The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu...The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe.展开更多
Accurate crown control is paramount for ensuring the quality of hot-rolled strip products.Given the multitude of influencing parameters and the intricate coupling and genetic relationships among them,the conventional ...Accurate crown control is paramount for ensuring the quality of hot-rolled strip products.Given the multitude of influencing parameters and the intricate coupling and genetic relationships among them,the conventional crown control method is no longer sufficient to meet the precision requirements of schedule-free rolling.To address this limitation,an optimization framework for hot-rolled strip crown control was developed based on model-driven digital twin(MDDT).This framework enhances the strip crown control precision by facilitating collaborative operations among physical entities,virtual models,and functional application layers.In virtual modeling,a data-driven approach that integrates the extreme gradient boosting and the improved Harris hawk optimization algorithm was firstly proposed to fit the relationship between key process parameters and strip crown,and a global-local collaborative training strategy was proposed to enhance the model adaptability to diverse working conditions.Subsequently,the influence of crucial process factors on the virtual model was examined through model responses.Furthermore,a novel optimization mode for crown control based on MDDT was established by aligning and reconstructing both the physical and virtual models,thereby enhancing the crown control precision.Finally,data trials were conducted to validate the effectiveness of the proposed framework.The results indicated that the proposed method exhibited satisfactory performance and could be effectively utilized to improve the crown control precision.展开更多
A constitutive model considering the size effect was established to investigate the behavior of CoCrNi medium entropy alloy ultrathin strip in different deformation stages during the uniaxial quasi-static tensile test...A constitutive model considering the size effect was established to investigate the behavior of CoCrNi medium entropy alloy ultrathin strip in different deformation stages during the uniaxial quasi-static tensile test.Results show that when the t/d value is lower than 10.62,the CoCrNi alloy ultrathin strip shows an obvious size-dependent property in the elastic deformation stage.With the decrease in t/d value,the volume fraction of the surface layer grains is increased,leading to the linear decrease in flow stress.In the plastic deformation stage,the material stiffness is correlated with the t/d value.Specifically,as the t/d value increases,the work-hardening capacity of the material is enhanced.When the t/d value increases to 10,the work-hardening capacity reaches a maximum state;when the t/d value is beyond 10,the work-hardening capacity weakens.展开更多
The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects ...The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects of this technology,including variety selection,planting pattern,sowing management,and field management.It also illustrated its application effectiveness through practical cases and proposed corresponding solutions to existing challenges in its promotion.This study provides theoretical support and practical reference for the widespread adoption and efficient application of this technology.展开更多
[Objectives]To address the weeding challenges within the corn and soybean strip intercropping field and identify appropriate herbicide types and application methods suitable for the corn and soybean strip intercroppin...[Objectives]To address the weeding challenges within the corn and soybean strip intercropping field and identify appropriate herbicide types and application methods suitable for the corn and soybean strip intercropping fields in Siyang County.[Methods]The trial comprised six herbicide treatments and one blank control,with investigations conducted to assess efficacy,safety,and yield.[Results]Each herbicide treatment effectively controlled weeds,demonstrated high safety,and enhanced the yields of both soybeans and corn.The combined application of soil sealing with stem and leaf spray exhibited superior overall weed control compared to soil sealing alone.At 28 d following stem and leaf spray,the plant control effect and fresh weight control effect against weeds in the combined treatment of soil sealing with stem and leaf spray all exceeded 89%.[Conclusions]This study offers technical support for advancing the practice of strip intercropping between corn and soybeans.展开更多
The interfacial structure and its effect on the resistivity of cross-layered silver-copper composite strip fabricated by hot-roll bonding and diffusion welding processes with the same specification were studied.Throug...The interfacial structure and its effect on the resistivity of cross-layered silver-copper composite strip fabricated by hot-roll bonding and diffusion welding processes with the same specification were studied.Through optical and scanning electron microscope analysis of metallographic structure of the diffusion region of interface,it is found that the thickness of the interfacial diffusion layer is related to the composite conditions.Under the condition of sufficient diffusion,the interface of silver-copper composite strip produced by diffusion welding process has a wider interfacial transition region and fine grain area.Due to the higher diffusion rate of copper atoms than that of silver atoms,copper atoms tend to aggregate at the silver boundaries to form a copper-rich second solid solution,which has a fixing and expanding effect during annealing.The fine grain area at the interface of the composite strip produced by diffusion welding process still exists after annealing treatment and reaches a width of 55-97μm.While the fine grain region at the interface of hot-rolled composite strips is mainly formed by crushing the surface under rolling pressure with less diffusion effect,it almost disappears after annealing.The resistivity of silver-copper composite strip increases with the extension of the interfacial diffusion region.The resistivity of hot-roll bonding composite strip is increased by about 4%higher than that of the theoretical calculation,while the resistivity of diffusion welding composite strip is increased by 6%.展开更多
Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is cru...Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is crucial in the study of stripping injection,particularly in low-energy stripping injection synchrotrons,such as the XiPAF synchrotron.The foil thickness is the main parameter that affects the properties of the beam after injection.The thin stripping foil is reinforced with collodion during its installation.However,the collodion on the foil surface makes it difficult to determine its equivalent thickness,because the mechanical measurements are not sufficiently reliable or convenient for continuously determining foil thickness.We propose an online stripping foil thickness measurement method based on the ionization energy loss effect,which is suitable for any foil thickness and does not require additional equipment.Experimental studies were conducted using the XiPAF synchrotron.The limitation of this method was examined,and the results were verified by comparing the experimentally obtained beam current accumulation curves with the simulation results.This confirms the accuracy and reliability of the proposed method for measuring the stripping foil thickness.展开更多
High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a...High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.展开更多
[Objectives]To identify the optimal combination of herbicide concentrations appropriate for soil closed weeding in the soybean and corn intercropping system in Zhongwei City.[Methods]Two herbicides,96%(S)-metolachlor ...[Objectives]To identify the optimal combination of herbicide concentrations appropriate for soil closed weeding in the soybean and corn intercropping system in Zhongwei City.[Methods]Two herbicides,96%(S)-metolachlor and 75%thifensulfuron methyl,were selected for this experiment.A no-herbicide treatment served as the control,and five concentration gradients of the herbicides were established.Prior to sowing,the soil underwent a closed weeding treatment.The impacts of various herbicide concentration combinations on growth indicators,weed control effect,and the yields of soybean and corn across various treatments were analyzed.[Results]The tested combinations of herbicide concentrations did not result in significant phytotoxicity to soybean and corn seedlings.Furthermore,as the herbicide concentrations increased in each treatment,treatments D and E demonstrated the most effective weed control effect.Specifically,40 d post application,the plant control effect and fresh weight control effect reached 97.25% and 98.03% for treatment D,and 97.25% and 98.24% for treatment E,respectively.Additionally,the yields of both soybean and corn showed significant increases.[Conclusions]Considering the overall output-input ratio in this region,treatment D,comprising 96%(S)-metolachlor at 1650 mL/hm^(2) and 75% thifensulfuron-methyl at 48 g/hm^(2),can be identified as the herbicide concentration combination that provides the most effective weed control effect in the soybean and corn strip intercropping system.展开更多
Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calc...Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calculation model is delineated for the optimization of process parameters via the particle swarm optimization algorithm.Subsequently,a hybrid strip width prediction model is proposed by effectively combining the respective advantages of the improved mechanism model and the data-driven model.In acknowledgment of prerequisite for positive error in strip width prediction,an adaptive width error compensation algorithm is proposed.Finally,comparative simulation experiments are designed on the actual rolling dataset after completing data cleaning and feature engineering.The experimental results show that the hybrid prediction model proposed has superior precision and robustness compared with the improved mechanism model and the other eight common data-driven models and satisfies the needs of practical applications.Moreover,the hybrid model can realize the complementary advantages of the mechanism model and the data-driven model,effectively alleviating the problems of difficult to improve the accuracy of the mechanism model and poor interpretability of the data-driven model,which bears significant practical implications for the research of strip width control.展开更多
The exogenous plant growth regulator,diethyl aminoethyl hexanoate(DA-6),in combination with suitable varieties and planting densities,is important to increase yield in the maize-soybean strip intercropping system.To i...The exogenous plant growth regulator,diethyl aminoethyl hexanoate(DA-6),in combination with suitable varieties and planting densities,is important to increase yield in the maize-soybean strip intercropping system.To identify the role of DA-6 in mitigating high-density stress and increasing yield,we conducted a two-year field experiment examining changes in branching architecture and other yield traits of soybeans in maize-soybean strip intercropping systems.In the planting system,two soybean cultivars(ND:Nandou 25 and QH:Qihuang 34)were grown under three planting densities(D1:102,000 plants ha^(-1),D2:130,000 plants ha^(-1),D3:158,000 plants ha^(-1))with DA-6 treatments(DA0:water control;DA60:60 mg L^(-1);DA100:100 mg L^(-1)).Applying DA-6 at 60 mg L^(-1)at the fourth trifoliolate leaf stage increased soybean yield,with QH yield rising by 22.4% and 29.5% at D3 density,and ND yield by 29.5% and 30.0% at D2 density in 2022 and 2023,respectively,compared with D1 under DA0.DA-6improved photosynthesis in both varieties under D2 density,with DA60 increasing ND canopy photosynthetic rate by 15.1%-16.4% and QG by 9.1%-20.6% over two years.In ND,DA-6 enhanced branching,raising the leaf area index by 37%,branch number from 3.6 to 4.7 per plant,and total pod number by 19.7%.In QH,yield grains were mainly due to a 17% increase in the number of stem pods and a 6.5% improvement in hundred-grain weight.In the maize-soybean strip intercropping system,QH achieved a high yield by forming a high-density(D2 to D3)main stem pod,and ND by combining moderate density(D1 to D2)with DA-6-induced branching.展开更多
