Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability.This study comprehensively investigates the agglomeratio...Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability.This study comprehensively investigates the agglomeration characteristics of siderite particles after argon(Ar)plasma surface modification through settling tests,flocs size measurements,and fractal dimension calculations.Ar plasma surface modification promotes the agglomeration of siderite particles,as evidenced by increased floc size and density.The agglomeration mechanism induced by Ar plasma surface modification is evaluated using a theoretical model combining the surface element integration(SEI)approach,differential geometry,and the composite Simpson's rule.Changes in surface roughness,wettability,and charge are considered in this model.Compared to the unpretreated siderite particles,the energy barrier for interaction of the 30-min Ar plasma-pretreated siderite particles decreases from 2.3×10-^(17)J to 1.6×10^(-17)J.This reduction provides strong evidence for the agglomeration behavior of siderite particles.Furthermore,flotation experiments confirm that Ar plasma surface modification is conducive to the aggregation flotation of siderite.These findings offer crucial insights into particle aggregation and dispersion behaviors,with notable application in mineral flotation.展开更多
The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative conti...The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites.展开更多
Objective Evidence suggests that depleted gut microbialα-diversity is associated with hypertension;however,whether metabolic markers affect this relationship remains unknown.We aimed to determine the potential metabo...Objective Evidence suggests that depleted gut microbialα-diversity is associated with hypertension;however,whether metabolic markers affect this relationship remains unknown.We aimed to determine the potential metabolites mediating the associations ofα-diversity with blood pressure(BP)and BP variability(BPV).Methods Metagenomics and plasma targeted metabolomics were conducted on 523 Chinese participants from the MetaSalt study.The 24-hour,daytime,and nighttime BP and BPV were calculated based on ambulatory BP measurements.Linear mixed models were used to characterize the relationships betweenα-diversity(Shannon and Chao1 index)and BP indices.Mediation analyses were performed to assess the contribution of metabolites to the observed associations.The influence of key metabolites on hypertension was further evaluated in a prospective cohort of 2,169 participants.Results Gut microbial richness(Chao1)was negatively associated with 24-hour systolic BP,daytime systolic BP,daytime diastolic BP,24-hour systolic BPV,and nighttime systolic BPV(P<0.05).Moreover,26 metabolites were strongly associated with richness(Bonferroni P<0.05).Among them,four key metabolites(imidazole propionate,2-hydroxy-3-methylbutyric acid,homovanillic acid,and hydrocinnamic acid)mediated the associations between richness and BP indices(proportions of mediating effects:14.1%–67.4%).These key metabolites were also associated with hypertension in the prospective cohort.For example,each 1-standard deviation unit increase in hydrocinnamic acid significantly reduced the risk of prevalent(OR[95%CI]=0.90[0.82,0.99];P=0.03)and incident hypertension(HR[95%CI]=0.83[0.71,0.96];P=0.01).Conclusion Our results suggest that gut microbial richness correlates with lower BP and BPV,and that certain metabolites mediate these associations.These findings provide novel insights into the pathogenesis and prevention of hypertension.展开更多
This study investigated enhancing the wear resistance of Ti6Al4V alloys for medical applications by incorporating Ti C nanoreinforcements using advanced spark plasma sintering(SPS). The addition of up to 2.5wt% Ti C s...This study investigated enhancing the wear resistance of Ti6Al4V alloys for medical applications by incorporating Ti C nanoreinforcements using advanced spark plasma sintering(SPS). The addition of up to 2.5wt% Ti C significantly improved the mechanical properties, including a notable 18.2% increase in hardness(HV 332). Fretting wear tests against 316L stainless steel(SS316L) balls demonstrated a 20wt%–22wt% reduction in wear volume in the Ti6Al4V/Ti C composites compared with the monolithic alloy. Microstructural analysis revealed that Ti C reinforcement controlled the grain orientation and reduced the β-phase content, which contributed to enhanced mechanical properties. The monolithic alloy exhibited a Widmanstätten lamellar microstructure, while increasing the Ti C content modified the wear mechanisms from ploughing and adhesion(0–0.5wt%) to pitting and abrasion(1wt%–2.5wt%). At higher reinforcement levels, the formation of a robust oxide layer through tribo-oxide treatment effectively reduced the wear volume by minimizing the abrasive effects and plastic deformation. This study highlights the potential of SPS-mediated Ti C reinforcement as a transformative approach for improving the performance of Ti6Al4V alloys, paving the way for advanced medical applications.展开更多
The highly efficient manufacturing of atomic-scale smooth β-Ga_(2)O_(3)surface is fairly challenging because β-Ga_(2)O_(3)is a typical difficult-to-machine material.In this study,a novel plasma dry etching method na...The highly efficient manufacturing of atomic-scale smooth β-Ga_(2)O_(3)surface is fairly challenging because β-Ga_(2)O_(3)is a typical difficult-to-machine material.In this study,a novel plasma dry etching method named plasma-based atom-selective etching(PASE)is proposed to achieve the highly efficient,atomic-scale,and damage-free polishing of β-Ga_(2)O_(3).The plasma is excited through the inductive coupling principle and carbon tetrafluoride is utilized as the main reaction gas to etch β-Ga_(2)O_(3).The core of PASE polishing of β-Ga_(2)O_(3)is the remarkable lateral etching effect,which is ensured by both the intrinsic property of the surface and the extrinsic temperature condition.As revealed by density functional theory-based calculations,the intrinsic difference in the etching energy barrier of atoms at the step edge(2.36 eV)and in the terrace plane(4.37 eV)determines their difference in the etching rate,and their etching rate difference can be greatly enlarged by increasing the extrinsic temperature.The polishing of β-Ga_(2)O_(3)based on the lateral etching effect is further verified in the etching experiments.The Sa roughness of β-Ga_(2)O_(3)(001)substrate is reduced from 14.8 nm to 0.057 nm within 120 s,and the corresponding material removal rate reaches up to 20.96μm·min^(−1).The polished β-Ga_(2)O_(3)displays significantly improved crystalline quality and photoluminescence intensity,and the polishing effect of PASE is independent of the crystal face of β-Ga_(2)O_(3).In addition,the competition between chemical etching and physical reconstruction,which is determined by temperature and greatly affects the surface state of β-Ga_(2)O_(3),is deeply studied for the first time.These findings not only demonstrate the high-efficiency and high-quality polishing of β-Ga_(2)O_(3)via atmospheric plasma etching but also hold significant implications for guiding future plasma-based surface manufacturing of β-Ga_(2)O_(3).展开更多
