期刊文献+
共找到94篇文章
< 1 2 5 >
每页显示 20 50 100
Strong interaction between Fe and Ti compositions for effective CO_(2)hydrogenation to light olefins
1
作者 Hao Liang Shunan Zhang +4 位作者 Ruonan Zhang Haozhi Zhou Lin Xia Yuhan Sun Hui Wang 《Chinese Journal of Catalysis》 2025年第4期146-157,共12页
Fe-based catalysts are widely used for CO_(2)hydrogenation to light olefins(C_(2–4)=);however,precise regulation of active phases and the balance between intermediate reactions remain significant challenges.Herein,we... Fe-based catalysts are widely used for CO_(2)hydrogenation to light olefins(C_(2–4)=);however,precise regulation of active phases and the balance between intermediate reactions remain significant challenges.Herein,we find that the addition of moderate amounts of Ti forms a strong interaction with Fe compositions,modulating the Fe_(3)O_(4)and Fe_(5)C_(2)contents.Enhanced interaction leads to an increased Fe_(5)C_(2)/Fe_(3)O_(4)ratio,which in turn enhances the adsorption of reactants and intermediates,promoting CO hydrogenation to unsaturated alkyl groups and facilitating C–C coupling.Furthermore,the strong Fe-Ti interaction induces the preferential growth of Fe_(5)C_(2)into prismatic structures that expose the(020),(–112),and(311)facets,forming compact active interfacial sites with Fe_(3)O_(4)nanoparticles.These facet and interfacial effects significantly promote the synergistic coupling of the reverse water gas shift and Fischer-Tropsch reactions.The optimized 3K/FeTi catalyst with the highest Fe_(5)C_(2)/Fe_(3)O_(4)ratio of 3.6 achieves a 52.2%CO_(2)conversion rate,with 44.5%selectivity for C2–4=and 9.5%for CO,and the highest space-time yield of 412.0 mg gcat^(–1)h^(–1)for C_(2–4)=. 展开更多
关键词 CO_(2)hydrogenation Light olefins strong Fe-Ti interaction Fe_(5)C_(2) Active phase modulation
在线阅读 下载PDF
Strong Interaction Between Redox Mediators and Defect-Rich Carbons Enabling Simultaneously Boosted Voltage Windows and Capacitance for Aqueous Supercapacitors
2
作者 Lu Guan Yifan Zhu +8 位作者 Yi Wan Mengdi Zhang Qiang Li Xiaoling Teng Yunlong Zhang Hao Yang Yan Zhang Han Hu Mingbo Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期269-276,共8页
Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rare... Energy density,the Achilles’heel of aqueous supercapacitors,is simultaneously determined by the voltage window and specific capacitance of the carbon materials,but the strategy of synchronously boosting them has rarely been reported.Herein,we demonstrate that the rational utilization of the interaction between redox mediators(RMs)and carbon electrode materials,especially those with rich intrinsic defects,contributes to extended potential windows and more stored charges concurrently.Using 4-hydroxy-2,2,6,6-tetramethylpiperidinyloxyl(4OH-TEMPO)and intrinsic defect-rich carbons as the RMs and electrode materials,respectively,the potential window and capacitance are increased by 67%and sixfold in a neutral electrolyte.Moreover,this strategy could also be applied to alkaline and acid electrolytes.The first-principle calculation and experimental results demonstrate that the strong interaction between 4OH-TEMPO and defectrich carbons plays a key role as preferential adsorbed RMs may largely prohibit the contact of free water molecules with the electrode materials to terminate the water splitting at elevated potentials.For the RMs offering weaker interaction with the electrode materials,the water splitting still proceeds with a thus sole increase of the stored charges.The results discovered in this work could provide an alternative solution to address the low energy density of aqueous supercapacitors. 展开更多
关键词 defect-rich carbons redox mediators strong interaction SUPERCAPACITORS voltage windows
在线阅读 下载PDF
Unification of Gravitational and Strong Interaction Fields Using Partial Gauge Symmetry
3
作者 Young Hwan Yun Kiho Jang 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期515-533,共19页
We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms... We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field. 展开更多