Aflatoxins B1(AFB1)contamination in agro-food holds great threaten to human and animal health.Conventional test strips for rapid AFB1 visualized monitoring remains challenged by improvement of sensitivity and matrix i...Aflatoxins B1(AFB1)contamination in agro-food holds great threaten to human and animal health.Conventional test strips for rapid AFB1 visualized monitoring remains challenged by improvement of sensitivity and matrix interference resistance.In this case,we developed a portable electrochemiluminescence(ECL)imaging test strip with dual-signal outputs for AFB1 quantification in corn samples.RuPEI@SiO_(2)@Au nanospheres were synthesized for bonding with anti-AFB1 antibody and then colorimetrical signal-reported on test line through the capillary flow at strips.Meanwhile,ECL imaging signal of the constructed carbon-ink-based working electrode on polyvinyl chloride substrate of strips was exported under an applied potential of 1.25 V.The whole ECL test strips not only endowed convenient colorimetric responses but guaranteed quick-witted ECL image distinguishment even at extremely low AFB1 content.The detection limit of this ECL imaging-integrated mode was 10-fold lower than that of only colorimetric mode.Furthermore,satisfactory selectivity,reliability and practicability of the as-proposed ECL test strips were demonstrated.This work offered a promising platform for on-site,accurate and sensitive detection of pollutants in foods.展开更多
To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements sti...To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements still happens frequently.Based on the theory of wind-sand two-phase flow,this paper constructed a three-dimensional model of the separated subgrade,the wind-sand flow transport law around the subgrade with varying median strip widths and concave depths was simulated by Fluent software.After comparison and analysis of seven subgrade models,the flow field distribution,wind speed horizontal variation,and erosion-deposition characteristics were investigated.The findings are as follows:(1)The width of the median strip in the separated subgrade had significant influences on the wind-sand flow.The smooth passage of wind-sand flow over the road surface was facilitated with the increase of the median strip width.However,sand deposition in the median strip happened.It can lead to secondary sand damage of downwind subgrade and increase the work load of road sand removal for subsequent maintenance.(2)The obstruction to airflow and sand accumulation was aggravated with greater concave depth of the median strip.Therefore,it is advisable to minimize the concave depth of the median strip in case of more sand damage.(3)A median strip width exceeding 12 m(possibly without guardrails)for an integral embankment without enough road land is recommended.Conversely,median strip width of over 40 m for separate subgrade with unrestricted land is suggested.(4)In the case of sand deposition in the existing separated subgrade,the median strip can be filled by sand deposition or other materials,then was covered with gravel to form a flat ground like Gobi smooth surface,which can let the wind-blown sand flow pass through the subgrade section without sand deposition.展开更多
Correction to:J.Iron Steel Res.Int.https://doi.org/10.1007/s42243-025-01545-x The publication of this article unfortunately contained mistakes.Equation(14)was not correct.The corrected equation is given below.
Sacbrood virus(SBV)is one of the most pathogenic honeybee viruses with host specificity and regional variation.The SBV strain infecting the Chinese honeybee(Apis cerana)is known as Chinese sacbrood virus(CSBV).The ext...Sacbrood virus(SBV)is one of the most pathogenic honeybee viruses with host specificity and regional variation.The SBV strain infecting the Chinese honeybee(Apis cerana)is known as Chinese sacbrood virus(CSBV).The extensively used CSBV detection methods require professionals and expensive equipment;thus,they are unsuitable for rapid onsite CSBV detection.To achieve early and rapid detection of CSBV,we developed a lateral flow detection(LFD)strip method for CSBV detection via clustered regularly interspaced short palindromic repeats(CRISPR)and the Cas13a technique.On the basis of the conserved CSBV VP2 gene nucleotide region,we designed 3 recombinant enzyme-assisted amplification(RAA)primer pairs and prepared 3 corresponding crRNAs.We investigated key performance metrics,including the sensitivity,specificity,and accuracy of LFD strips.The results demonstrated that the LFD strip based on the optimal combination(primer 2+crRNA 2)presented the lowest detection limit(2.80×101 copies/μL),and this strip could complete CSBV detection within 1 h.Furthermore,this strip exhibited excellent detection specificity,with no cross-reactivity with four other honeybee viruses.A test of 100 clinical samples indicated the feasibility of the LFD method for CSBV detection.A comparison of various CSBV detection methods revealed that the CRISPR-Cas13a-based LFD method was more accurate,efficient,and sensitive than the other methods were,indicating great application prospects in onsite CSBV detection.Our developed method is highly important for preventing and controlling CSBV infection as well as maintaining honeybee health.展开更多
The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the te...The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the textured roll and polished roll(TPR),the surface roughness of the strip is dramatically reduced,and the surface topographical anisotropy index is diminished to 30.9%of the initial strip.Comparing with the strip rolled using the ground roll in both passes(GGR),the elongation of TPR rolled strip is obviously improved,and the mechanical property anisotropy is greatly weakened.The anisotropy index of tensile strength and elongation are 42.58%and 52.59%of that of GGR rolled strip,which is mainly attributed to the significant decrease of the texture intensity of the strip by TPR process.The results indicate that TPR process can obtain the stainless steel ultra-thin strip with smooth and uniform surface topography and good mechanical properties.展开更多
We developed a dedicated data analysis framework for silicon strip detector telescopes(SSDTs)of the Compact Spectrometer for Heavy-IoN Experiments(CSHINE)that addresses the challenges of processing complex signals.The...We developed a dedicated data analysis framework for silicon strip detector telescopes(SSDTs)of the Compact Spectrometer for Heavy-IoN Experiments(CSHINE)that addresses the challenges of processing complex signals.The framework integrates advanced algorithms for precise calibration,accurate particle identification,and efficient event reconstruction,aiming to account for critical experimental factors such as charge-sharing effects,multi-hit event resolution,and detector response nonuniformity.Its robust performance was demonstrated through the successful analysis of light-charged particles in the 25 MeV/u^(86)Kr+^(124)Sn experiment conducted at the first Radioactive Ion Beam Line in Lanzhou,allowing for precise extraction of physical observables,including energy,momentum,and particle type.Furthermore,utilizing the reconstructed physical information,such as the number of effective physical events and energy spectra to optimize the track recognition algorithm,the final track recognition efficiencies of approximately 90%were achieved.This framework establishes a valuable reference methodology for SSDT-based detector systems in heavy-ion reaction experiments,thereby significantly enhancing the accuracy and efficiency of data analysis in nuclear physics research.展开更多