目的:观察Plasma等离子束联合强脉冲光治疗面部烧伤瘢痕的疗效及对瘢痕评分、疼痛程度的影响。方法:本次研究为前瞻性研究,采用随机数字表法将茂名市人民医院2024年3月至2024年8月期间收治的92例面部烧伤瘢痕患者分为对照组(接受强脉冲...目的:观察Plasma等离子束联合强脉冲光治疗面部烧伤瘢痕的疗效及对瘢痕评分、疼痛程度的影响。方法:本次研究为前瞻性研究,采用随机数字表法将茂名市人民医院2024年3月至2024年8月期间收治的92例面部烧伤瘢痕患者分为对照组(接受强脉冲光治疗,46例)和研究组(对照组的基础上接受Plasma等离子束治疗,46例)。对比两组疗效、相关量表评分、瘢痕恢复情况和不良反应发生率。结果:和对照组治疗后相比,研究组的临床总有效率和中文版简易烧伤健康量表(chinese version of the simplified burn health scale, BSHS-B)评分更高,温哥华瘢痕量表(vancouver scar scale, VSS)、视觉模拟疼痛量表(visual analogue scale, VAS)评分和瘢痕厚度、瘢痕血流灌注量更低(P<0.05)。两组不良反应发生率组间对比未见差异(P>0.05)。结论:应用Plasma离子束联合强脉冲光治疗面部烧伤瘢痕患者,可提高临床疗效,改善瘢痕厚度和血流灌注量,缓解瘢痕瘙痒及疼痛程度,安全性较好。展开更多
Inductive-pulsed plasma thruster is an in-space propulsion device that generates thrust by ionizing and accelerating plasma through pulsed electromagnetic field.In this paper,the correlation between plasma structure e...Inductive-pulsed plasma thruster is an in-space propulsion device that generates thrust by ionizing and accelerating plasma through pulsed electromagnetic field.In this paper,the correlation between plasma structure evolution and magnetic field permeability is studied using a B-dot probe array system,combing with high-speed camera and electrical parameter measurement.Further discussions explained the mechanism how the magnetic permeation characteristics affect the energy deposition between circuit and plasma.展开更多
To address the issues of the greenhouse effect and energy dilemma,it is a global hot topic on converting CO_(2)to valuable chemicals and useable fuels.In this review,firstly,we shortly summarize different CO_(2)conver...To address the issues of the greenhouse effect and energy dilemma,it is a global hot topic on converting CO_(2)to valuable chemicals and useable fuels.In this review,firstly,we shortly summarize different CO_(2)conversion methods including thermal catalysis,biocatalysis,electrocatalysis,photocatalysis,and plasma catalysis.Then,a comprehensive overview of the currently explored plasma driven CO_(2)conversion is presented,such as microwave discharge plasma,gliding arc discharge plasma,radiofrequency inductively coupled plasma,and dielectric barrier discharge plasma,with an emphasis on their experimental setups,achievements and limitations.Furthermore,the activation of CO_(2)conversion via the synergistic effect between the plasma and photocatalyst is discussed in detail.Finally,the associated challenges and future development trends for plasma catalytic CO_(2)conversion are briefly concluded.展开更多
The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wav...The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.展开更多
The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep s...The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep space exploration.An experimental prototype,including diagnostic devices,was designed and constructed based on the principles of the RMF-FRC thruster,with an RMF frequency of 210 kHz and a maximum peak current of 2 kA.Under the rated operating conditions,the initial plasma density was measured to be 5×10^(17)m^(-3),and increased to 2.2×10^(19)m^(-3)after the action of RMF.The coupling efficiency of RMF was about 53%,and the plasma current reached 1.9 kA.The axial magnetic field changed in reverse by 155 Gauss,successfully reversing the bias magnetic field of 60 Gauss,which verifies the formation of FRC plasma.After optimization research,it was found that when the bias magnetic field is 100 Gauss,the axial magnetic field reverse variation caused by FRC is the highest at 164 Gauss.The experimental results are discussed and strategies are proposed to improve the performance of the prototype.展开更多
In this work,silicon-carbon hybrid materials were adopted as an example to illustrate the novel strategy to in situ construct heterostructure with adjustable microstructure.Based on the temperature-dependent thermodyn...In this work,silicon-carbon hybrid materials were adopted as an example to illustrate the novel strategy to in situ construct heterostructure with adjustable microstructure.Based on the temperature-dependent thermodynamics and kinetics of reaction between Si and C,the processes for Si nanocrystals growth and C decoration were coupled at different zones of plasma flame according to its temperature and velocity fields by theoretical modeling,aiming to intentionally suppress the formation of undesirable carbide,and enable adjusting the microstructure of each counterpart separately in transient process.As a result,well-controlled Si/C nanocomposites,including nanospheres and nanowires with core-shell structures,were achieved,and this continuous and in-flight route is also potential for large-scale production.Further investigation on the electrochemical properties highlights the advantage of as proposed strategy to efficiently construct heterostructures with superior performance for various applications.展开更多
