We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total...We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.展开更多
We present an analysis of strong single pulses from PSR J0034-0721. Our observations were made using the Urumqi 25-m radio telescope at a radio frequency of 1.54 GHz. A total of 353 strong pulses were detected during ...We present an analysis of strong single pulses from PSR J0034-0721. Our observations were made using the Urumqi 25-m radio telescope at a radio frequency of 1.54 GHz. A total of 353 strong pulses were detected during eight hours of observing, The signal-to-noise ratios of the detected pulses range from 5 to 11.5. The peak fluxes of those pulses are 17 to 39 times that of the average pulse peak. The cumulative distribution of the signal-to-noise ratios of these strong pulses has a rough power-law distribution with a slope of 4.4 q- 0.5. Ten of the strong pulses arrived approximately 23 to 40 ms earlier than the average profile peak. This suggests the possibility that there are two strong pulse-emitting regions.展开更多
With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studi...With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.展开更多
Terahertz (THz) radiation has attracted much attention due to its wide potential applications. Though radiation can be generated with various ways, it is still a big challenge to obtain strong tabletop sources. Plas...Terahertz (THz) radiation has attracted much attention due to its wide potential applications. Though radiation can be generated with various ways, it is still a big challenge to obtain strong tabletop sources. Plasma, with the advantage of no damage limit, is a promising medium to generate strong THz radiation. This review reports recent advances on strong THz radiation generation from low-density gases and high-density solid targets at different laser intensities.展开更多
A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into ...A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.展开更多
With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,Prof.Li Yutong(李玉同)at the Institute of Physics,Chinese Academy of Sciences,in collaboration w...With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,Prof.Li Yutong(李玉同)at the Institute of Physics,Chinese Academy of Sciences,in collaboration with Prof.Zhang Jie(张杰)and Sheng Zhengming(盛政明)at Shanghai Jiao Tong University,demonstrated the generation of high-energy,coherent terahertz(THz)radiation from ultra in-展开更多
Continuous-variable quantum key distribution(CV QKD)using optical coherent detectors is practically favorable due to its low implementation cost,flexibility of wavelength division multiplexing,and compatibility with s...Continuous-variable quantum key distribution(CV QKD)using optical coherent detectors is practically favorable due to its low implementation cost,flexibility of wavelength division multiplexing,and compatibility with standard coherent communication technologies.However,the security analysis and parameter estimation of CV QKD are complicated due to the infinite-dimensional latent Hilbert space.Also,the transmission of strong reference pulses undermines the security and complicates the experiments.In this work,we tackle these two problems by presenting a time-bin-encoding CV protocol with a simple phase-error-based security analysis valid under general coherent attacks.With the key encoded into the relative intensity between two optical modes,the need for global references is removed.Furthermore,phase randomization can be introduced to decouple the security analysis of different photon-number components.We can hence tag the photon number for each round,effectively estimate the associated privacy using a carefully designed coherent-detection method,and independently extract encryption keys from each component.Simulations manifest that the protocol using multi-photon components increases the key rate by two orders of magnitude compared to the one using only the single-photon component.Meanwhile,the protocol with four-intensity decoy analysis is sufficient to yield tight parameter estimation with a short-distance key-rate performance comparable to the best Bennett-Brassard-1984 implementation.展开更多
基金funded by the National Natural Science Foundation of China(Grant No.10973026)
文摘We report on the properties of strong pulses from PSR B0656+14 by analyzing the data obtained using the Urumqi 25-m radio telescope at 1540 MHz from August 2007 to September 2010.In 44 h of observational data,a total of 67 pulses with signal-to-noise ratios above a 5σthreshold were detected.The peak flux densities of these pulses are 58 to 194 times that of the average profile,and their pulse energies are 3 to 68 times that of the average pulse.These pulses are clustered around phases about 5-ahead of the peak of the average profile.Compared with the width of the average profile,they are relatively narrow,with the full widths at half-maximum ranging from 0.28 ° to 1.78 °.The distribution of pulse-energies follows a lognormal distribution.These sporadic strong pulses detected from PSR B0656+14 have different characteristics from both typical giant pulses and its regular pulses.
基金Supported by the National Natural Science Foundation of China(Grant No. 10973026)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-T09)
文摘We present an analysis of strong single pulses from PSR J0034-0721. Our observations were made using the Urumqi 25-m radio telescope at a radio frequency of 1.54 GHz. A total of 353 strong pulses were detected during eight hours of observing, The signal-to-noise ratios of the detected pulses range from 5 to 11.5. The peak fluxes of those pulses are 17 to 39 times that of the average pulse peak. The cumulative distribution of the signal-to-noise ratios of these strong pulses has a rough power-law distribution with a slope of 4.4 q- 0.5. Ten of the strong pulses arrived approximately 23 to 40 ms earlier than the average profile peak. This suggests the possibility that there are two strong pulse-emitting regions.