关键词 strong interaction Gauge Symmetry RELATIVITY QCD CONFINEMENT Asymptotic Freedom
在线阅读 下载PDF
Strong Interaction Effect on Jet Energy Loss with Detailed Balance
4
作者 Jing-Ya Zhang Luan Cheng 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第10期18-22,共5页
The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive param... The strong force effect on gluon distribution of quark-gluon plasma and its influence on jet energy loss with detailed balance are studied. We solve the possibility equation and obtain the value of non-extensive parameter q. In the presence of strong interaction, more gluons stay at low-energy state than the free gluon case. The strong interaction effect is found to be important for jet energy loss with detailed balance at intermediate jet energy. The energy gain via absorption increases with the strong interaction. This will affect the nuclear modification factor RAA and the parameter of q at intermediate jet energy. 展开更多
关键词 strong interaction Effect on Jet Energy Loss with Detailed Balance QCD
原文传递
Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions
5
作者 Yunxia Liu Guandong Wu +4 位作者 Lin Li Yiming Niu Bingsen Zhang Botao Qiao Junhu Wang 《Chinese Chemical Letters》 2025年第4期256-263,共8页
Maintaining high metal dispersion of supported metal catalysts to achieve superior reactivity under harsh conditions poses one of the main challenges for their practical applications.Constructing and regulating the st... Maintaining high metal dispersion of supported metal catalysts to achieve superior reactivity under harsh conditions poses one of the main challenges for their practical applications.Constructing and regulating the strong metal-support interactions(SMSI)by diverse methodologies has emerged as one of the promising approaches to fabricating robust supported metal catalysts.In this study,we report an L-ascorbic acid(AA)-inducing strategy to generate SMSI on a titania-supported gold(Au)catalyst after high-temperature treatment in an inert atmosphere(600℃,N_(2)).The AA-induced SMSI can efficiently stabilize Au nanoparticles(NPs)and preserve their catalytic performance.The detailed study reveals that the key to realizing this SMSI is the generation of oxygen vacancies within the TiO_(2) support induced by the adsorbed AA,which drives the formation of the Ti Oxpermeable layer onto the Au NPs.The strategy could be extended to TiO_(2)-supported Au catalysts with different crystal phases and platinum group metals,such as Pt,Pd,and Rh.This work offers a promising novel route to design stable and efficient supported noble metal catalysts by constructing SMSI using simple reducing organic adsorbent. 展开更多
关键词 Supported metal catalyst ADSORBATE L-Ascorbic acid Oxygen vacancy strong metal-support interaction
原文传递
Modulating hole extraction and water oxidation kinetics in CoPi/Au/BiVO_(4) photoanode via strong metal-support interactions
6
作者 Yu Cao Yihan Tian +5 位作者 Bing He Ziyi Qiao Lingyi Li Yunhai Zhu Yingkui Yang Xueqin Liu 《Journal of Energy Chemistry》 2025年第10期315-324,共10页
Photoelectrochemical(PEC)water splitting using bismuth vanadate(BiVO_(4))as a photoanode shows promise for renewable hydrogen production.Depositing cobalt phosphate(CoPi)on the BiVO_(4)photoanode as an oxygen evolutio... Photoelectrochemical(PEC)water splitting using bismuth vanadate(BiVO_(4))as a photoanode shows promise for renewable hydrogen production.Depositing cobalt phosphate(CoPi)on the BiVO_(4)photoanode as an oxygen evolution cocatalyst(OEC)is an effective method to improve the PEC performance.However,the CoPi/BiVO_(4)photoanode still faces challenges in terms of slow interface photogenerated carrier transport.Herein,we utilize the advantage of the classical strong metal-support interaction(SMSI)between Au and BiVO_(4)to prepare a CoPi/Au/BiVO_(4)(SMSI-CoPi/Au/BiVO_(4))photoanode.Due to the formation of SMSI,the accumulated electrons at the interface of CoPi/Au induce the accelerated extraction of photogenerated holes.Meanwhile,the active electron density of CoPi is increased,leading to improved water oxidation kinetic.As a result,the SMSI-CoPi/Au/BiVO_(4)photoanode exhibits a high photocurrent density of 5.01 m A cm^(-2)at 1.23 V versus the reversible hydrogen electrode and an applied bias photon-to-current efficiency of 1.78%.This work highlights a novel approach to enhance hole transfer and water oxidation kinetics of OEC/BiVO_(4)composite photoanodes,offering the great potential of using SMSI for PEC water splitting. 展开更多