BACKGROUND Diabetic foot ulcers(DFUs)affect approximately 18.6 million people worldwide every year.Patients with DFU often present with symptoms such as lower limb infections,ulcers,and deep tissue damage.Platelet-ric...BACKGROUND Diabetic foot ulcers(DFUs)affect approximately 18.6 million people worldwide every year.Patients with DFU often present with symptoms such as lower limb infections,ulcers,and deep tissue damage.Platelet-rich plasma(PRP)is a concentrated platelet product that can trigger the release of growth factors and cytokines,which stimulate tissue healing and regeneration and thus alleviates DFU.At present,no comprehensive study has been conducted to verify the effect of PRP in both in vitro and clinical settings for treating DFUs.AIM To perform the in vitro and clinical evaluation of PRP combined with endovascular angioplasty in treating diabetic foot.METHODS This study focused on both in vitro and clinical settings.In the in vitro study,human umbilical vein endothelial cells(HUVECs),human dermal fibroblasts(HSFs),and human immortalized keratinocytes(HaCaTs)were treated with PRP.Experiments involving proliferation,migration,tubule formation,and angiogenesis signaling pathways were conducted.In this clinical study,patients who visited the Affiliated Panyu Central Hospital of Guangzhou Medical University from 2020 to 2024 and met enrollment criteria were randomly assigned to 2 groups using prospective block randomization.In the control group,the DFU was treated with endovascular angioplasty and wound debridement.In the PRP+endovascular angioplasty group,PRP was evenly used on the surface of superficial ulcers,followed by endovascular angioplasty to treat vascular occlusion.The key outcomes were measured,including the Rutherford scale,Wagner scale,foot skin temperature,and ulcer repair area before and after treatment.RESULTS In the in vitro study,6%PRP could promote the proliferation and migration of HUVECs,HSFs,and HaCaTs in a high-glucose environment.Additionally,it promoted tubule formation in HUVECs by activating signaling proteins such as Ak strain transforming and extracellular regulated protein kinases 1/2.In the clinical study,a total of 208 patients participated.After 12 months of treatment,the ulcer repair area(14.95±0.16 cm^(2))and ulcer healing rate were improved in the PRP+endovascular angioplasty group than in the control group(P<0.05).CONCLUSION The combination of 6%activated PRP and endovascular angioplasty may improve the microcirculation and tissue repair in DFUs.This study offers a novel treatment option for patients with diabetic foot.展开更多
Objective:Based on multistage metabolomic profiling and Mendelian randomization analyses,the current study identified plasma metabolites that predicted the risk of developing gastric cancer(GC)and determined whether k...Objective:Based on multistage metabolomic profiling and Mendelian randomization analyses,the current study identified plasma metabolites that predicted the risk of developing gastric cancer(GC)and determined whether key metabolite levels modified the GC primary prevention effects.Methods:Plasma metabolites associated with GC risk were identified through a case-control study.Bi-directional two-sample Mendelian randomization analyses were performed to determine potential causal relationships utilizing the Shandong Intervention Trial(SIT),a nested case-control study of the Mass Intervention Trial in Linqu,Shandong province(MITS),China,the UK Biobank,and the Finn Gen project.Results:A higher genetic risk score for plasma L-aspartic acid was significantly associated with an increased GC risk in the northern Chinese population(SIT:HR=1.26 per 1 SD change,95%CI:1.07±1.49;MITS:HR=1.07,95%CI:1.00±1.14)and an increased gastric adenocarcinoma risk in Finn Gen(OR=1.68,95%CI:1.16±2.45).Genetically predicted plasma L-aspartic acid levels also modified the GC primary prevention effects with the beneficial effect of Helicobacter pylori eradication notably observed among individuals within the top quartile of L-aspartic acid level(P-interaction=0.098)and the beneficial effect of garlic supplementation only for those within the lowest quartile of L-aspartic acid level(P-interaction=0.02).Conclusions:Elevated plasma L-aspartic acid levels significantly increased the risk of developing GC and modified the effects of GC primary prevention.Further studies from other populations are warranted to validate the modification effect of plasma L-aspartic acid levels on GC prevention and to elucidate the underlying mechanisms.展开更多
This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the poro...This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the porous MgO layer formed via plasma electrolytic oxidation(PEO).The AZ31 Mg alloy,initially coated with a PEO layer,underwent a dipping treatment in an ethanolic solution of 0.05 M 8HQ at 50℃ for 3 h.The results were compared with those from a different procedure where the PEO layer was subjected to a hydration reaction for 2 h at 90℃ before immersion in the 8HQ solution under the same conditions.The hydration treatment played a crucial role by converting MgO to Mg(OH)_(2),significantly enhancing the surface reactivity.This transformation introduced hydroxyl groups(−OH)on the surface,which facilitated donor-acceptor interactions with the electron-accepting sites on 8HQ molecules.The calculated binding energy(Ebinding)from DFT indicated that the interaction energy of 8HQ with Mg(OH)_(2) was lower compared to 8HQ with MgO,suggesting easier adsorption of 8HQ molecules on the hydrated surface.This,combined with the increased number of active sites and enhanced surface area,allowed for extensive surface coverage by 8HQ,leading to the formation of a stable,flake-like protective layer that sealed the majority of pores on the PEO layer.DFT calculations further suggested that the hydration treatment provided multiple active sites,enabling effective contact with 8HQ and rapid electron transfer,creating ideal conditions for charge-transfer-induced physical and chemical bonding.This study shows that hydration and 8HQ treatments significantly enhance the corrosion resistance of Mg alloys,highlighting their potential for advanced anticorrosive coatings.展开更多
BACKGROUND Skin wounds are common injuries that affect quality of life and incur high costs.A considerable portion of healthcare resources in Western countries is allocated to wound treatment,mainly using mechanical,b...BACKGROUND Skin wounds are common injuries that affect quality of life and incur high costs.A considerable portion of healthcare resources in Western countries is allocated to wound treatment,mainly using mechanical,biological,or artificial dressings.Biological and artificial dressings,such as hydrogels,are preferred for their biocompatibility.Platelet concentrates,such as platelet-rich plasma(PRP)and platelet-rich fibrin(PRF),stand out for accelerating tissue repair and minimizing risks of allergies and rejection.This study developed PRF and PRP-based dressings to treat skin wounds in an animal model,evaluating their functionality and efficiency in accelerating the tissue repair process.AIM To develop wound dressings based on platelet concentrates and evaluating their efficiency in