate that the asymmetric S-Ru-O configuration optimizes the interfacial electronic structure and shifts the d-band center closer to the Fermi level,effectively reducing the energy barrier of the rate-determining step(RDS)in the alkaline HOR process.Moreover,in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)characteristics disclose the formation of a substantial hydrogen bond network at the S-Ru-o interface,which aids in the desorption of H_(2)O_(ad)and facilitates the vital Volmer step in the HOR pathway.展开更多
As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of ai...As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.展开更多
The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-...The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.展开更多
Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research...Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders.展开更多
Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storag...Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.展开更多
Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Her...Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.展开更多
The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstru...The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs.展开更多
Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for ...Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for photonic applications, including anti-counterfeiting, displays, sensors, and printing, along with their practical limitations. Recently, structural colors have received growing interest due to their advantages, including physical and chemical robustness, ecofriendliness, tunability, and high-resolution color.展开更多
The Longmenshan structural belt on the eastern edge of the Tibetan Plateau experienced the impactful Mw7.92008 Wenchuan Earthquake,causing a 350 km surface rupture.Traditional models attribute this to the Beichuan and...The Longmenshan structural belt on the eastern edge of the Tibetan Plateau experienced the impactful Mw7.92008 Wenchuan Earthquake,causing a 350 km surface rupture.Traditional models attribute this to the Beichuan and Pengguan faults,but our research reveals a complex fault system at the northern end,with inconsistencies in surface rupture,aftershock distribution,and focal mechanisms.We integrate shallow geology,active source seismic reflection,and magnetotelluric profiling to establish a deep structural model for the northern end of the Longmenshan structural belt.This area exhibits dominant reverse thrust nappe tectonics,and analyzing the tectonic evolution history provides insights into deformation propagation from the orogenic belt toward the Sichuan Basin.Focal mechanism analysis and relocated aftershock data reveals two distinct types of seismogenic structures in the northern end of the Longmenshan structural belt.In the middle to northern segments,the reverse fault type is attributed to reactivated pre-existing faults.Conversely,at the northern end,the strike-slip fault type originates from high-angle co-seismic rupture cutting through pre-existing reverse faults.This study enhances our understanding of fault complexity and seismic mechanisms in the northeastern Longmenshan structural belt,providing new insights into regional tectonics.展开更多
Metallogenic research on structural levels can reveal vertical patterns of mineralization and facilitate the deep exploration of economic minerals.However,research focusing on the correlation between structural levels...Metallogenic research on structural levels can reveal vertical patterns of mineralization and facilitate the deep exploration of economic minerals.However,research focusing on the correlation between structural levels and mineralization remains limited.In this study,we summarize the deformation patterns and associated mineral deposits observed at different crustal levels(i.e.,surface,shallow,middle,and deep structural levels,corresponding to depths of<2,2-8,8-15,and>15 km,respectively).Furthermore,we examine the genetic association between structural levels and metallogenesis,demonstrating that distinct structural levels are linked to specific types of mineralization.Key factors that vary across crustal levels include temperature,pressure,and fluid circulation.Ore-forming processes involve interactions between structures and fluids under varying temperatures and pressures.Structural levels influence mineralization by controlling the temperatures,pressures,and deformation mechanisms that drive the activation,migration,and enrichment of ore-forming materials.展开更多
Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease and its incidence rate is rapidly rising.However,effective therapies for the treatment of IPF are still lacking.Phosphodiesterase 4(PDE4)inhibitors were ...Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease and its incidence rate is rapidly rising.However,effective therapies for the treatment of IPF are still lacking.Phosphodiesterase 4(PDE4)inhibitors were reported to be potential anti-fibrotic agents.Herein,structure-based hit-to-lead optimization of natural isoaurostatin(8.98μmol/L)resulted in several potent inhibitors of PDE4 with half maximal inhibitory concentration(IC_(50))values ranging from 35 nmol/L to 126 nmol/L.Co-crystal structures revealed that isoaurostatin compounds exhibited different binding patterns from the classic PDE4 inhibitor rolipram and the analogues would favor to be Z configurations other than the corresponding E isomers.Finally,lead 2–9 showed remarkable in vitro/in vivo anti-fibrotic effects indicating its potential as a novel anti-IPF agent.展开更多
With the rapid development of science and technology,the application of intelligent technology in the field of civil engineering is more extensive,especially in the safety evaluation and management of engineering stru...With the rapid development of science and technology,the application of intelligent technology in the field of civil engineering is more extensive,especially in the safety evaluation and management of engineering structures.This paper discusses the role of intelligent technologies(such as artificial intelligence,Internet of Things,BIM,big data analysis,etc.)in the monitoring,evaluation,and maintenance of engineering structure safety.By studying the principle,application scenarios,and advantages of intelligent technology in structural safety evaluation,this paper summarizes how intelligent technology can improve engineering management efficiency and reduce safety risks,and puts forward the trend and challenge of future development.展开更多