关键词 Photoelectrochemical water splitting Bismuth vanadate Oxygen evolution cocatalyst Classical strong metal-support interaction Hole extraction
在线阅读 下载PDF
Strong metal–support interaction boosts the electrocatalytic hydrogen evolution capability of Ru nanoparticles supported on titanium nitride 被引量:2
7
作者 Xin Wang Xiaoli Yang +7 位作者 Guangxian Pei Jifa Yang Junzhe Liu Fengwang Zhao Fayi Jin Wei Jiang Haoxi Ben Lixue Zhang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第1期245-254,共10页
Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-gr... Ruthenium(Ru)has been regarded as one of the most promising alternatives to substitute Pt for catalyzing alkaline hydrogen evolution reaction(HER),owing to its inherent high activity and being the cheapest platinum-group metal.Herein,based on the idea of strong metal–support interaction(SMSI)regulation,Ru/TiN catalysts with different degrees of TiN overlayer over Ru nanoparticles were fabricated,which were applied to the alkaline electrolytic water.Characterizations reveal that the TiN overlayer would gradually encapsulate the Ru nanoparticles and induce more electron transfer from Ru nanoparticles to TiN support by the Ru–N–Ti bond as the SMSI degree increased.Further study shows that the exposed Ru–TiN interfaces greatly promote the H_(2) desorption capacity.Thus,the Ru/TiN-300 with a moderate SMSI degree exhibits excellent HER performance,with an overpotential of 38 mV at 10 mA cm^(−2).Also,due to the encapsulation role of TiN overlayer on Ru nanoparticles,it displays super long-term stability with a very slight potential change after 24 h.This study provides a deep insight into the influence of the SMSI effect between Ru and TiN on HER and offers a novel approach for preparing efficient and stable HER electrocatalysts through SMSI engineering. 展开更多
关键词 electronic structure hydrogen evolution reaction RUTHENIUM strong metal-support interaction titanium nitride
在线阅读 下载PDF
Achieving asymmetric redox chemistry for oxygen evolution reaction through strong metal-support interactions 被引量:1
8
作者 Shihao Wang Meiling Fan +4 位作者 Hongfei Pan Jiahui Lyu Jinsong Wu Haolin Tang Haining Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期526-535,共10页
Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redo... Water electrolysis poses a significant challenge for balancing catalytic activity and stability of oxygen evolution reaction(OER)electrocatalysts.In this study,we address this challenge by constructing asymmetric redox chemistry through elaborate surface OO–Ru–OH and bulk Ru–O–Ni/Fe coordination moieties within single-atom Ru-decorated defective NiFe LDH nanosheets(Ru@d-NiFe LDH)in conjunction with strong metal-support interactions(SMSI).Rigorous spectroscopic characterization and theoretical calculations indicate that single-atom Ru can delocalize the O 2p electrons on the surface and optimize d-electron configurations of metal atoms in bulk through SMSI.The^(18)O isotope labeling experiment based on operando differential electrochemical mass spectrometry(DEMS),chemical probe experiments,and theoretical calculations confirm the encouraged surface lattice oxygen,stabilized bulk lattice oxygen,and enhanced adsorption of oxygen-containing intermediates for bulk metals in Ru@d-NiFe LDH,leading to asymmetric redox chemistry for OER.The Ru@d-NiFe LDH electrocatalyst exhibits exceptional performance with an overpotential of 230 mV to achieve 10 mA cm^(−2)and maintains high robustness under industrial current density.This approach for achieving asymmetric redox chemistry through SMSI presents a new avenue for developing high-performance electrocatalysts and instills confidence in its industrial applicability. 展开更多