treating skin wounds in Wistar rats.METHODS Wistar rats,both male and female,were subjected to the creation of a skin wound,distributed into groups(n=64/group),and treated with Carbopol(negative control);PRP+Carbopol;PRF+Carbopol;or PRF+CaCl_(2)+Carbopol,on days zero(D0),D3,D7,D14,and D21.PRP and PRF were obtained only from male rats.On D3,D7,D14,and D21,the wounds were analyzed for area,contraction rate,and histopathology of the tissue repair process.RESULTS The PRF-based dressing was more effective in accelerating wound closure early in the tissue repair process(up to D7),while PRF+CaCl_(2) seemed to delay the process,as wound closure was not complete by D21.Regarding macroscopic parameters,animals treated with PRF+CaCl_(2) showed significantly more crusting(necrosis)early in the repair process(D3).In terms of histopathological parameters,the PRF group exhibited significant collagenization at the later stages of the repair process(D14 and D21).By D21,fibroblast proliferation and inflammatory infiltration were higher in the PRP group.Animals treated with PRF+CaCl_(2) experienced a more pronounced inflammatory response up to D7,which diminished from D14 onwards.CONCLUSION The PRF-based dressing was effective in accelerating the closure of cutaneous wounds in Wistar rats early in the process and in aiding tissue repair at the later stages.展开更多
The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sh...The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.展开更多
In a pulsed plasma thruster,the voltage distribution between the electrodes is a key factor that influences the ionization process.However,few researchers have conducted in-depth studies of this phenomenon in the past...In a pulsed plasma thruster,the voltage distribution between the electrodes is a key factor that influences the ionization process.However,few researchers have conducted in-depth studies of this phenomenon in the past.Reported here are measurements of the voltage distribution between the plates of a parallel-plate pulsed plasma thruster under different discharge voltages,based on which the variations in the total circuit inductance and resistance as well as those between the plates are calculated.The results show that the time-averaged voltage across the plates accounts for 28.7%-50.4%of the capacitor voltage.As the capacitor initial voltage increases from 1250 V to 2000 V,the voltage across the plates rises,but its proportion relative to the capacitor voltage decreases.For every 250 V increase in the capacitor initial voltage,the average voltage proportion across the plates decreases by approximately 2%-3%.Additionally,the voltage proportion decreases gradually from the end near the propellant outward.The voltage distribution ratio between the plates is correlated with the proportions of the resistance and inductance between the plates relative to the total circuit.展开更多
This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signa...This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.展开更多
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency...Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.展开更多
Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The tech...Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.展开更多
基金financially supported by the National Natural Science Foundation of China(No.52204284)the China Postdoctoral Science Foundation(No.2025MD784125)+2 种基金the Natural Science Foundation of Shaanxi Province,China(No.2024JC-YBQN-0365)the Shaanxi Province Postdoctoral Science Foundation,China(No.2025BSHSDZZ363)Outstanding Youth Science Fund of Xi’an University of Science and Technology,China(No.202308)。
文摘Interfacial interactions between rough mineral particles have garnered considerable attention as they directly determine particle agglomeration and floatability.This study comprehensively investigates the agglomeration characteristics of siderite particles after argon(Ar)plasma surface modification through settling tests,flocs size measurements,and fractal dimension calculations.Ar plasma surface modification promotes the agglomeration of siderite particles,as evidenced by increased floc size and density.The agglomeration mechanism induced by Ar plasma surface modification is evaluated using a theoretical model combining the surface element integration(SEI)approach,differential geometry,and the composite Simpson's rule.Changes in surface roughness,wettability,and charge are considered in this model.Compared to the unpretreated siderite particles,the energy barrier for interaction of the 30-min Ar plasma-pretreated siderite particles decreases from 2.3×10-^(17)J to 1.6×10^(-17)J.This reduction provides strong evidence for the agglomeration behavior of siderite particles.Furthermore,flotation experiments confirm that Ar plasma surface modification is conducive to the aggregation flotation of siderite.These findings offer crucial insights into particle aggregation and dispersion behaviors,with notable application in mineral flotation.
基金supported by the National Natural Science Foundation of China(Nos.U2341249,12005076,22205112)the Fundamental Research Funds for the Central Universities(No.2025201012)。
文摘The presence of a surface oxide film(B_(2)O_(3))on boron(B)particles significantly compromises their combustion efficiency and kinetic performance in fuel-rich solid propellants.This study proposes an innovative continuous modification strategy combining non-thermal plasma(NTP)etching with fluorocarbon passivation.Characterization and kinetic analysis revealed that reactive plasma species—including atomic hydrogen(H),electronically excited molecular hydrogen(H_(2)^(*)),vibrationally excited molecular hydrogen(H_(2)v),and hydrogen ions(H^(+))—dominate the reduction of B_(2)O_(3)through lowering the transition energy barrier and shifting the reaction spontaneity.Subsequent argon plasma fragmentation of C_(8)F_(18)generates fluorocarbon radicals that form conformal passivation coatings(thickness:7 nm)on purified boron surfaces.The modified boron particles exhibit 37.5℃lower exothermic peak temperature and 27.2%higher heat release(14.8 kJ/g vs.11.6 kJ/g)compared to untreated counterparts.Combustion diagnostics reveal 194%increase in maximum flame height(135.10 mm vs.46.03 mm)and 134%enhancement in flame propagation rate(4.44 cm/s vs.1.90 cm/s).This NTP-based surface engineering approach establishes a scalable pathway for developing highperformance boron-based energetic composites.