Currently,the link prediction algorithms primarily focus on studying the interaction between nodes based on chain structure and star structure,which predominantly rely on low-order structural information and do not ex...Currently,the link prediction algorithms primarily focus on studying the interaction between nodes based on chain structure and star structure,which predominantly rely on low-order structural information and do not explore the multivariate interactions between nodes from the perspective of higher-order structural information present in the network.The cycle structure is a higher-order structure that lies between the star and clique structures,where all nodes within the same cycle can interact with each other,even in the absence of direct edges.If a node is encompassed by multiple cycles,it indicates that the node interacts and associates with a greater number of nodes in the network,and it means the node is more important in the network to some extent.Furthermore,if two nodes are included in multiple cycles,it signifies the two nodes are more likely to be connected.Therefore,firstly,a multi-information fusion node importance algorithm based on the cycle structure information is proposed,which integrates both high-order and low-order structural information.Secondly,the obtained integrated structure information and node feature information is regarded as the input features,a two-channel graph neural network model is designed to learn the cycle structure information.Then,the cycle structure information is utilised for the task of link prediction,and a graph neural link predictor with multi-information interactions based on the cycle structure is developed.Finally,extensive experimental validation and analysis show that the node ranking result of the proposed node importance index is more consistent with the actual situation,the proposed graph neural network model can effectively learn the cycle structure information,and using higher-order structural information—cycle information proves to significantly enhance the overall link prediction performance.展开更多
Coal pore parameters are closely related to macrolithotypes and coal structures,having a large influence over the gas potential and productivity of coalbed methane(CBM).The Middle Jurassic Xishanyao Formation,located ...Coal pore parameters are closely related to macrolithotypes and coal structures,having a large influence over the gas potential and productivity of coalbed methane(CBM).The Middle Jurassic Xishanyao Formation,located in the southern Junggar Basin of northwestern China,has geological conditions with rich CBM resources.The 46 Xishanyao coal samples gathered from the drilling cores and coal mines cover 4 types of macrolithotypes(bright coal 1,semi-bright coal 2,semi-dull coal 3,and dull coal 4)and 2 types of coal structures(primary coal I and cataclastic coal II).Based on a range of pore testing experiments and analytical methods,the dual effects of different macrolithotypes and coal structures on pore structures were intensely studied.The results showed that the specific surface area(SSA)and total pore volume(TPV)of coal samples increased gradually from bright to dull coals.For the same macrolithotypes,the SSA and TPV of the primary coals were lower than those of the cataclastic coals.Generally,the pore structures of bright and semi-bright coals are simpler when compared to semi-dull and dull coals with the same coal structure,whereas cataclastic coals have more complicated pore structure systems than primary coals with the same macrolithotypes.The bright and semi-bright coals have higher vitrinite contents and more endogenous fractures,whereas well-developed structural fractures were identified in cataclastic coals.Therefore,bright and semi-bright coals have better pore connectivity than semi-dull and dull coals with the same coal structure,the pore connectivity of cataclastic coals being slightly better than that of primary coals under the same macrolithotypes.In terms of the CBM adsorption conditions,the eight type samples formed a descending order:Ⅱ-4>I-4>Ⅱ-3>Ⅰ-3>Ⅱ-2>Ⅰ-2>Ⅱ-1>Ⅰ-1,while they ranked as follows when consideration was given to the CBM seepage capacities:II-2>Ⅱ-1>Ⅰ-2>Ⅰ-1>Ⅰ-3>Ⅰ-4>Ⅱ-3>Ⅱ-4.As a result,it could be determined that the bright and semi-bright coals had stronger adsorption capacities,whereas the cataclastic coals had better pore connectivity and seepage capacities.Pore structure characteristics should be analysed under the dual control of different macrolithotypes and coal structures,so that they can provide greater value for guiding CBM exploration and exploitation,as along for preventing underground gas accidents.展开更多
Photoelectrocatalytic(PEC)seawater splitting as a green and sustainable route to harvest hydrogen is attractive yet hampered by low activity of photoanodes and unexpected high selectivity to the corrosive and toxic ch...Photoelectrocatalytic(PEC)seawater splitting as a green and sustainable route to harvest hydrogen is attractive yet hampered by low activity of photoanodes and unexpected high selectivity to the corrosive and toxic chlorine.Especially,it is full of challenges to unveil the key factors influencing the selectivity of such complex PEC processes.Herein,by regulating the energy band and surface structure of the anatase TiO_(2) nanotube array photoanode via nitrogen-doping,the seawater PEC oxidation shifts from Cl^(-)oxidation reaction(ClOR)dominant on the TiO_(2) photoanode(61.6%)to oxygen evolution reaction(OER)dominant on the N-TiO_(2) photoanode(62.9%).Comprehensive investigations including operando photoelectrochemical FTIR and DFT calculations unveil that the asymmetric hydrogen-bonding water at the N-TiO_(2) electrode/electrolyte interface enriches under illumination,facilitating proton transfer and moderate adsorption strength of oxygen-intermediates,which lowers the energy barrier for the OER yet elevates the energy barrier for the ClOR,resulting to a promoted selectivity towards the OER.The work sheds light on the underlying mechanism of the PEC water oxidation processes,and highlights the crucial role of interfacial water on the PEC selectivity,which could be regulated by controlling the energy band and the surface structure of semiconductors.展开更多
The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of c...The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time.展开更多