In hilly regions,the existence of surface cracks in rock mass induces a potential threat to structural stability.Thus,the present research aims to explore the impact of surface cracks on the loadbearing capacity of st...In hilly regions,the existence of surface cracks in rock mass induces a potential threat to structural stability.Thus,the present research aims to explore the impact of surface cracks on the loadbearing capacity of strip footing placed on the rock mass.By taking into account the various boundary constraints across the surface of crack edges,the study investigates the presence of two categories of surface cracks,namely(1)separated crack,and(2)fine crack.The lower bound limit analysis is employed in conjunction with the finite element method(LBFELA)to conduct the numerical analysis.In order to evaluate rock mass yielding,the power conic programming(PCP)method is utilized to implement the generalized Hoek-Brown(GHB)failure criterion.The stability of the strip footing is analyzed by determining the bearing capacity factor(Nσγ),which is presented in the form of design charts by varying the strength parameters of rock,including the Geological Strength Index(GSI),Hoek-Brown material parameter(mi),Disturbance factor(D),and Normalised Uniaxial Compressive Strength(σci/γB),whereγis the unit weight of rock mass,and B is the width of strip footing.The study also investigates the impact of cracks on strip footings,considering different positions of the crack(LC)and depths of the crack(DC).The results demonstrate that the influence of the fine crack is only noticeable until the LC/B ratio reaches 6.However,for the separated crack,its impact remains significant even when the LC/B ratio exceeds 16.The appearance of fine crack at the edge of the footing results in a decrease in the magnitude Nσγof up to 45%,indicating a substantial reduction in the stability of the footing.The failure patterns are presented and discussed in detail for various cases in this study to examine the effect of surface cracks on the strip footing and to address the extent of the plastic collapse.展开更多
In the context of intelligent manufacturing,the modern hot strip mill process(HSMP)shows characteristics such as diversification of products,multi-specification batch production,and demand-oriented customization.These...In the context of intelligent manufacturing,the modern hot strip mill process(HSMP)shows characteristics such as diversification of products,multi-specification batch production,and demand-oriented customization.These characteristics pose significant challenges to ensuring process stability and consistency of product performance.Therefore,exploring the potential relationship between product performance and the production process,and developing a comprehensive performance evaluation method adapted to modern HSMP have become an urgent issue.A comprehensive performance evaluation method for HSMP by integrating multi-task learning and stacked performance-related autoencoder is proposed to solve the problems such as incomplete performance indicators(PIs)data,insufficient real-time acquisition requirements,and coupling of multiple PIs.First,according to the existing Chinese standards,a comprehensive performance evaluation grade strategy for strip steel is designed.The random forest model is established to predict and complete the parts of PIs data that could not be obtained in real-time.Second,a stacked performance-related autoencoder(SPAE)model is proposed to extract the deep features closely related to the product performance.Then,considering the correlation between PIs,the multi-task learning framework is introduced to output the subitem ratings and comprehensive product performance rating results of the strip steel online in real-time,where each task represents a subitem of comprehensive performance.Finally,the effectiveness of the method is verified on a real HSMP dataset,and the results show that the accuracy of the proposed method is as high as 94.8%,which is superior to the other comparative methods.展开更多
基金financially supported by the Natural Science Foundation of Liaoning Province of China(2022-MS-109)the Key Research and Development Program of Liaoning Province(2023JH2/101800045)the Ministry of Science and Technology of the Peoples Republic of China(ZZ2021006).
文摘The Cu-12Fe alloy has attracted significant attention due to its excellent electrical conductivity and electromagnetic shielding capability,high strength,cost-effectiveness,and recyclability.In the present work,the Cu-12Fe alloy strip with the thickness of 2.4 mm was successfully produced by twin-roll strip casting.The microstructure and properties of the Cu-12Fe alloy were tailored by cold rolling and aging treatment.The tensile strength of the as-cast strip is approximately 328 MPa and its elongation is 25%.The Fe phase randomly dispersed in the matrix,and the average size of Fe-rich phase is 2μm.Besides,enrichment of Fe phase is observed in the central layer of the strip,results in the formation of the“sandwich structure”.Moreover,the as-cast strip of Cu-12Fe was directly cold-rolled from 2.4 to 0.12 mm.The directly cold-rolled sample after aging at 450℃for 16 h(ProcessⅠ)shows excellent electrical conductivity of 69.5%IACS,the tensile strength and elongation are 513 MPa and 3.8%,the saturation magnetic flux density is 20.1 emu·g^(-1),and the coercive force is 25.2 Oe.In ProcessⅡ,the as-cast strip firstly cold-rolled to 1.2 mm,then aged at 500℃for 1.5 h,followed by cold rolling to 0.12 mm,finally aged at 450℃for 16 h.The sample after ProcessⅡshows the electrical conductivity of 66.3%IACS,the tensile strength of 533 MPa,an elongation of 3.5%,saturation magnetic flux density of 21.4 emu·g^(-1),and the coercive force of 22.3 Oe.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFB3710204)Guangxi Science and Technology Major Program(Grant No.AA23023028-1)+1 种基金Natural Science Foundation of Heilongjiang Province of China for Distinguished Young Scientists(Grant No.JQ2022E007)Xinjiang Production and Construction Corps Science and Technology Plan(Grant No.2023AA003).