基金supported by the National Science and Technology Major Program for Noncommunicable Chronic Diseases(2023ZD0503500)the National Natural Science Foundation of China(82030102,12126602,91857118)+1 种基金the Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences(2021-I2M-1-010,2019-I2M-2-003)the National High Level Hospital Clinical Research Funding(2022-GSP-GG-1,2022-GSP-GG-2)。
文摘Objective Evidence suggests that depleted gut microbialα-diversity is associated with hypertension;however,whether metabolic markers affect this relationship remains unknown.We aimed to determine the potential metabolites mediating the associations ofα-diversity with blood pressure(BP)and BP variability(BPV).Methods Metagenomics and plasma targeted metabolomics were conducted on 523 Chinese participants from the MetaSalt study.The 24-hour,daytime,and nighttime BP and BPV were calculated based on ambulatory BP measurements.Linear mixed models were used to characterize the relationships betweenα-diversity(Shannon and Chao1 index)and BP indices.Mediation analyses were performed to assess the contribution of metabolites to the observed associations.The influence of key metabolites on hypertension was further evaluated in a prospective cohort of 2,169 participants.Results Gut microbial richness(Chao1)was negatively associated with 24-hour systolic BP,daytime systolic BP,daytime diastolic BP,24-hour systolic BPV,and nighttime systolic BPV(P<0.05).Moreover,26 metabolites were strongly associated with richness(Bonferroni P<0.05).Among them,four key metabolites(imidazole propionate,2-hydroxy-3-methylbutyric acid,homovanillic acid,and hydrocinnamic acid)mediated the associations between richness and BP indices(proportions of mediating effects:14.1%–67.4%).These key metabolites were also associated with hypertension in the prospective cohort.For example,each 1-standard deviation unit increase in hydrocinnamic acid significantly reduced the risk of prevalent(OR[95%CI]=0.90[0.82,0.99];P=0.03)and incident hypertension(HR[95%CI]=0.83[0.71,0.96];P=0.01).Conclusion Our results suggest that gut microbial richness correlates with lower BP and BPV,and that certain metabolites mediate these associations.These findings provide novel insights into the pathogenesis and prevention of hypertension.
文摘This study investigated enhancing the wear resistance of Ti6Al4V alloys for medical applications by incorporating Ti C nanoreinforcements using advanced spark plasma sintering(SPS). The addition of up to 2.5wt% Ti C significantly improved the mechanical properties, including a notable 18.2% increase in hardness(HV 332). Fretting wear tests against 316L stainless steel(SS316L) balls demonstrated a 20wt%–22wt% reduction in wear volume in the Ti6Al4V/Ti C composites compared with the monolithic alloy. Microstructural analysis revealed that Ti C reinforcement controlled the grain orientation and reduced the β-phase content, which contributed to enhanced mechanical properties. The monolithic alloy exhibited a Widmanstätten lamellar microstructure, while increasing the Ti C content modified the wear mechanisms from ploughing and adhesion(0–0.5wt%) to pitting and abrasion(1wt%–2.5wt%). At higher reinforcement levels, the formation of a robust oxide layer through tribo-oxide treatment effectively reduced the wear volume by minimizing the abrasive effects and plastic deformation. This study highlights the potential of SPS-mediated Ti C reinforcement as a transformative approach for improving the performance of Ti6Al4V alloys, paving the way for advanced medical applications.
基金supported by the National Natural Science Foundation of China(52375437,52035009)the Natural Science Foundation of Guangdong Province(2024B1515020027)+2 种基金the Shenzhen Science and Technology Program(Grant No.KQTD20170810110250357)for the financial supportthe assistance of SUSTech Core Research Facilitiessupported by Shenzhen Engineering Research Center for Semiconductorspecific Equipment。
文摘The highly efficient manufacturing of atomic-scale smooth β-Ga_(2)O_(3)surface is fairly challenging because β-Ga_(2)O_(3)is a typical difficult-to-machine material.In this study,a novel plasma dry etching method named plasma-based atom-selective etching(PASE)is proposed to achieve the highly efficient,atomic-scale,and damage-free polishing of β-Ga_(2)O_(3).The plasma is excited through the inductive coupling principle and carbon tetrafluoride is utilized as the main reaction gas to etch β-Ga_(2)O_(3).The core of PASE polishing of β-Ga_(2)O_(3)is the remarkable lateral etching effect,which is ensured by both the intrinsic property of the surface and the extrinsic temperature condition.As revealed by density functional theory-based calculations,the intrinsic difference in the etching energy barrier of atoms at the step edge(2.36 eV)and in the terrace plane(4.37 eV)determines their difference in the etching rate,and their etching rate difference can be greatly enlarged by increasing the extrinsic temperature.The polishing of β-Ga_(2)O_(3)based on the lateral etching effect is further verified in the etching experiments.The Sa roughness of β-Ga_(2)O_(3)(001)substrate is reduced from 14.8 nm to 0.057 nm within 120 s,and the corresponding material removal rate reaches up to 20.96μm·min^(−1).The polished β-Ga_(2)O_(3)displays significantly improved crystalline quality and photoluminescence intensity,and the polishing effect of PASE is independent of the crystal face of β-Ga_(2)O_(3).In addition,the competition between chemical etching and physical reconstruction,which is determined by temperature and greatly affects the surface state of β-Ga_(2)O_(3),is deeply studied for the first time.These findings not only demonstrate the high-efficiency and high-quality polishing of β-Ga_(2)O_(3)via atmospheric plasma etching but also hold significant implications for guiding future plasma-based surface manufacturing of β-Ga_(2)O_(3).
文摘目的:观察Plasma等离子束联合强脉冲光治疗面部烧伤瘢痕的疗效及对瘢痕评分、疼痛程度的影响。方法:本次研究为前瞻性研究,采用随机数字表法将茂名市人民医院2024年3月至2024年8月期间收治的92例面部烧伤瘢痕患者分为对照组(接受强脉冲光治疗,46例)和研究组(对照组的基础上接受Plasma等离子束治疗,46例)。对比两组疗效、相关量表评分、瘢痕恢复情况和不良反应发生率。结果:和对照组治疗后相比,研究组的临床总有效率和中文版简易烧伤健康量表(chinese version of the simplified burn health scale, BSHS-B)评分更高,温哥华瘢痕量表(vancouver scar scale, VSS)、视觉模拟疼痛量表(visual analogue scale, VAS)评分和瘢痕厚度、瘢痕血流灌注量更低(P<0.05)。两组不良反应发生率组间对比未见差异(P>0.05)。结论:应用Plasma离子束联合强脉冲光治疗面部烧伤瘢痕患者,可提高临床疗效,改善瘢痕厚度和血流灌注量,缓解瘢痕瘙痒及疼痛程度,安全性较好。
基金Project supported by the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.T2221002)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.12305286)。
文摘Inductive-pulsed plasma thruster is an in-space propulsion device that generates thrust by ionizing and accelerating plasma through pulsed electromagnetic field.In this paper,the correlation between plasma structure evolution and magnetic field permeability is studied using a B-dot probe array system,combing with high-speed camera and electrical parameter measurement.Further discussions explained the mechanism how the magnetic permeation characteristics affect the energy deposition between circuit and plasma.