Due to the lack of the three-dimensional structure of the Zhaoji Salt Basin,the salt mining enterprises have obvious clustering when choosing sites.Production capacity declines rapidly as mining deepens,and the enterp...Due to the lack of the three-dimensional structure of the Zhaoji Salt Basin,the salt mining enterprises have obvious clustering when choosing sites.Production capacity declines rapidly as mining deepens,and the enterprises are entering a stage of stagnation in production.In this study,a dense seismic array of 125 short-period stations was deployed around the core mining area and its vicinity of the salt mine industry,we used the ambient noise tomography(ANT)method to image the three-dimensional shear wave velocity structure at the depth shallower than 3 km.The results indicate:(1)The overall shear wave velocity in the study area is relatively lower,ranging from 0.8 to 1.8 km/s,which could be related to the loose and thick deposition of the Zhaoji sub-depression.(2)The three-dimensional shear wave velocity structure reveals that the sedimentary thickness of the Zhaoji sub-depression is deeper in the southeast and shallower in the northwest,with the sedimentary center located around Heping Town and Dahuangzhuang Town.(3)The Zhaoji salt mine is a low-velocity anomalous zone in the shear wave velocity structure with an inverse‘C'character spreading along Nanchenji Town and Zhaoji Town,with a depth ranging from approximately 1.2 to 2.8 km,it may be caused by the development of rock fissures due to water extraction and injection.The surrounding rock exhibits relatively high velocity,which reflects the morphological characteristics of the Zhaoji Salt Basin.The three-dimensional shear wave velocity model obtained in this study provides scientific guidance for the industrial exploitation of the Zhaoji salt mine and reference for salt exploration of the Hongze Salt Basin.It also provides an important basis for the seismic risk assessment of the salt basins.Simultaneously,it holds significant implications for exploring the application of ambient noise tomography method in spatial detection of salt mine belt.展开更多
Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated...Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated under variable nutrient levels is lacking.Here,biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored.From field sampling,NH_(4)^(+)-N was proven key factor governing community structure in attached biofilms,verifying the reliability of selecting target nutrient species in batch experiments.Biofilms exhibited significant compositional differences in field sampling and incubation experiments.As the nutrient increased in batch experiments,the growth of biofilms gradually slowed down and uneven distribution was detected.The proportions of proteins and β-d-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients.With the increased of nutrients,themass losses of concretes exhibited an increase,reaching a highest value of 2.37%in the presence of 20 mg/L of ammonia.Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient.The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia.While the communities and their functions remained relativelymore stable responding to sulfate gradient.Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients,which is of significance for the operation and maintenance of hydraulic engineering structures.展开更多
基金supported by the National Natural Science Foundation of China[52125307(to P.G.),12404192(to R.C.S),12274061(to L.Q.)]Key Research and Development Program from the Ministry of Science and Technology(2023YFA1406301)the support from the New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘The infinite-layer nickelates,proposed as analogs to superconducting cuprates,provide a promising platform for exploring the mechanisms of unconventional superconductivity.However,the superconductivity has been exclusively observed in thin films under atmospheric pressure,underscoring the critical role of the heterointerface.
基金Supported by the Science and Technology Special Project of CNPC(2023YQX10111)Key Research and Development Special Project of Xinjiang Uygur Autonomous Region(2024B01015-3)。
文摘For deep prospects in the foreland thrust belt,southern Junggar Basin,NW China,there are uncertainties in factors controlling the structural deformation,distribution of paleo-structures and detachment layers,and distribution of major hydrocarbon source rocks.Based on the latest 3D seismic,gravity-magnetic,and drilling data,together with the results of previous structural physical simulation and discrete element numerical simulation experiments,the spatial distribution of pre-existing paleo-structures and detachment layers in deep strata of southern Junggar Basin were systematically characterized,the structural deformation characteristics and formation mechanisms were analyzed,the distribution patterns of multiple hydrocarbon source rock suites were clarified,and hydrocarbon accumulation features in key zones were reassessed.The exploration targets in deep lower assemblages with possibility of breakthrough were expected.Key results are obtained in three aspects.First,structural deformation is controlled by two-stage paleo-structures and three detachment layers with distinct lateral variations:the Jurassic layer(moderate thickness,wide distribution),the Cretaceous layer(thickest but weak detachment),and the Paleogene layer(thin but long-distance lateral thrusting).Accordingly,a four-layer composite deformation sequence was identified,and the structural genetic model with paleo-bulge controlling zonation by segments laterally and multiple detachment layers controlling sequence vertically.Second,the Permian source rocks show a distribution pattern with narrow trough(west),multiple sags(central),and broad basin(east),which is depicted by combining high-precision gravity-magnetic data and time-frequency electromagnetic data for the first time,and the Jurassic source rocks feature thicker mudstones in the west and rich coals in the east according to the reassessment.Third,two petroleum systems and a four-layer composite hydrocarbon accumulation model are established depending on the structural deformation strength,trap effectiveness and source-trap configuration.The southern Junggar Basin is divided into three segments with ten zones,and a hierarchical exploration strategy is proposed for deep lower assemblages in this region,that is,focusing on five priority zones,expanding to three potential areas,and challenging two high-risk targets.