文摘Accurate crown control is paramount for ensuring the quality of hot-rolled strip products.Given the multitude of influencing parameters and the intricate coupling and genetic relationships among them,the conventional crown control method is no longer sufficient to meet the precision requirements of schedule-free rolling.To address this limitation,an optimization framework for hot-rolled strip crown control was developed based on model-driven digital twin(MDDT).This framework enhances the strip crown control precision by facilitating collaborative operations among physical entities,virtual models,and functional application layers.In virtual modeling,a data-driven approach that integrates the extreme gradient boosting and the improved Harris hawk optimization algorithm was firstly proposed to fit the relationship between key process parameters and strip crown,and a global-local collaborative training strategy was proposed to enhance the model adaptability to diverse working conditions.Subsequently,the influence of crucial process factors on the virtual model was examined through model responses.Furthermore,a novel optimization mode for crown control based on MDDT was established by aligning and reconstructing both the physical and virtual models,thereby enhancing the crown control precision.Finally,data trials were conducted to validate the effectiveness of the proposed framework.The results indicated that the proposed method exhibited satisfactory performance and could be effectively utilized to improve the crown control precision.
基金National Natural Science Foundation of China(12072220,12225207,12372364)National Key Research and Development Program(2018YFA0707300)+2 种基金Major Program of National Natural Science Foundation of China(U22A20188)Central Guidance on Local Science and Technology Development Fund of Shanxi Province(YDZJSX2021B002)Natural Science Foundation of Shanxi Province(202303021211038)。
文摘A constitutive model considering the size effect was established to investigate the behavior of CoCrNi medium entropy alloy ultrathin strip in different deformation stages during the uniaxial quasi-static tensile test.Results show that when the t/d value is lower than 10.62,the CoCrNi alloy ultrathin strip shows an obvious size-dependent property in the elastic deformation stage.With the decrease in t/d value,the volume fraction of the surface layer grains is increased,leading to the linear decrease in flow stress.In the plastic deformation stage,the material stiffness is correlated with the t/d value.Specifically,as the t/d value increases,the work-hardening capacity of the material is enhanced.When the t/d value increases to 10,the work-hardening capacity reaches a maximum state;when the t/d value is beyond 10,the work-hardening capacity weakens.
基金Supported by Special Project for the Construction of the National Modern Agricultural Industry Technology System(CARS-04-CES16).
文摘The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects of this technology,including variety selection,planting pattern,sowing management,and field management.It also illustrated its application effectiveness through practical cases and proposed corresponding solutions to existing challenges in its promotion.This study provides theoretical support and practical reference for the widespread adoption and efficient application of this technology.
文摘[Objectives]To address the weeding challenges within the corn and soybean strip intercropping field and identify appropriate herbicide types and application methods suitable for the corn and soybean strip intercropping fields in Siyang County.[Methods]The trial comprised six herbicide treatments and one blank control,with investigations conducted to assess efficacy,safety,and yield.[Results]Each herbicide treatment effectively controlled weeds,demonstrated high safety,and enhanced the yields of both soybeans and corn.The combined application of soil sealing with stem and leaf spray exhibited superior overall weed control compared to soil sealing alone.At 28 d following stem and leaf spray,the plant control effect and fresh weight control effect against weeds in the combined treatment of soil sealing with stem and leaf spray all exceeded 89%.[Conclusions]This study offers technical support for advancing the practice of strip intercropping between corn and soybeans.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB0305701)Henan Provincial Science and Technology Research Project(Grant No.182102210138)Science and Technology Openness and Cooperation Projects of Henan Province(Grant No.162106000002).
文摘The interfacial structure and its effect on the resistivity of cross-layered silver-copper composite strip fabricated by hot-roll bonding and diffusion welding processes with the same specification were studied.Through optical and scanning electron microscope analysis of metallographic structure of the diffusion region of interface,it is found that the thickness of the interfacial diffusion layer is related to the composite conditions.Under the condition of sufficient diffusion,the interface of silver-copper composite strip produced by diffusion welding process has a wider interfacial transition region and fine grain area.Due to the higher diffusion rate of copper atoms than that of silver atoms,copper atoms tend to aggregate at the silver boundaries to form a copper-rich second solid solution,which has a fixing and expanding effect during annealing.The fine grain area at the interface of the composite strip produced by diffusion welding process still exists after annealing treatment and reaches a width of 55-97μm.While the fine grain region at the interface of hot-rolled composite strips is mainly formed by crushing the surface under rolling pressure with less diffusion effect,it almost disappears after annealing.The resistivity of silver-copper composite strip increases with the extension of the interfacial diffusion region.The resistivity of hot-roll bonding composite strip is increased by about 4%higher than that of the theoretical calculation,while the resistivity of diffusion welding composite strip is increased by 6%.