基金supported by the National Natural Science Foundation of China(Grant No.22072010)Natural Science Foundation of Chongqing Municipality(Grant No.CSTB2024NSCQLZX0101)+2 种基金Natural Science Foundation of Chongqing(Grant No.cstc2021ycjh-bgzxm0181)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202300629)Institute for Advanced Sciences(Grant No.E011A2022325).
文摘To address the issues of the greenhouse effect and energy dilemma,it is a global hot topic on converting CO_(2)to valuable chemicals and useable fuels.In this review,firstly,we shortly summarize different CO_(2)conversion methods including thermal catalysis,biocatalysis,electrocatalysis,photocatalysis,and plasma catalysis.Then,a comprehensive overview of the currently explored plasma driven CO_(2)conversion is presented,such as microwave discharge plasma,gliding arc discharge plasma,radiofrequency inductively coupled plasma,and dielectric barrier discharge plasma,with an emphasis on their experimental setups,achievements and limitations.Furthermore,the activation of CO_(2)conversion via the synergistic effect between the plasma and photocatalyst is discussed in detail.Finally,the associated challenges and future development trends for plasma catalytic CO_(2)conversion are briefly concluded.
基金Supported by the Natural Science Foundation of Heilongjiang Province(LH2024A025)。
文摘The effects of plasma screening on the ^(1)P^(o) resonance states of H-and He below the n=3 and n=4 thresholds of the respective subsystemsare investigated using the stabilization method and correlated exponential wave functions.Two plasma mediums,namely,the Debye plasma and quantum plasma environments are considered.The screened Coulomb potential(SCP)obtained from Debye-Hückel model is used to represent Debye plasma environments and the exponential cosine screened Coulomb potential(ECSCP)obtained from a modified Debye-Hückel model is used to represent quantum plasma environments.The resonance parameters(resonance positions and widths)are presented in terms of the screening parameters.
基金supported by National Natural Science Foundation of China (NSFC) (Nos.62201217 and 51821005)。
文摘The field-reversed configuration(FRC)plasma thruster driven by rotating magnetic field(RMF),abbreviated as the RMF-FRC thruster,is a new type of electric propulsion technology that is expected to accelerate the deep space exploration.An experimental prototype,including diagnostic devices,was designed and constructed based on the principles of the RMF-FRC thruster,with an RMF frequency of 210 kHz and a maximum peak current of 2 kA.Under the rated operating conditions,the initial plasma density was measured to be 5×10^(17)m^(-3),and increased to 2.2×10^(19)m^(-3)after the action of RMF.The coupling efficiency of RMF was about 53%,and the plasma current reached 1.9 kA.The axial magnetic field changed in reverse by 155 Gauss,successfully reversing the bias magnetic field of 60 Gauss,which verifies the formation of FRC plasma.After optimization research,it was found that when the bias magnetic field is 100 Gauss,the axial magnetic field reverse variation caused by FRC is the highest at 164 Gauss.The experimental results are discussed and strategies are proposed to improve the performance of the prototype.
基金financially supported by the National Natural Science Foundation of China(No.52174342)Beijing Natural Sci-ence Foundation(No.2232044)Beijing Municipal Education Commission Research Plan General Project(No.KM202410005009).
文摘In this work,silicon-carbon hybrid materials were adopted as an example to illustrate the novel strategy to in situ construct heterostructure with adjustable microstructure.Based on the temperature-dependent thermodynamics and kinetics of reaction between Si and C,the processes for Si nanocrystals growth and C decoration were coupled at different zones of plasma flame according to its temperature and velocity fields by theoretical modeling,aiming to intentionally suppress the formation of undesirable carbide,and enable adjusting the microstructure of each counterpart separately in transient process.As a result,well-controlled Si/C nanocomposites,including nanospheres and nanowires with core-shell structures,were achieved,and this continuous and in-flight route is also potential for large-scale production.Further investigation on the electrochemical properties highlights the advantage of as proposed strategy to efficiently construct heterostructures with superior performance for various applications.
基金Supported by the Medical Science and Technology Foundation of Guangdong Province,No.A2024625the Guangzhou Municipal Science and Technology Program Key Projects,No.202103000002the Panyu Science and Technology Planning Project,No.2023-Z04-019.
文摘BACKGROUND Diabetic foot ulcers(DFUs)affect approximately 18.6 million people worldwide every year.Patients with DFU often present with symptoms such as lower limb infections,ulcers,and deep tissue damage.Platelet-rich plasma(PRP)is a concentrated platelet product that can trigger the release of growth factors and cytokines,which stimulate tissue healing and regeneration and thus alleviates DFU.At present,no comprehensive study has been conducted to verify the effect of PRP in both in vitro and clinical settings for treating DFUs.AIM To perform the in vitro and clinical evaluation of PRP combined with endovascular angioplasty in treating diabetic foot.METHODS This study focused on both in vitro and clinical settings.In the in vitro study,human umbilical vein endothelial cells(HUVECs),human dermal fibroblasts(HSFs),and human immortalized keratinocytes(HaCaTs)were treated with PRP.Experiments involving proliferation,migration,tubule formation,and angiogenesis signaling pathways were conducted.In this clinical study,patients who visited the Affiliated Panyu Central Hospital of Guangzhou Medical University from 2020 to 2024 and met enrollment criteria were randomly assigned to 2 groups using prospective block randomization.In the control group,the DFU was treated with endovascular angioplasty and wound debridement.In the PRP+endovascular angioplasty group,PRP was evenly used on the surface of superficial ulcers,followed by endovascular angioplasty to treat vascular occlusion.The key outcomes were measured,including the Rutherford scale,Wagner scale,foot skin temperature,and ulcer repair area before and after treatment.RESULTS In the in vitro study,6%PRP could promote the proliferation and migration of HUVECs,HSFs,and HaCaTs in a high-glucose environment.Additionally,it promoted tubule formation in HUVECs by activating signaling proteins such as Ak strain transforming and extracellular regulated protein kinases 1/2.In the clinical study,a total of 208 patients participated.After 12 months of treatment,the ulcer repair area(14.95±0.16 cm^(2))and ulcer healing rate were improved in the PRP+endovascular angioplasty group than in the control group(P<0.05).CONCLUSION The combination of 6%activated PRP and endovascular angioplasty may improve the microcirculation and tissue repair in DFUs.This study offers a novel treatment option for patients with diabetic foot.