基金supported by the National Natural Science Foundation of China(no.52363028,21965005)the Natural Science Foundation of Guangxi Province(2021GXNSFAA076001,2018GXNSFAA294077)the Guangxi Technology Base and Talent Subject(GUIKE AD23023004,GUIKE AD20297039).
文摘Triggering structural asymmetry can induce charge redistribution and modify electronic structures,which is of great significance for the design of high-performance hydrogen oxidation reaction(HOR)electrocatalysts.Herein,we propose a dual anion-induced strategy to create an innovative RuS_(2)-RuO_(2)heterostructure featuring abundant S-Ru-O interfaces(RuS_(2)-RuO_(2)@C).This RuS_(2)-RuO_(2)@C demonstrates an impressive mass activity of 2.61 mAμg_(RU)^(-1)and an exchange current density of 2.96 mA cm^(-2),surpassing Pt/C and other comparative samples by over 20 times.Durability assessments confirm the superior stability of RuS_(2)-RuO_(2)@C,with only minimal performance loss during operation.Density functional theory(DFT)calculations indicate that the asymmetric S-Ru-O configuration optimizes the interfacial electronic structure and shifts the d-band center closer to the Fermi level,effectively reducing the energy barrier of the rate-determining step(RDS)in the alkaline HOR process.Moreover,in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy(ATR-SEIRAS)characteristics disclose the formation of a substantial hydrogen bond network at the S-Ru-o interface,which aids in the desorption of H_(2)O_(ad)and facilitates the vital Volmer step in the HOR pathway.
基金supported by the National Natural Science Foundation of China(Nos.62101020 and 62141405)the Special Scientific Research Project of Civil Aircraft,China(No.MJZ5-2N22).
文摘As the proportion of composite materials used in aircraft continues to increase, the electromagnetic Shielding Effectiveness (SE) of these materials becomes a critical factor in the electromagnetic safety design of aircraft structures. The assessment of electromagnetic SE for Slotted Composite Structures(SCSs) is particularly challenging due to their complex geometries and there remains a lack of suitable models for accurately predicting the SE performance of these intricate configurations. To address this issue, this paper introduces SCS-Net, a Deep Neural Network (DNN) method designed to accurately predict the SE of SCS. This method considers the impacts of various structural parameters, material properties and incident wave parameters on the SE of SCSs. In order to better model the SCS, an improved Nicolson-Ross-Weir (NRW) method is introduced in this paper to provide an equivalent flat structure for the SCS and to calculate the electromagnetic parameters of the equivalent structure. Additionally, the prediction of SE via DNNs is limited by insufficient test data, which hinders support for large-sample training. To address the issue of limited measured data, this paper develops a Measurement-Computation Fusion (MCF) dataset construction method. The predictions based on the simulation results show that the proposed method maintains an error of less than 0.07 dB within the 8–10 GHz frequency range. Furthermore, a new loss function based on the weighted L1-norm is established to improve the prediction accuracy for these parameters. Compared with traditional loss functions, the new loss function reduces the maximum prediction error for equivalent electromagnetic parameters by 47%. This method significantly improves the prediction accuracy of SCS-Net for measured data, with a maximum improvement of 23.88%. These findings demonstrate that the proposed method enables precise SE prediction and design for composite structures while reducing the number of test samples needed.
基金sponsored by the National Natural Science Foundation of China(Nos.5210125 and 52375422)the Science Research Project of Hebei Education Department(No.BJK2023058)the Natural Science Foundation of Hebei Province(Nos.E2020208069,B2020208083 and E202320801).
文摘The stability and electrocatalytic efficiency of transition metal oxides for water splitting is determined by geometric and electronic structure,especially under high current densities.Herein,a newly designed lamella-heterostructured nanoporous CoFe/CoFe_(2)O_(4) and CeO_(2−x),in situ grown on nickel foam(NF),holds great promise as a high-efficient bifunctional electrocatalyst(named R-CoFe/Ce/NF)for water splitting.Experimental characterization verifies surface reconstruction from CoFe alloy/oxide to highly active CoFeOOH during in situ electrochemical polarization.By virtues of three-dimensional nanoporous architecture and abundant electroactive CoFeOOH/CeO_(2−x) heterostructure interfaces,the R-CoFe/Ce/NF electrode achieves low overpotentials for oxygen evolution(η_(10)=227 mV;η_(500)=450 mV)and hydrogen evolution(η_(10)=35 mV;η_(408)=560 mV)reactions with high normalized electrochemical active surface areas,respectively.Additionally,the alkaline full water splitting electrolyzer of R-CoFe/Ce/NF||R-CoFe/Ce/NF achieves a current density of 50 mA·cm^(−2) only at 1.75 V;the decline of activity is satisfactory after 100-h durability test at 300 mA·cm^(−2).Density functional theory also demonstrates that the electron can transfer from CeO_(2−x) by virtue of O atom to CoFeOOH at CoFeOOH/CeO_(2−x) heterointerfaces and enhancing the adsorption of reactant,thus optimizing electronic structure and Gibbs free energies for the improvement of the activity for water splitting.