关键词 Reaction redox chemistry strong metal-support interactions Layered double hydroxides ELECTROCATALYSTS Water electrolysis
在线阅读 下载PDF
Silica-modified Pt/TiO_(2) catalysts with tunable suppression of strong metal-support interaction for cinnamaldehyde hydrogenation
9
作者 Zhengjian Hou Yuanyuan Zhu +6 位作者 Hua Chi Li Zhao Huijie Wei Yanyan Xi Lishuang Ma Xiang Feng Xufeng Lin 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期189-198,共10页
Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of nob... Tuning Strong Metal-support Interactions(SMSI)is a key strategy to obtain highly active catalysts,but conventional methods usually enable TiO_(x) encapsulation of noble metal components to minimize the exposure of noble metals.This study demonstrates a catalyst preparation method to modulate a weak encapsulation of Pt metal nanoparticles(NPs)with the supported TiO_(2),achieving the moderate suppression of SMSI effects.The introduction of silica inhibits this encapsulation,as reflected in the characterization results such as XPS and HRTEM,while the Ti^(4+) to Ti^(3+) conversion due to SMSI can still be found on the support surface.Furthermore,the hydrogenation of cinnamaldehyde(CAL)as a probe reaction revealed that once this encapsulation behavior was suppressed,the adsorption capacity of the catalyst for small molecules like H_(2) and CO was enhanced,which thereby improved the catalytic activity and facilitated the hydrogenation of CAL.Meanwhile,the introduction of SiO_(2) also changed the surface structure of the catalyst,which inhibited the occurrence of the acetal reaction and improved the conversion efficiency of C=O and C=C hydrogenation.Systematic manipulation of SMSI formation and its consequence on the performance in catalytic hydrogenation reactions are discussed. 展开更多
关键词 Pt catalyst Silica modification HYDROGENATION CINNAMALDEHYDE strong metal-support interaction
在线阅读 下载PDF
Electrochemical-Method-Induced Strong Metal-Support Interaction in Pt-CNT@SnO_(2) for CO-Tolerant Hydrogen Oxidation Reaction
10
作者 Shen-Zhou Li Zi-Jie Lin +2 位作者 Qi-An Chen Zhao Cai Qing Li 《电化学(中英文)》 北大核心 2024年第12期28-38,共11页
Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional therm... Inducing the classic strong metal-support interaction(SMSI)is an effective approach to enhance the performance of supported metal catalysts by encapsulating the metal nanoparticles(NPs)with supports.Conventional thermal reduction method for inducing SMSI processes is often accompanied by undesirable structural evolution of metal NPs.In this study,a mild electrochemical method has been developed as a new approach to induce SMSI,using the cable structured core@shell CNT@SnO_(2) loaded Pt NPs as a proof of concept.The induced SnO_(x) encapsulation layer on the surface of Pt NPs can protect Pt NPs from the poisoned of CO impurity in hydrogen oxidation reaction(HOR),and the HOR current density could still maintain 85% for 2000 s with 10,000 ppm CO in H_(2),while the commercial Pt/C is completely inactivated.In addition,the electrons transfer from SnO_(x) to Pt NPs improved the HOR activity of the E-Pt-CNT@SnO_(2),achieving the excellent exchange current density of 1.55 A·mgPt^(-1).In situ Raman spectra and theoretical calculations show that the key to the electrochemical-method-induced SMSI is the formation of defects and the migration of SnO_(x) caused by the electrochemical redox operation,and the weakening the SneO bond strength by Pt NPs. 展开更多
关键词 strong metal-support interaction Pt Supported metal catalyst Hydrogen oxidation reaction CO tolerance
在线阅读 下载PDF
Strong hetero-interface interaction in 2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures for highly-efficient photocatalytic hydrogen generation
11
作者 Xu Guo Xing Liu +4 位作者 jing Shan Zhuo Xu Zhiming Fang Lu Wang Shengzhong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期379-387,I0008,共10页
Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S... Green hydrogen is urgently required for sustainable development of human beings and rational construction of heterostructures holds great promising for photocatalytic hydrogen generation.Herein,2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures with strong hetero-interface interaction and abundant contact were constructed via an impregnation-annealing strategy.Efficient charge transfer from ZnIn_(2)S_(4) to WSe_(2)was evidenced by transient absorption spectroscopy in crafted heterostructures owing to the tight and2D face-to-face contact.As a result,the prepared WSe_(2)/ZnIn_(2)S_(4) heterostructures exhibited boosted photocatalytic performance and a highest hydrogen evolution rate of 3.377 mmol/(g h)was achieved with an apparent quantum yield of 45.7%at 420 nm.The work not only provides new strategies to achieve efficient 2D/2D heterostructures but also paves the way for the development of green hydrogen in the future. 展开更多
关键词 strong hetero-interface interaction in 2D/2D WSe_(2)/ZnIn_(2)S_(4) heterostructures for highly-efficient photocatalytic hydrogen generation
在线阅读 下载PDF
Highly efficient K-doped Mn-Ce catalysts with strong K-Mn-Ce interaction for toluene oxidation 被引量:5
12
作者 Bin Yang Yiqing Zeng +3 位作者 Mingjia Zhang Fanyu Meng Shule Zhang Qin Zhong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2023年第3期374-380,I0002,共8页
In this study,K_(x)-Mn-Ce catalysts prepared by sol-gel method were investigated for toluene oxidation.Compared with Mn-Ce,the catalytic performance of K_(x)-Mn-Ce was further improved.X-ray diffraction(XRD),high reso... In this study,K_(x)-Mn-Ce catalysts prepared by sol-gel method were investigated for toluene oxidation.Compared with Mn-Ce,the catalytic performance of K_(x)-Mn-Ce was further improved.X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM)and Raman analyses demonstrate that K ions enter the lattice of CeO_(2) and disperse uniformly.The results of X-ray photoelectron spectroscopy(XPS),H_(2)-temperature programmed reduction(H_(2)-TPR).and O_(2)-temperature programmed desorption(O_(2)-TPD)analyses indicate that there is a strong interaction between K,Mn and Ce;the charge co mpensation effect would be induced when K ions enter the lattice of CeO_(2),which leads to more oxygen vacancies due to the generation of more Ce^(3+).Toluene-TPD shows that K-doping enhances the activation ability of toluene.Among all catalysts,K0.1-Mn-Ce shows the highest concentration of Mn^(4+),Ce^(3+),Osur,and redox ability,resulting in higher low-temperature catalytic activity.Additionally,the results of stability and water resistance also prove that K0.1-Mn-Ce catalyst possesses excellent stability and water resistance. 展开更多
关键词 K-doping strong interaction Charge compensation effect Toluene oxidation Rare earths
原文传递
Boosting oxygen reduction activity of spinel CoFe2O4 by strong interaction with hierarchical nitrogen-doped carbon nanocages 被引量:4
13
作者 Hao Fan Lijun Yang +7 位作者 Yu Wang Xiali Zhang Qingsong Wu Renchao Che Meng Liu Qiang Wu Xizhang Wang Zheng Hu 《Science Bulletin》 SCIE EI CAS CSCD 2017年第20期1365-1372,共8页
The unique hierarchical nitrogen-doped carbon nanocages(h NCNC) are used as a new support to homogeneously immobilize spinel Co Fe_2O_4 nanoparticles by a facile solvothermal method. The so-constructed hierarchical Co... The unique hierarchical nitrogen-doped carbon nanocages(h NCNC) are used as a new support to homogeneously immobilize spinel Co Fe_2O_4 nanoparticles by a facile solvothermal method. The so-constructed hierarchical Co Fe_2O_4/h NCNC catalyst exhibits a high oxygen reduction activity with an onset potential of0.966 V and half-wave potential of 0.819 V versus reversible hydrogen electrode, far superior to the corresponding 0.846 and 0.742 V for its counterpart of Co Fe_2O_4/h CNC with undoped hierarchical carbon nanocages(h CNC) as the support, which locates at the top level for spinel-based catalysts to date.Consequently, the Co Fe_2O_4/h NCNC displays the superior performance to the Co Fe_2O_4/h CNC, when used as the cathode catalysts in the home-made Al-air batteries. X-ray photoelectron spectroscopy characterizations reveal the more charge