文摘Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is crucial in the study of stripping injection,particularly in low-energy stripping injection synchrotrons,such as the XiPAF synchrotron.The foil thickness is the main parameter that affects the properties of the beam after injection.The thin stripping foil is reinforced with collodion during its installation.However,the collodion on the foil surface makes it difficult to determine its equivalent thickness,because the mechanical measurements are not sufficiently reliable or convenient for continuously determining foil thickness.We propose an online stripping foil thickness measurement method based on the ionization energy loss effect,which is suitable for any foil thickness and does not require additional equipment.Experimental studies were conducted using the XiPAF synchrotron.The limitation of this method was examined,and the results were verified by comparing the experimentally obtained beam current accumulation curves with the simulation results.This confirms the accuracy and reliability of the proposed method for measuring the stripping foil thickness.
基金supported by the National Key Research and Development Program of China(No.2020YFC1908702)the National Natural Science Foundation of China(No.52131002)+1 种基金the Science and Technology Commission of Shanghai Municipality(No.22dz1209200)China Three Gorges Corporation(No.202403018).
文摘High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.
基金Supported by 2024-2025 Science and Technology Plan Project of Zhongwei City in the Field of Agriculture,Rural Areas and Social Development"Precision Fertilization Trial Study for Soybean and Corn Strip Intercropping in 2025"(2024nync006)"Smart Innovation for the Future"Talent Cultivation Project of Zhongwei City(WDRCB[2023]6).
文摘[Objectives]To identify the optimal combination of herbicide concentrations appropriate for soil closed weeding in the soybean and corn intercropping system in Zhongwei City.[Methods]Two herbicides,96%(S)-metolachlor and 75%thifensulfuron methyl,were selected for this experiment.A no-herbicide treatment served as the control,and five concentration gradients of the herbicides were established.Prior to sowing,the soil underwent a closed weeding treatment.The impacts of various herbicide concentration combinations on growth indicators,weed control effect,and the yields of soybean and corn across various treatments were analyzed.[Results]The tested combinations of herbicide concentrations did not result in significant phytotoxicity to soybean and corn seedlings.Furthermore,as the herbicide concentrations increased in each treatment,treatments D and E demonstrated the most effective weed control effect.Specifically,40 d post application,the plant control effect and fresh weight control effect reached 97.25% and 98.03% for treatment D,and 97.25% and 98.24% for treatment E,respectively.Additionally,the yields of both soybean and corn showed significant increases.[Conclusions]Considering the overall output-input ratio in this region,treatment D,comprising 96%(S)-metolachlor at 1650 mL/hm^(2) and 75% thifensulfuron-methyl at 48 g/hm^(2),can be identified as the herbicide concentration combination that provides the most effective weed control effect in the soybean and corn strip intercropping system.
基金supported by the National Natural Science Foundation of China(No.62273234)Key Research and Development Program of Shaanxi(Program No.2022GY-306)Technology Innovation Leading Program of Shaanxi(Program No.2022QFY01-16).
文摘Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calculation model is delineated for the optimization of process parameters via the particle swarm optimization algorithm.Subsequently,a hybrid strip width prediction model is proposed by effectively combining the respective advantages of the improved mechanism model and the data-driven model.In acknowledgment of prerequisite for positive error in strip width prediction,an adaptive width error compensation algorithm is proposed.Finally,comparative simulation experiments are designed on the actual rolling dataset after completing data cleaning and feature engineering.The experimental results show that the hybrid prediction model proposed has superior precision and robustness compared with the improved mechanism model and the other eight common data-driven models and satisfies the needs of practical applications.Moreover,the hybrid model can realize the complementary advantages of the mechanism model and the data-driven model,effectively alleviating the problems of difficult to improve the accuracy of the mechanism model and poor interpretability of the data-driven model,which bears significant practical implications for the research of strip width control.
基金supported by the earmarked fund for the China Agriculture Research System(CARS-04-PS21)National Key Research and Development Program of China(2024YFD2300401)a recipient of a joint Ph.D.scholarship supported by the China Scholarship Council(CSC)(202306910067)。
文摘The exogenous plant growth regulator,diethyl aminoethyl hexanoate(DA-6),in combination with suitable varieties and planting densities,is important to increase yield in the maize-soybean strip intercropping system.To identify the role of DA-6 in mitigating high-density stress and increasing yield,we conducted a two-year field experiment examining changes in branching architecture and other yield traits of soybeans in maize-soybean strip intercropping systems.In the planting system,two soybean cultivars(ND:Nandou 25 and QH:Qihuang 34)were grown under three planting densities(D1:102,000 plants ha^(-1),D2:130,000 plants ha^(-1),D3:158,000 plants ha^(-1))with DA-6 treatments(DA0:water control;DA60:60 mg L^(-1);DA100:100 mg L^(-1)).Applying DA-6 at 60 mg L^(-1)at the fourth trifoliolate leaf stage increased soybean yield,with QH yield rising by 22.4% and 29.5% at D3 density,and ND yield by 29.5% and 30.0% at D2 density in 2022 and 2023,respectively,compared with D1 under DA0.DA-6improved photosynthesis in both varieties under D2 density,with DA60 increasing ND canopy photosynthetic rate by 15.1%-16.4% and QG by 9.1%-20.6% over two years.In ND,DA-6 enhanced branching,raising the leaf area index by 37%,branch number from 3.6 to 4.7 per plant,and total pod number by 19.7%.In QH,yield grains were mainly due to a 17% increase in the number of stem pods and a 6.5% improvement in hundred-grain weight.In the maize-soybean strip intercropping system,QH achieved a high yield by forming a high-density(D2 to D3)main stem pod,and ND by combining moderate density(D1 to D2)with DA-6-induced branching.