基金the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(202102AB080019-1)National Key Research and Development Program of China(2022YFB3708600)the National Natural Science Foundation of China(91960103).
文摘Ferroelastic rare earth tantalates(RETaO_(4))are widely researched as the next-generation thermal barrier coatings(TBCs),and RETaO_(4)powders are hugely significant for synthesizing their coatings.The current research used chemical co-precipitation within an automated experimental device to synthesize RETaO_(4)(RE=Nd,Sm,Gd,Ho,Er)powders.The device automatically monitored and controlled the solutions'pH,improving the chemical co-precipitation efficiency.The crystal structure and microstructure of the RETaO_(4)powders can be controlled by changing the annealing temperature,and the materials undergo an m'-m phase transition.The m'-RETaO_(4)powders exhibit nano-size grains,while m-RETaO_(4)powders evince micron-size grains,altered by the annealing temperatures.A simultaneous thermal analysis es-timates the reversive ferroelastic tetragonal-monoclinic phase transition temperatures.Overall,this research focuses on the synthesis,crystal structures,microstructures,and phase transition of the fabricated RETaO_(4)powders.
基金supported by the National Natural Science Foundation of China(Nos.22171102 and 22090044)the National Key R&D Program of China(Nos.2021YFF0500502 and 2023YFA1506304)+2 种基金the Jilin Province Science and Technology Development Plan(No.20230101024JC)the"Medicine+X"crossinnovation team of Bethune Medical Department of Jilin University"Leading the Charge with Open Competition"construction project(No.2022JBGS04)the Jilin University Graduate Training Office(Nos.2021JGZ08 and 2022YJSJIP20).
文摘Solid-state electrolytes(SSEs),as the core component within the next generation of key energy storage technologies-solid-state lithium batteries(SSLBs)-are significantly leading the development of future energy storage systems.Among the numerous types of SSEs,inorganic oxide garnet-structured superionic conductors Li7La3Zr2O12(LLZO)crystallized with the cubic Iaˉ3d space group have received considerable attention owing to their highly advantageous intrinsic properties encompassing reasonable lithium-ion conductivity,wide electrochemical voltage window,high shear modulus,and excellent chemical stability with electrodes.However,no SSEs possess all the properties necessary for SSLBs,thus both the ionic conductivity at room temperature and stability in ambient air regarding cubic garnet-based electrolytes are still subject to further improvement.Hence,this review comprehensively covers the nine key structural factors affecting the ion conductivity of garnet-based electrolytes comprising Li concentration,Li vacancy concentration,Li carrier concentration and mobility,Li occupancy at available sites,lattice constant,triangle bottleneck size,oxygen vacancy defects,and Li-O bonding interactions.Furthermore,the general illustration of structures and fundamental features being crucial to chemical stability is examined,including Li concentration,Li-site occupation behavior,and Li-O bonding interactions.Insights into the composition-structure-property relations among cubic garnet-based oxide ionic conductors from the perspective of their crystal structures,revealing the potential compatibility conflicts between ionic transportation and chemical stability resulting from Li-O bonding interactions.We believe that this review will lay the foundation for future reasonable structural design of oxide-based or even other types of superionic conductors,thus assisting in promoting the rapid development of alternative green and sustainable technologies.
基金supported by National Natural Science Foundation of China(No.523B2070,No.52225606).
文摘Polymeric perylene diimide(PDI)has been evidenced as a good candidate for photocatalytic water oxidation,yet the origin of the photocatalytic oxygen evolution activity remains unclear and needs further exploration.Herein,with crystal and atomic structures of the self-assembled PDI revealed from the X-ray diffraction pattern,the electronic structure is theoretically illustrated by the first-principles density functional theory calculations,suggesting the suitable band structure and the direct electronic transition for efficient photocatalytic oxygen evolution over PDI.It is confirmed that the carbonyl O atoms on the conjugation structure serve as the active sites for oxygen evolution reaction by the crystal orbital Hamiltonian group analysis.The calculations of reaction free energy changes indicate that the oxygen evolution reaction should follow the reaction pathway of H_(2)O→^(*)OH→^(*)O→^(*)OOH→^(*)O_(2)with an overpotential of 0.81 V.Through an in-depth theoretical computational analysis in the atomic and electronic structures,the origin of photocatalytic oxygen evolution activity for PDI is well illustrated,which would help the rational design and modification of polymeric photocatalysts for efficient oxygen evolution.
基金National Natural Science Foundation of China(52261032,51861021,51661016)Science and Technology Plan of Gansu Province(21YF5GA074)+2 种基金Public Welfare Project of Zhejiang Natural Science Foundation(LGG22E010008)Wenzhou Basic Public Welfare Scientific Research Project(G2023020)Incubation Program of Excellent Doctoral Dissertation-Lanzhou University of Technology。
文摘The development of high-performance structural and functional materials is vital in many industrial fields.High-and medium-entropy alloys(H/MEAs)with superior comprehensive properties owing to their specific microstructures are promising candidates for structural materials.More importantly,multitudinous efforts have been made to regulate the microstructures and the properties of H/MEAs to further expand their industrial applications.The various heterostructures have enormous potential for the development of H/MEAs with outstanding performance.Herein,multiple heterogeneous structures with single and hierarchical heterogeneities were discussed in detail.Moreover,preparation methods for compositional inhomogeneity,bimodal structures,dualphase structures,lamella/layered structures,harmonic structures(core-shell),multiscale precipitates and heterostructures coupled with specific microstructures in H/MEAs were also systematically reviewed.The deformation mechanisms induced by the different heterostructures were thoroughly discussed to explore the relationship between the heterostructures and the optimized properties of H/MEAs.The contributions of the heterostructures and advanced microstructures to the H/MEAs were comprehensively elucidated to further improve the properties of the alloys.Finally,this review discussed the future challenges of high-performance H/MEAs for industrial applications and provides feasible methods for optimizing heterostructures to enhance the comprehensive properties of H/MEAs.