transfer from Co Fe_2O_4 to h NCNC than to h CNC, indicating the stronger interaction between Co Fe_2O_4 and h NCNC due to the nitrogen participation. The enhanced interaction and hierarchical morphology favor the high dispersion and modification of electronic states for the active species as well as the mass transport during the oxygen reduction process, which plays a significant role in boosting the electrocatalytic performances. In addition, we noticed the high sensitivity of O 1 s spectrum to the particle size and chemical environment for spinel oxides, which is used as an indicator to understand the evolution of ORR activities for all the Co Fe_2O_4-related contrast catalysts. Accordingly,the well-defined structure-performance relationship is demonstrated by the combination of experimental characterizations with theoretical calculations. This study provides a promising strategy to develop efficient, inexpensive and durable oxygen reduction electrocatalysts by tuning the interaction between spinel metal oxides and the carbon-based supports. 展开更多
关键词 Oxygen reduction electrocatalyst Spinel cobalt ferrite oxide Hierarchical nitrogen-doped carbon NANOCAGES strong interaction Structure-performance relationship Al-air battery
原文传递
STRONGLY OBLIQUE INTERACTIONS BETWEEN INTERNAL SOLITARY WAVES WITH THE SAME MODE
14
作者 朱勇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1997年第10期957-962,共6页
In this paper, by using the Lagrangian coordinates, the strongly oblique interactions between solitary waves with the same mode in a stratified fluid ape discussed, which includes the shallow fluid case and deep fluid... In this paper, by using the Lagrangian coordinates, the strongly oblique interactions between solitary waves with the same mode in a stratified fluid ape discussed, which includes the shallow fluid case and deep fluid case. It is found that the interactions are described by the KP equation for the shallow fluid case, the two-dimensional intermediate long wave equation (2D-ILW equation) for the deep fluid case and the two-dimensional BO equation (2D-BO equation) for the infinite deep fluid case. 展开更多
关键词 solitary waves strong interaction stratified fluids 3D problem
在线阅读 下载PDF
Boron Nanosheet-Supported Rh Catalysts for Hydrogen Evolution:A New Territory for the Strong Metal-Support Interaction Effect 被引量:4
15
作者 Keng Chen Zeming Wang +4 位作者 Liang Wang Xiuzhen Wu Bingjie Hu Zheng Liu Minghong Wu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第10期1-13,共13页
High-efficiency electrochemical hydrogen evolution reaction(HER)offers a promising strategy to address energy and environmental crisis.Platinum is the most effective electrocatalyst for the HER.However,challenging sca... High-efficiency electrochemical hydrogen evolution reaction(HER)offers a promising strategy to address energy and environmental crisis.Platinum is the most effective electrocatalyst for the HER.However,challenging scarcity,valuableness,and poor electrochemical stability still hinder its wide application.Here,we designed an outstanding HER electrocatalyst,highly dispersed rhodium(Rh)nanoparticles with an average diameter of only 3 nm supported on boron(B)nanosheets.The HER catalytic activity is even comparable to that of commercial platinum catalysts,with an overpotential of only 66 mV in 0.5 M H_(2)SO_(4) and 101 mV in 1 M KOH to reach the current density of 10 mA cm−2.Meanwhile,the catalyst exhibited impressive electrochemical durability during long-term electrochemical processes in acidic and alkaline media,even the simu-lated seawater environment.Theoretical calculations unraveled that the structure-activity relationship between B(104)crystal plane and Rh(111)crystal plane is beneficial to the release of hydrogen,and surface O plays a vital role in the catalysis process.Our work may gain insights into the development of supported metal catalysts with robust catalytic performance through precise engineering of the strong metal-supported interaction effect. 展开更多
关键词 Boron nanosheets Dispersive rhodium nanoparticles ELECTROCATALYSIS Hydrogen evolution reaction strong metal-supported interaction