基金funded by the National Natural Science Foundation of China(No.82273704)Noncommunicable Chronic Diseases-National Science and Technology Major Project(No.2023ZD0501400-2023ZD0501402)+4 种基金Beijing Hospitals Authority’s Ascent Plan(DFL20241102)Beijing Hospitals Authority Clinical Medicine Development of Special Funding Support(No.ZLRK202325)China Postdoctoral Science Foundation(2024M760152)Peking University Medicine Fund for World’s Leading Discipline or Discipline Cluster Development(No.BMU2022XKQ004)Science Foundation of Peking University Cancer Hospital(Nos.BJCH2024BJ02,XKFZ2410,BJCH2025CZ04,and 2022-27)。
文摘Objective:Based on multistage metabolomic profiling and Mendelian randomization analyses,the current study identified plasma metabolites that predicted the risk of developing gastric cancer(GC)and determined whether key metabolite levels modified the GC primary prevention effects.Methods:Plasma metabolites associated with GC risk were identified through a case-control study.Bi-directional two-sample Mendelian randomization analyses were performed to determine potential causal relationships utilizing the Shandong Intervention Trial(SIT),a nested case-control study of the Mass Intervention Trial in Linqu,Shandong province(MITS),China,the UK Biobank,and the Finn Gen project.Results:A higher genetic risk score for plasma L-aspartic acid was significantly associated with an increased GC risk in the northern Chinese population(SIT:HR=1.26 per 1 SD change,95%CI:1.07±1.49;MITS:HR=1.07,95%CI:1.00±1.14)and an increased gastric adenocarcinoma risk in Finn Gen(OR=1.68,95%CI:1.16±2.45).Genetically predicted plasma L-aspartic acid levels also modified the GC primary prevention effects with the beneficial effect of Helicobacter pylori eradication notably observed among individuals within the top quartile of L-aspartic acid level(P-interaction=0.098)and the beneficial effect of garlic supplementation only for those within the lowest quartile of L-aspartic acid level(P-interaction=0.02).Conclusions:Elevated plasma L-aspartic acid levels significantly increased the risk of developing GC and modified the effects of GC primary prevention.Further studies from other populations are warranted to validate the modification effect of plasma L-aspartic acid levels on GC prevention and to elucidate the underlying mechanisms.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘This study presents a novel approach to improving the anticorrosive performance of AZ31 Mg alloy by exploiting the role of the hydration reaction to induce interactions between Quinolin-8-ol(8HQ)molecules and the porous MgO layer formed via plasma electrolytic oxidation(PEO).The AZ31 Mg alloy,initially coated with a PEO layer,underwent a dipping treatment in an ethanolic solution of 0.05 M 8HQ at 50℃ for 3 h.The results were compared with those from a different procedure where the PEO layer was subjected to a hydration reaction for 2 h at 90℃ before immersion in the 8HQ solution under the same conditions.The hydration treatment played a crucial role by converting MgO to Mg(OH)_(2),significantly enhancing the surface reactivity.This transformation introduced hydroxyl groups(−OH)on the surface,which facilitated donor-acceptor interactions with the electron-accepting sites on 8HQ molecules.The calculated binding energy(Ebinding)from DFT indicated that the interaction energy of 8HQ with Mg(OH)_(2) was lower compared to 8HQ with MgO,suggesting easier adsorption of 8HQ molecules on the hydrated surface.This,combined with the increased number of active sites and enhanced surface area,allowed for extensive surface coverage by 8HQ,leading to the formation of a stable,flake-like protective layer that sealed the majority of pores on the PEO layer.DFT calculations further suggested that the hydration treatment provided multiple active sites,enabling effective contact with 8HQ and rapid electron transfer,creating ideal conditions for charge-transfer-induced physical and chemical bonding.This study shows that hydration and 8HQ treatments significantly enhance the corrosion resistance of Mg alloys,highlighting their potential for advanced anticorrosive coatings.
文摘BACKGROUND Skin wounds are common injuries that affect quality of life and incur high costs.A considerable portion of healthcare resources in Western countries is allocated to wound treatment,mainly using mechanical,biological,or artificial dressings.Biological and artificial dressings,such as hydrogels,are preferred for their biocompatibility.Platelet concentrates,such as platelet-rich plasma(PRP)and platelet-rich fibrin(PRF),stand out for accelerating tissue repair and minimizing risks of allergies and rejection.This study developed PRF and PRP-based dressings to treat skin wounds in an animal model,evaluating their functionality and efficiency in accelerating the tissue repair process.AIM To develop wound dressings based on platelet concentrates and evaluating their efficiency in treating skin wounds in Wistar rats.METHODS Wistar rats,both male and female,were subjected to the creation of a skin wound,distributed into groups(n=64/group),and treated with Carbopol(negative control);PRP+Carbopol;PRF+Carbopol;or PRF+CaCl_(2)+Carbopol,on days zero(D0),D3,D7,D14,and D21.PRP and PRF were obtained only from male rats.On D3,D7,D14,and D21,the wounds were analyzed for area,contraction rate,and histopathology of the tissue repair process.RESULTS The PRF-based dressing was more effective in accelerating wound closure early in the tissue repair process(up to D7),while PRF+CaCl_(2) seemed to delay the process,as wound closure was not complete by D21.Regarding macroscopic parameters,animals treated with PRF+CaCl_(2) showed significantly more crusting(necrosis)early in the repair process(D3).In terms of histopathological parameters,the PRF group exhibited significant collagenization at the later stages of the repair process(D14 and D21).By D21,fibroblast proliferation and inflammatory infiltration were higher in the PRP group.Animals treated with PRF+CaCl_(2) experienced a more pronounced inflammatory response up to D7,which diminished from D14 onwards.CONCLUSION The PRF-based dressing was effective in accelerating the closure of cutaneous wounds in Wistar rats early in the process and in aiding tissue repair at the later stages.