基金supported by the POSCO-POSTECH-RIST Convergence Research Center program funded by POSCOthe National Research Foundation(NRF)grants(RS-2022-NR067559,RS-2023-00302586)funded by the Ministry of Science and ICT(MSIT)of the Korean government.
文摘Wenhao Wang and colleagues summarized the latest advancements in structural color research in Opto-Electronic Science. Their review explored the fundamental principles and fabrication methods of structural colors for photonic applications, including anti-counterfeiting, displays, sensors, and printing, along with their practical limitations. Recently, structural colors have received growing interest due to their advantages, including physical and chemical robustness, ecofriendliness, tunability, and high-resolution color.
基金supported by the National Key Research and Development Project of China(No.2021YFC3000600)。
文摘The Longmenshan structural belt on the eastern edge of the Tibetan Plateau experienced the impactful Mw7.92008 Wenchuan Earthquake,causing a 350 km surface rupture.Traditional models attribute this to the Beichuan and Pengguan faults,but our research reveals a complex fault system at the northern end,with inconsistencies in surface rupture,aftershock distribution,and focal mechanisms.We integrate shallow geology,active source seismic reflection,and magnetotelluric profiling to establish a deep structural model for the northern end of the Longmenshan structural belt.This area exhibits dominant reverse thrust nappe tectonics,and analyzing the tectonic evolution history provides insights into deformation propagation from the orogenic belt toward the Sichuan Basin.Focal mechanism analysis and relocated aftershock data reveals two distinct types of seismogenic structures in the northern end of the Longmenshan structural belt.In the middle to northern segments,the reverse fault type is attributed to reactivated pre-existing faults.Conversely,at the northern end,the strike-slip fault type originates from high-angle co-seismic rupture cutting through pre-existing reverse faults.This study enhances our understanding of fault complexity and seismic mechanisms in the northeastern Longmenshan structural belt,providing new insights into regional tectonics.
基金supported by National Key Research and Development Program of China(Grant Nos.2022YFF0800903 and 2024YFC2909905)the National Natural Science Foundation of China(NSFC)(Grant Nos.42261144669,42262026,and 42273073).
文摘Metallogenic research on structural levels can reveal vertical patterns of mineralization and facilitate the deep exploration of economic minerals.However,research focusing on the correlation between structural levels and mineralization remains limited.In this study,we summarize the deformation patterns and associated mineral deposits observed at different crustal levels(i.e.,surface,shallow,middle,and deep structural levels,corresponding to depths of<2,2-8,8-15,and>15 km,respectively).Furthermore,we examine the genetic association between structural levels and metallogenesis,demonstrating that distinct structural levels are linked to specific types of mineralization.Key factors that vary across crustal levels include temperature,pressure,and fluid circulation.Ore-forming processes involve interactions between structures and fluids under varying temperatures and pressures.Structural levels influence mineralization by controlling the temperatures,pressures,and deformation mechanisms that drive the activation,migration,and enrichment of ore-forming materials.
基金supported by the Natural Science Foundation of China(Nos.22277019,82150204,22307031,22377023,22077143,and 82003594)Key Project of Guangdong Natural Science Foundation(No.2016A030311033)+2 种基金Fundamental Research Funds for Hainan University(Nos.KYQD(ZR)-21031,KYQD(ZR)-21108,KYQD(ZR)-23003,and XTCX2022JKA01)Guangdong Provincial Key Laboratory of Construction Foundation(No.2023B1212060022)Science Foundation of Hainan Province(Nos.KJRC2023B10,824YXQN420,and 324MS018)。
文摘Idiopathic pulmonary fibrosis(IPF)is a progressive lung disease and its incidence rate is rapidly rising.However,effective therapies for the treatment of IPF are still lacking.Phosphodiesterase 4(PDE4)inhibitors were reported to be potential anti-fibrotic agents.Herein,structure-based hit-to-lead optimization of natural isoaurostatin(8.98μmol/L)resulted in several potent inhibitors of PDE4 with half maximal inhibitory concentration(IC_(50))values ranging from 35 nmol/L to 126 nmol/L.Co-crystal structures revealed that isoaurostatin compounds exhibited different binding patterns from the classic PDE4 inhibitor rolipram and the analogues would favor to be Z configurations other than the corresponding E isomers.Finally,lead 2–9 showed remarkable in vitro/in vivo anti-fibrotic effects indicating its potential as a novel anti-IPF agent.
