This paper is directed to study the isotope effects of some superconducting materials that have a strong coupling coefficient <i>λ</i> > 1.5, and focuses on new superconducting materials whose critical...This paper is directed to study the isotope effects of some superconducting materials that have a strong coupling coefficient <i>λ</i> > 1.5, and focuses on new superconducting materials whose critical temperature is close to room temperature, specifically LaH<sub>10</sub>-LaD<sub>10</sub> and H<sub>3</sub>S-D<sub>3</sub>S systems. The Eliashberg-McMillan (EM) model and the recent Gor’kov-Kresin (GK) model for evaluating the isotope effects coefficient α were examined for these systems. The predicted values of α as a function of pressure, as compared to experimental values led to inference that these two models, despite their importance and simplicity, cannot be considered complete. These models can be used to calculate isotope effect of most superconducting materials with strong coupling coefficients but with critical reliability. The significance of studying the isotope effect lies in the possibility of identifying the interatomic forces that control the properties of superconducting materials such as electrons-mediated phonons and Coulomb interactions.展开更多
文摘This paper is directed to study the isotope effects of some superconducting materials that have a strong coupling coefficient <i>λ</i> > 1.5, and focuses on new superconducting materials whose critical temperature is close to room temperature, specifically LaH<sub>10</sub>-LaD<sub>10</sub> and H<sub>3</sub>S-D<sub>3</sub>S systems. The Eliashberg-McMillan (EM) model and the recent Gor’kov-Kresin (GK) model for evaluating the isotope effects coefficient α were examined for these systems. The predicted values of α as a function of pressure, as compared to experimental values led to inference that these two models, despite their importance and simplicity, cannot be considered complete. These models can be used to calculate isotope effect of most superconducting materials with strong coupling coefficients but with critical reliability. The significance of studying the isotope effect lies in the possibility of identifying the interatomic forces that control the properties of superconducting materials such as electrons-mediated phonons and Coulomb interactions.