基金supported by the National Nature Science Foundation of China(Nos.11875191,11890714,11925502,11935001,and 11961141003)the Strategic Priority Research Program(No.CAS XDB1602)。
文摘With the development of laser technologies,nuclear reactions can happen in high-temperature plasma environments induced by lasers and have attracted a lot of attention from different physical disciplines.However,studies on nuclear reactions in plasma are still limited by detecting technologies.This is mainly due to the fact that extremely high electromagnetic pulses(EMPs)can also be induced when high-intensity lasers hit targets to induce plasma,and then cause dysfunction of many types of traditional detectors.Therefore,new particle detecting technologies are highly needed.In this paper,we report a recently developed gated fiber detector which can be used in harsh EMP environments.In this prototype detector,scintillating photons are coupled by fiber and then transferred to a gated photomultiplier tube which is located far away from the EMP source and shielded well.With those measures,the EMPs can be avoided which may result that the device has the capability to identify a single event of nuclear reaction products generated in laser-induced plasma from noise EMP backgrounds.This new type of detector can be widely used as a time-of-flight(TOF)detector in high-intensity laser nuclear physics experiments for detecting neutrons,photons,and other charged particles.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10925421,11135012,11105217, and 11121504)
文摘Terahertz (THz) radiation has attracted much attention due to its wide potential applications. Though radiation can be generated with various ways, it is still a big challenge to obtain strong tabletop sources. Plasma, with the advantage of no damage limit, is a promising medium to generate strong THz radiation. This review reports recent advances on strong THz radiation generation from low-density gases and high-density solid targets at different laser intensities.
基金supported by National Natural Science Foundation of China(Nos.11105147,11375197 and 11175179)the Ministry of Education of China(No.IRT1190)
文摘A pulsed magnetic field generator was developed to study the effect of a magnetic field on the evolution of a laser-generated plasma. A 40 kV pulsed power system delivered a fast (-230 ns), 55 kA current pulse into a single-turn coil surrounding the laser target, using a capacitor bank of 200 nF, a laser-triggered switch and a low-impedance strip transmission line. A one-dimensional uniform 7 T pulsed magnetic field was created using a Helmholtz coil pair with a 6 mm diameter. The pulsed magnetic field was controlled to take effect synchronously with a nanosecond heating laser beam, a femtosecond probing laser beam and an optical Intensified Charge Coupled Device (ICCD) detector. The preliminary experiments demonstrate bifurcation and focusing of plasma expansion in a transverse magnetic field.
文摘With the support by the National Natural Science Foundation of China and the Ministry of Science and Technology of China,Prof.Li Yutong(李玉同)at the Institute of Physics,Chinese Academy of Sciences,in collaboration with Prof.Zhang Jie(张杰)and Sheng Zhengming(盛政明)at Shanghai Jiao Tong University,demonstrated the generation of high-energy,coherent terahertz(THz)radiation from ultra in-
基金Engineering and Physical Sciences Research Council(project EP/T001011/1)Shenzhen-Hong Kong Cooperation Zone for Technology and Innovation(HZQB-KCZYB-2020050)+7 种基金Hong Kong Research Grant Council(R7035-21)Army Research Office(W911NF-23-1-0077)Multidisciplinary University Research Initiative(W911NF-21-1-0325)Air Force Office of Scientific Research(FA9550-19-1-0399,FA9550-21-1-0209)National Science Foundation(OMA-1936118,ERC-1941583,OMA-2137642)NTT ResearchDavid and Lucile Packard Foundation(2020-71479)Marshall and Arlene Bennett Family Research Program。
文摘Continuous-variable quantum key distribution(CV QKD)using optical coherent detectors is practically favorable due to its low implementation cost,flexibility of wavelength division multiplexing,and compatibility with standard coherent communication technologies.However,the security analysis and parameter estimation of CV QKD are complicated due to the infinite-dimensional latent Hilbert space.Also,the transmission of strong reference pulses undermines the security and complicates the experiments.In this work,we tackle these two problems by presenting a time-bin-encoding CV protocol with a simple phase-error-based security analysis valid under general coherent attacks.With the key encoded into the relative intensity between two optical modes,the need for global references is removed.Furthermore,phase randomization can be introduced to decouple the security analysis of different photon-number components.We can hence tag the photon number for each round,effectively estimate the associated privacy using a carefully designed coherent-detection method,and independently extract encryption keys from each component.Simulations manifest that the protocol using multi-photon components increases the key rate by two orders of magnitude compared to the one using only the single-photon component.Meanwhile,the protocol with four-intensity decoy analysis is sufficient to yield tight parameter estimation with a short-distance key-rate performance comparable to the best Bennett-Brassard-1984 implementation.