文摘With the rapid development of science and technology,the application of intelligent technology in the field of civil engineering is more extensive,especially in the safety evaluation and management of engineering structures.This paper discusses the role of intelligent technologies(such as artificial intelligence,Internet of Things,BIM,big data analysis,etc.)in the monitoring,evaluation,and maintenance of engineering structure safety.By studying the principle,application scenarios,and advantages of intelligent technology in structural safety evaluation,this paper summarizes how intelligent technology can improve engineering management efficiency and reduce safety risks,and puts forward the trend and challenge of future development.
基金National Key Research and Development Program of China,Grant/Award Number:2020YFC1523300Construction of Innovation Platform Program of Qinghai Province of China,Grant/Award Number:2022-ZJ-T02。
文摘Currently,the link prediction algorithms primarily focus on studying the interaction between nodes based on chain structure and star structure,which predominantly rely on low-order structural information and do not explore the multivariate interactions between nodes from the perspective of higher-order structural information present in the network.The cycle structure is a higher-order structure that lies between the star and clique structures,where all nodes within the same cycle can interact with each other,even in the absence of direct edges.If a node is encompassed by multiple cycles,it indicates that the node interacts and associates with a greater number of nodes in the network,and it means the node is more important in the network to some extent.Furthermore,if two nodes are included in multiple cycles,it signifies the two nodes are more likely to be connected.Therefore,firstly,a multi-information fusion node importance algorithm based on the cycle structure information is proposed,which integrates both high-order and low-order structural information.Secondly,the obtained integrated structure information and node feature information is regarded as the input features,a two-channel graph neural network model is designed to learn the cycle structure information.Then,the cycle structure information is utilised for the task of link prediction,and a graph neural link predictor with multi-information interactions based on the cycle structure is developed.Finally,extensive experimental validation and analysis show that the node ranking result of the proposed node importance index is more consistent with the actual situation,the proposed graph neural network model can effectively learn the cycle structure information,and using higher-order structural information—cycle information proves to significantly enhance the overall link prediction performance.
基金supported by the National Natural Science Foundation of China(Grant No.42102223)the Chinese Postdoctoral Science Foundation(Grant Nos.2021M693844,2022T150284)+1 种基金the Chinese Geological Survey Project(Grant No.DD20160204-3)the discipline innovation team of Liaoning Technical University(Grant Nos.LNTU20TD-14,LNTU20TD-30)。
文摘Coal pore parameters are closely related to macrolithotypes and coal structures,having a large influence over the gas potential and productivity of coalbed methane(CBM).The Middle Jurassic Xishanyao Formation,located in the southern Junggar Basin of northwestern China,has geological conditions with rich CBM resources.The 46 Xishanyao coal samples gathered from the drilling cores and coal mines cover 4 types of macrolithotypes(bright coal 1,semi-bright coal 2,semi-dull coal 3,and dull coal 4)and 2 types of coal structures(primary coal I and cataclastic coal II).Based on a range of pore testing experiments and analytical methods,the dual effects of different macrolithotypes and coal structures on pore structures were intensely studied.The results showed that the specific surface area(SSA)and total pore volume(TPV)of coal samples increased gradually from bright to dull coals.For the same macrolithotypes,the SSA and TPV of the primary coals were lower than those of the cataclastic coals.Generally,the pore structures of bright and semi-bright coals are simpler when compared to semi-dull and dull coals with the same coal structure,whereas cataclastic coals have more complicated pore structure systems than primary coals with the same macrolithotypes.The bright and semi-bright coals have higher vitrinite contents and more endogenous fractures,whereas well-developed structural fractures were identified in cataclastic coals.Therefore,bright and semi-bright coals have better pore connectivity than semi-dull and dull coals with the same coal structure,the pore connectivity of cataclastic coals being slightly better than that of primary coals under the same macrolithotypes.In terms of the CBM adsorption conditions,the eight type samples formed a descending order:Ⅱ-4>I-4>Ⅱ-3>Ⅰ-3>Ⅱ-2>Ⅰ-2>Ⅱ-1>Ⅰ-1,while they ranked as follows when consideration was given to the CBM seepage capacities:II-2>Ⅱ-1>Ⅰ-2>Ⅰ-1>Ⅰ-3>Ⅰ-4>Ⅱ-3>Ⅱ-4.As a result,it could be determined that the bright and semi-bright coals had stronger adsorption capacities,whereas the cataclastic coals had better pore connectivity and seepage capacities.Pore structure characteristics should be analysed under the dual control of different macrolithotypes and coal structures,so that they can provide greater value for guiding CBM exploration and exploitation,as along for preventing underground gas accidents.