基金financially supported by China Postdoctoral Science Foundation(No.2022T150708)National Key Research and Development Program of China(No.2023YFF1104600)National Natural Science Foundation of China(Nos.32072305,32102089)。
文摘Aflatoxins B1(AFB1)contamination in agro-food holds great threaten to human and animal health.Conventional test strips for rapid AFB1 visualized monitoring remains challenged by improvement of sensitivity and matrix interference resistance.In this case,we developed a portable electrochemiluminescence(ECL)imaging test strip with dual-signal outputs for AFB1 quantification in corn samples.RuPEI@SiO_(2)@Au nanospheres were synthesized for bonding with anti-AFB1 antibody and then colorimetrical signal-reported on test line through the capillary flow at strips.Meanwhile,ECL imaging signal of the constructed carbon-ink-based working electrode on polyvinyl chloride substrate of strips was exported under an applied potential of 1.25 V.The whole ECL test strips not only endowed convenient colorimetric responses but guaranteed quick-witted ECL image distinguishment even at extremely low AFB1 content.The detection limit of this ECL imaging-integrated mode was 10-fold lower than that of only colorimetric mode.Furthermore,satisfactory selectivity,reliability and practicability of the as-proposed ECL test strips were demonstrated.This work offered a promising platform for on-site,accurate and sensitive detection of pollutants in foods.
基金supported by the Third Xinjiang Scientific Expedition and Research Program-Investigation and Risk Assessment of Drought and Aeolian Disasters in Tarim River Basin(No.2021xjkk0300)the National Natural Science Foundation of China(No.62466056)the subject of'the technical scheme and application demonstration of sand disaster prevention and control of Xinjiang expressway to engineering practice,Xinjiang Transportation Investment(Group)Co.,Ltd.(No.XJJTZKX-FWCG-202401-0043).
文摘To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements still happens frequently.Based on the theory of wind-sand two-phase flow,this paper constructed a three-dimensional model of the separated subgrade,the wind-sand flow transport law around the subgrade with varying median strip widths and concave depths was simulated by Fluent software.After comparison and analysis of seven subgrade models,the flow field distribution,wind speed horizontal variation,and erosion-deposition characteristics were investigated.The findings are as follows:(1)The width of the median strip in the separated subgrade had significant influences on the wind-sand flow.The smooth passage of wind-sand flow over the road surface was facilitated with the increase of the median strip width.However,sand deposition in the median strip happened.It can lead to secondary sand damage of downwind subgrade and increase the work load of road sand removal for subsequent maintenance.(2)The obstruction to airflow and sand accumulation was aggravated with greater concave depth of the median strip.Therefore,it is advisable to minimize the concave depth of the median strip in case of more sand damage.(3)A median strip width exceeding 12 m(possibly without guardrails)for an integral embankment without enough road land is recommended.Conversely,median strip width of over 40 m for separate subgrade with unrestricted land is suggested.(4)In the case of sand deposition in the existing separated subgrade,the median strip can be filled by sand deposition or other materials,then was covered with gravel to form a flat ground like Gobi smooth surface,which can let the wind-blown sand flow pass through the subgrade section without sand deposition.
文摘Correction to:J.Iron Steel Res.Int.https://doi.org/10.1007/s42243-025-01545-x The publication of this article unfortunately contained mistakes.Equation(14)was not correct.The corrected equation is given below.
基金supported by the National Key Research and Development Program of China(NO.2022YFD1600202)the Lush Mountain Public Welfare Protection Action of the China Environmental Protection Foundation(CEPFQS202169-14).
文摘Sacbrood virus(SBV)is one of the most pathogenic honeybee viruses with host specificity and regional variation.The SBV strain infecting the Chinese honeybee(Apis cerana)is known as Chinese sacbrood virus(CSBV).The extensively used CSBV detection methods require professionals and expensive equipment;thus,they are unsuitable for rapid onsite CSBV detection.To achieve early and rapid detection of CSBV,we developed a lateral flow detection(LFD)strip method for CSBV detection via clustered regularly interspaced short palindromic repeats(CRISPR)and the Cas13a technique.On the basis of the conserved CSBV VP2 gene nucleotide region,we designed 3 recombinant enzyme-assisted amplification(RAA)primer pairs and prepared 3 corresponding crRNAs.We investigated key performance metrics,including the sensitivity,specificity,and accuracy of LFD strips.The results demonstrated that the LFD strip based on the optimal combination(primer 2+crRNA 2)presented the lowest detection limit(2.80×101 copies/μL),and this strip could complete CSBV detection within 1 h.Furthermore,this strip exhibited excellent detection specificity,with no cross-reactivity with four other honeybee viruses.A test of 100 clinical samples indicated the feasibility of the LFD method for CSBV detection.A comparison of various CSBV detection methods revealed that the CRISPR-Cas13a-based LFD method was more accurate,efficient,and sensitive than the other methods were,indicating great application prospects in onsite CSBV detection.Our developed method is highly important for preventing and controlling CSBV infection as well as maintaining honeybee health.