在线阅读 下载PDF
Strong metal‐support interaction boosting the catalytic activity of Au/TiO_(2) in chemoselective hydrogenation 被引量:4
16
作者 Feng Hong Shengyang Wang +4 位作者 Junying Zhang Junhong Fu Qike Jiang Keju Sun Jiahui Huang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第9期1530-1537,共8页
Gold catalysts have been reported as highly effective catalysts in various oxidation reactions.However,for chemoselective hydrogenation reactions,gold‐based catalysts normally show much lowercatalytic activity than p... Gold catalysts have been reported as highly effective catalysts in various oxidation reactions.However,for chemoselective hydrogenation reactions,gold‐based catalysts normally show much lowercatalytic activity than platinum group metals,even though their selectivities are excellent.Here,wereport that the chemoselective hydrogenation activity of 3‐nitrostyrene to 3‐vinylaniline overAu/TiO_(2)can be enhanced up to 3.3 times through the hydrogen reduction strategy.It is revealedthat strong metal‐support interaction,between gold nanoparticles(NPs)and TiO_(2)support,is introducedthrough hydrogen reduction,resulting in partial dispersion of reduced TiOx on the Au surface.The partially covered Au not only increases the perimeter of the interface between the gold NPs andthe support,but also benefits H_(2)activation.Reaction kinetic analysis and H_(2)‐D2 exchange reactionshow that H_(2)activation is the critical step in the hydrogenation of 3‐nitrostyrene to 3‐vinylaniline.Density functional theory calculations verify that hydrogen dissociation and hydrogen transfer arefavored at the interface of gold NPs and TiO_(2)over the hydrogen‐reduced Au/TiO_(2).This study providesinsights for fabricating highly active gold‐based catalysts for chemoselective hydrogenationreactions. 展开更多
关键词 Gold catalysis strong metal support interaction Interface 3‐Nitrostyrene chemoselective hydrogenation Boosting activity
在线阅读 下载PDF
Highly integrated sulfur cathodes with strong sulfur/high-strength binder interactions enabling durable high-loading lithium-sulfur batteries 被引量:4
17
作者 Arif Rashid Xingyu Zhu +6 位作者 Gulian Wang Chengzhi Ke Sha Li Pengfei Sun Zhongli Hu Qiaobao Zhang Li Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期71-79,共9页
The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caus... The development of high-sulfur-loading Li-S batteries is a key prerequisite for their commercial applications.This requires to surmount the huge polarization,severe polysulfide shuttling and drastic volume change caused by electrode thickening.High-strength polar binders are ideal for constructing robust and long-life high-loading sulfur cathodes but show very weak interfacial interaction with non-polar sulfur materials.To address this issue,this work devises a highly integrated sulfur@polydopamine/highstrength binder composite cathodes,targeting long-lasting and high-sulfur-loading Li-S batteries.The super-adhesion polydopamine(PD)can form a uniform nano-coating over the graphene/sulfur(G-S)surface and provide strong affinity to the cross-linked polyacrylamide(c-PAM)binder,thus tightly integrating sulfur with the binder network and greatly boosting the overall mechanical strength/conductivity of the electrode.Moreover,the PD coating and c-PAM binder rich in polar groups can form two effective blockades against the effusion of soluble polysulfides.As such,the 4.5 mg cm−2 sulfur-loaded G-S@PD-c-PAM cathode achieves a capacity of 480 mAh g−1 after 300 cycles at 1 C,while maintaining a capacity of 396 mAh g−1 after 50 cycles at 0.2 C when the sulfur loading rises to 9.1 mg cm−2.This work provides a system-wide concept for constructing high-loading sulfur cathodes through integrated structural design. 展开更多
关键词 Cross-linked high-strength polar binder Highly integrated electrode structure High-sulfur-loading Li-S battery Polydopamine nano-bonding layer strong sulfur/binder interaction
在线阅读 下载PDF
Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions
18