文摘Photoelectrocatalytic(PEC)seawater splitting as a green and sustainable route to harvest hydrogen is attractive yet hampered by low activity of photoanodes and unexpected high selectivity to the corrosive and toxic chlorine.Especially,it is full of challenges to unveil the key factors influencing the selectivity of such complex PEC processes.Herein,by regulating the energy band and surface structure of the anatase TiO_(2) nanotube array photoanode via nitrogen-doping,the seawater PEC oxidation shifts from Cl^(-)oxidation reaction(ClOR)dominant on the TiO_(2) photoanode(61.6%)to oxygen evolution reaction(OER)dominant on the N-TiO_(2) photoanode(62.9%).Comprehensive investigations including operando photoelectrochemical FTIR and DFT calculations unveil that the asymmetric hydrogen-bonding water at the N-TiO_(2) electrode/electrolyte interface enriches under illumination,facilitating proton transfer and moderate adsorption strength of oxygen-intermediates,which lowers the energy barrier for the OER yet elevates the energy barrier for the ClOR,resulting to a promoted selectivity towards the OER.The work sheds light on the underlying mechanism of the PEC water oxidation processes,and highlights the crucial role of interfacial water on the PEC selectivity,which could be regulated by controlling the energy band and the surface structure of semiconductors.
文摘The damage distribution of the same type of aircraft in similar service environments should be similar. Based on this assumption, to perform the maintenance and repair of aircraft composite structures, the damage of composite structures in a certain type of aircraft were investigated. The time-varying damage distribution model was established and verified based on the damage of a 16-aircraft fleet. The results show that the quantitative proportions of structural damage are 74% for skin delamination, 22% for stringer delamination and 3% for stringer-skin interface debonding. The amount of structural damages increases linearly with service time while the proportion of different damages does not change. As the service time increases, the geometric parameter distribution of damage for the same type of aircraft gradually converges, which can be approximated using the same function. There are certain differences in the proportion and geometric parameter distribution of damages among different components and locations, and the differences do not change over time.
基金supported by the National Key R&D Program of China(No.2024YFC3012902)the National Natural Science Foundation of China(No.42074070)supported by the Huai’an Earthquake Prevention and Disaster Reduction Service Center“Salt Cavern Exploration Project”(No.HAZC-2021050155-001)。
文摘Due to the lack of the three-dimensional structure of the Zhaoji Salt Basin,the salt mining enterprises have obvious clustering when choosing sites.Production capacity declines rapidly as mining deepens,and the enterprises are entering a stage of stagnation in production.In this study,a dense seismic array of 125 short-period stations was deployed around the core mining area and its vicinity of the salt mine industry,we used the ambient noise tomography(ANT)method to image the three-dimensional shear wave velocity structure at the depth shallower than 3 km.The results indicate:(1)The overall shear wave velocity in the study area is relatively lower,ranging from 0.8 to 1.8 km/s,which could be related to the loose and thick deposition of the Zhaoji sub-depression.(2)The three-dimensional shear wave velocity structure reveals that the sedimentary thickness of the Zhaoji sub-depression is deeper in the southeast and shallower in the northwest,with the sedimentary center located around Heping Town and Dahuangzhuang Town.(3)The Zhaoji salt mine is a low-velocity anomalous zone in the shear wave velocity structure with an inverse‘C'character spreading along Nanchenji Town and Zhaoji Town,with a depth ranging from approximately 1.2 to 2.8 km,it may be caused by the development of rock fissures due to water extraction and injection.The surrounding rock exhibits relatively high velocity,which reflects the morphological characteristics of the Zhaoji Salt Basin.The three-dimensional shear wave velocity model obtained in this study provides scientific guidance for the industrial exploitation of the Zhaoji salt mine and reference for salt exploration of the Hongze Salt Basin.It also provides an important basis for the seismic risk assessment of the salt basins.Simultaneously,it holds significant implications for exploring the application of ambient noise tomography method in spatial detection of salt mine belt.
基金supported by the National Key Research and Development Project of China(No.2021YFB2600200)the National Natural Science Foundation of China(Nos.52470185 and 52170159)the Open Research Fund of National Engineering Research Center of Water Resources Efficient Utilization and Engineering Safety,the Fund of National Key Laboratory of Water Disaster Prevention and Key Research and Development Program of Jiangsu Province(No.BE2022601).
文摘Microbial corrosion of hydraulic concrete structures(HCSs)has received increasing research concerns.However,knowledge on the morphology of attached biofilms,as well as the community structures and functions cultivated under variable nutrient levels is lacking.Here,biofilm colonization patterns and community structures responding to variable levels of ammonia and sulfate were explored.From field sampling,NH_(4)^(+)-N was proven key factor governing community structure in attached biofilms,verifying the reliability of selecting target nutrient species in batch experiments.Biofilms exhibited significant compositional differences in field sampling and incubation experiments.As the nutrient increased in batch experiments,the growth of biofilms gradually slowed down and uneven distribution was detected.The proportions of proteins and β-d-glucose polysaccharides in biofilms experienced a decrease in response to elevated levels of nutrients.With the increased of nutrients,themass losses of concretes exhibited an increase,reaching a highest value of 2.37%in the presence of 20 mg/L of ammonia.Microbial communities underwent a significant transition in structure and metabolic functions to ammonia gradient.The highest activity of nitrification was observed in biofilms colonized in the presence of 20 mg/L of ammonia.While the communities and their functions remained relativelymore stable responding to sulfate gradient.Our research provides novel insights into the structures of biofilms attached on HCSs and the metabolic functions in the presence of high level of nutrients,which is of significance for the operation and maintenance of hydraulic engineering structures.