基金supported by the National Natural Science Foundation of China(Nos.51974196,52275361,and 52305406)the Key Projects of the National Natural Science Foundation of China(No.U22A20188)the Special Projects of the Central Government in Guidance of Local Science and Technology Development(YDZX20191400002149).
文摘The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the textured roll and polished roll(TPR),the surface roughness of the strip is dramatically reduced,and the surface topographical anisotropy index is diminished to 30.9%of the initial strip.Comparing with the strip rolled using the ground roll in both passes(GGR),the elongation of TPR rolled strip is obviously improved,and the mechanical property anisotropy is greatly weakened.The anisotropy index of tensile strength and elongation are 42.58%and 52.59%of that of GGR rolled strip,which is mainly attributed to the significant decrease of the texture intensity of the strip by TPR process.The results indicate that TPR process can obtain the stainless steel ultra-thin strip with smooth and uniform surface topography and good mechanical properties.
基金supported by the National Natural Science Foundation of China(NNSFC)(Nos.12375123,12205160,and 12335008)the Natural Science Foundation of Henan Province,China(No.242300421048)the postgraduate research and practice innovation project of Henan Normal University(No.YB202402).
文摘We developed a dedicated data analysis framework for silicon strip detector telescopes(SSDTs)of the Compact Spectrometer for Heavy-IoN Experiments(CSHINE)that addresses the challenges of processing complex signals.The framework integrates advanced algorithms for precise calibration,accurate particle identification,and efficient event reconstruction,aiming to account for critical experimental factors such as charge-sharing effects,multi-hit event resolution,and detector response nonuniformity.Its robust performance was demonstrated through the successful analysis of light-charged particles in the 25 MeV/u^(86)Kr+^(124)Sn experiment conducted at the first Radioactive Ion Beam Line in Lanzhou,allowing for precise extraction of physical observables,including energy,momentum,and particle type.Furthermore,utilizing the reconstructed physical information,such as the number of effective physical events and energy spectra to optimize the track recognition algorithm,the final track recognition efficiencies of approximately 90%were achieved.This framework establishes a valuable reference methodology for SSDT-based detector systems in heavy-ion reaction experiments,thereby significantly enhancing the accuracy and efficiency of data analysis in nuclear physics research.
基金supported by the Centre for Development of Advanced Computing (CDAC), Pune
文摘In hilly regions,the existence of surface cracks in rock mass induces a potential threat to structural stability.Thus,the present research aims to explore the impact of surface cracks on the loadbearing capacity of strip footing placed on the rock mass.By taking into account the various boundary constraints across the surface of crack edges,the study investigates the presence of two categories of surface cracks,namely(1)separated crack,and(2)fine crack.The lower bound limit analysis is employed in conjunction with the finite element method(LBFELA)to conduct the numerical analysis.In order to evaluate rock mass yielding,the power conic programming(PCP)method is utilized to implement the generalized Hoek-Brown(GHB)failure criterion.The stability of the strip footing is analyzed by determining the bearing capacity factor(Nσγ),which is presented in the form of design charts by varying the strength parameters of rock,including the Geological Strength Index(GSI),Hoek-Brown material parameter(mi),Disturbance factor(D),and Normalised Uniaxial Compressive Strength(σci/γB),whereγis the unit weight of rock mass,and B is the width of strip footing.The study also investigates the impact of cracks on strip footings,considering different positions of the crack(LC)and depths of the crack(DC).The results demonstrate that the influence of the fine crack is only noticeable until the LC/B ratio reaches 6.However,for the separated crack,its impact remains significant even when the LC/B ratio exceeds 16.The appearance of fine crack at the edge of the footing results in a decrease in the magnitude Nσγof up to 45%,indicating a substantial reduction in the stability of the footing.The failure patterns are presented and discussed in detail for various cases in this study to examine the effect of surface cracks on the strip footing and to address the extent of the plastic collapse.
基金supported by the National Natural Science Foundation of China(NSFC)under Grants(Nos.U21A20483,62373040 and 62273031).
文摘In the context of intelligent manufacturing,the modern hot strip mill process(HSMP)shows characteristics such as diversification of products,multi-specification batch production,and demand-oriented customization.These characteristics pose significant challenges to ensuring process stability and consistency of product performance.Therefore,exploring the potential relationship between product performance and the production process,and developing a comprehensive performance evaluation method adapted to modern HSMP have become an urgent issue.A comprehensive performance evaluation method for HSMP by integrating multi-task learning and stacked performance-related autoencoder is proposed to solve the problems such as incomplete performance indicators(PIs)data,insufficient real-time acquisition requirements,and coupling of multiple PIs.First,according to the existing Chinese standards,a comprehensive performance evaluation grade strategy for strip steel is designed.The random forest model is established to predict and complete the parts of PIs data that could not be obtained in real-time.Second,a stacked performance-related autoencoder(SPAE)model is proposed to extract the deep features closely related to the product performance.Then,considering the correlation between PIs,the multi-task learning framework is introduced to output the subitem ratings and comprehensive product performance rating results of the strip steel online in real-time,where each task represents a subitem of comprehensive performance.Finally,the effectiveness of the method is verified on a real HSMP dataset,and the results show that the accuracy of the proposed method is as high as 94.8%,which is superior to the other comparative methods.