作者 焦月春 韩小萱 +2 位作者 杨智伟 赵建明 贾锁堂 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第12期32-35,共4页
Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in whi... Electromagnetically induced transparency (EIT) is investigated in a system of cold, interacting cesium Rydberg atoms. The utilized cesium levels 6S1/2, 6P3/2 and nD5/2 constitute a cascade three-level system, in which a coupling laser drives the Rydberg transition, and a probe laser detects the EIT signal on the 6S1/2 to 6/23/2 transition. Rydberg EIT spectra are found to depend on the strong interaction between the Rydberg atoms. Diminished EIT transparency is obtained when the Rabi frequency of the probe laser is increased, whereas the corresponding linewidth remains unchanged. To model the system with a three-level Linclblad equation, we introduce a Rydberg-level dephasing rate γ3 = κ×(P33/Ωp)^2, with a value κ that depends on the ground-state atom density and the Rydberg level, The simulation results are largely consistent with the measurements. The experiments, in which the principal quantum number is varied between 30 and 43, demonstrate that the EIT reduction observed at large Ωp is due to the strong interactions between the Rydberg atoms. 展开更多
关键词 EIT IS of Electromagnetically Induced Transparency in a Cold Gas with strong Atomic interactions in with
原文传递
Dry Reforming of Ethane over FeNi/Al-Ce-O Catalysts:Composition-Induced Strong Metal-Support Interactions
19
作者 Tao Zhang Zhi-Cheng Liu +4 位作者 Ying-Chun Ye Yu Wang He-Qin Yang Huan-Xin Gao Wei-Min Yang 《Engineering》 SCIE EI CAS 2022年第11期173-185,共13页
Dry reforming of ethane(DRE)has received significant attention because of its potential to produce chemical raw materials and reduce carbon emissions.Herein,a composition-induced strong metal-support interaction(SMSI)... Dry reforming of ethane(DRE)has received significant attention because of its potential to produce chemical raw materials and reduce carbon emissions.Herein,a composition-induced strong metal-support interaction(SMSI)effect over FeNi/Al-Ce-O catalysts is revealed via X-ray photoelectron spectroscopy(XPS),H_(2)-temperature programmed reduction(TPR),and energy dispersive X-ray spectroscopy(EDS)elemental mapping.The introduction of Al into Al-Ce-O supports significantly influences the dispersion of surface active components and improves the catalytic performance for DRE over supported FeNi catalysts due to enhancement of the SMSI effect.The catalytic properties,for example,C_(2)H_(6) and CO_(2) conversion,CO selectivity and yield,and turnover frequencies(TOFs),of supported FeNi catalysts first increase and then decrease with increasing Al content,following the same trend as the theoretical effective surface area(TESA)of the corresponding catalysts.The FeNi/Ce-Al_(0.5) catalyst,with 50%Al content,exhibits the best DRE performance under steady-state conditions at 873 K.As observed by with in situ Fourier transform infrared spectroscopy(FTIR)analysis,the introduction of Al not only increases the content of surface Ce3+and oxygen vacancies but also promotes the dispersion of surface active components,which further alters the catalytic properties for DRE over supported FeNi catalysts. 展开更多
关键词 Dry reforming of ethane strong metal-support interaction Carbon dioxide CERIA Oxygen vacancy Reaction mechanism
在线阅读 下载PDF
INTERACTION OF STRONG AND WEAK SINGULARITIES FOR HYPERBOLIC SYSTEM OF CONSERVATION LAWS IN MULTIDIMENSIONAL SPACE
20
作者 陈恕行 《Acta Mathematica Scientia》 SCIE CSCD 1990年第3期298-302,共5页
In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the b... In this paper we study the interaction of strong and weak singularities for hyperbolic system of conservation laws in multidimensional space. Under the assumption of transversal intersect of the shock front with the bicharacteristics bearing weak singularities we proved a theorem on regularity propagation across the shock front. 展开更多
关键词 interaction OF strong AND WEAK SINGULARITIES FOR HYPERBOLIC SYSTEM OF CONSERVATION LAWS IN MULTIDIMENSIONAL SPACE
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部