基金the National Natural Science Founda-tion of China(NSFC,Grant No.42174181)and the Key Research Program of Frontier Sciences,CAS(Grant No.QYZDJ-SSW-DQC010).
文摘The formation of an embedded electron current sheet within the magnetotail plasma sheet has been poorly understood.In this article,we present an electron current layer detected at the edge of the magnetotail plasma sheet.The ions were demagnetized inside the electron current layer,but the electrons were still frozen in with the magnetic field line.Thus,this decoupling of ions and electrons gave rise to a strong Hall electric field,which could be the reason for the formation of the embedded thin current layer.The magnetized electrons,the absence of the nongyrotropic electron distribution,and negligible energy dissipation in the layer indicate that magnetic reconnection had not been triggered within the embedded thin current layer.The highly asymmetric plasma on the two sides of the current layer and low magnetic shear across it could suppress magnetic reconnection.The observations indicate that the embedded electric current layer,probably generated by the Hall electric field,even down to electron scale,is not a sufficient condition for magnetic reconnection.
基金supported by the Beijing Natural Science Foundation(No.QY24166).
文摘In a pulsed plasma thruster,the voltage distribution between the electrodes is a key factor that influences the ionization process.However,few researchers have conducted in-depth studies of this phenomenon in the past.Reported here are measurements of the voltage distribution between the plates of a parallel-plate pulsed plasma thruster under different discharge voltages,based on which the variations in the total circuit inductance and resistance as well as those between the plates are calculated.The results show that the time-averaged voltage across the plates accounts for 28.7%-50.4%of the capacitor voltage.As the capacitor initial voltage increases from 1250 V to 2000 V,the voltage across the plates rises,but its proportion relative to the capacitor voltage decreases.For every 250 V increase in the capacitor initial voltage,the average voltage proportion across the plates decreases by approximately 2%-3%.Additionally,the voltage proportion decreases gradually from the end near the propellant outward.The voltage distribution ratio between the plates is correlated with the proportions of the resistance and inductance between the plates relative to the total circuit.
基金JSPS KAKENHI Grant Number16H06286 supports global GNSS ionospheric maps (TEC,ROTI,and detrended TEC maps) developed by the Institute for SpaceEarth Environmental Research (ISEE) of Nagoya Universitysupport of the 2024 JASSO Follow-up Research Fellowship Program for a 90-day visiting research at the Institute for Space-Earth Environmental Research (ISEE),Nagoya University+3 种基金the support received from Telkom University under the“Skema Penelitian Terapan Periode I Tahun Anggaran 2024”the Memorandum of Understanding for Research Collaboration on Regional Ionospheric Observation (No:092/SAM3/TE-DEK/2021)the National Institute of Information and Communications Technology (NICT) International Exchange Program 2024-2025(No.2024-007)support for a one-year visiting research at Hokkaido University
文摘This paper highlights the crucial role of Indonesia’s GNSS receiver network in advancing Equatorial Plasma Bubble(EPB)studies in Southeast and East Asia,as ionospheric irregularities within EPB can disrupt GNSS signals and degrade positioning accuracy.Managed by the Indonesian Geospatial Information Agency(BIG),the Indonesia Continuously Operating Reference Station(Ina-CORS)network comprises over 300 GNSS receivers spanning equatorial to southern low-latitude regions.Ina-CORS is uniquely situated to monitor EPB generation,zonal drift,and dissipation across Southeast Asia.We provide a practical tool for EPB research,by sharing two-dimensional rate of Total Electron Content(TEC)change index(ROTI)derived from this network.We generate ROTI maps with a 10-minute resolution,and samples from May 2024 are publicly available for further scientific research.Two preliminary findings from the ROTI maps of Ina-CORS are noteworthy.First,the Ina-CORS ROTI maps reveal that the irregularities within a broader EPB structure persist longer,increasing the potential for these irregularities to migrate farther eastward.Second,we demonstrate that combined ROTI maps from Ina-CORS and GNSS receivers in East Asia and Australia can be used to monitor the development of ionospheric irregularities in Southeast and East Asia.We have demonstrated the combined ROTI maps to capture the development of ionospheric irregularities in the Southeast/East Asian sector during the G5 Geomagnetic Storm on May 11,2024.We observed simultaneous ionospheric irregularities in Japan and Australia,respectively propagating northwestward and southwestward,before midnight,whereas Southeast Asia’s equatorial and low-latitude regions exhibited irregularities post-midnight.By sharing ROTI maps from Indonesia and integrating them with regional GNSS networks,researchers can conduct comprehensive EPB studies,enhancing the understanding of EPB behavior across Southeast and East Asia and contributing significantly to ionospheric research.
基金supported by the National Natural Science Foundation of China(Nos.52275299,52105313)R&D Program of Beijing Municipal Education Commission(No.KM202210005036)+1 种基金Natural Science Foundation of Chongqing,China(No.CSTB2023NSCQ-MSX0701)National Defense Basic Research Projects of China(No.JCKY2022405C002).
文摘Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect.
文摘Plasma electrolytic oxidation(PEO)coatings were prepared on Al−Mg laminated macro composites(LMCs)using both unipolar and bipolar waveforms in an appropriate electrolyte for both aluminum and magnesium alloys.The techniques of FESEM/EDS,grazing incident beam X-ray diffraction(GIXRD),and electrochemical methods of potentiodynamic polarization and electrochemical impedance spectroscopy(EIS)were used to characterize the coatings.The results revealed that the coatings produced using the bipolar waveform exhibited lower porosity and higher thickness than those produced using the unipolar one.The corrosion performance of the specimens’cut edge was investigated using EIS after 1,8,and 12 h of immersion in a 3.5 wt.%NaCl solution.It was observed that the coating produced using the bipolar waveform demonstrated the highest corrosion resistance after 12 h of immersion,with an estimated corrosion resistance of 5.64 kΩ·cm^(2),which was approximately 3 times higher than that of the unipolar coating.Notably,no signs of galvanic corrosion were observed in the LMCs,and only minor corrosion attacks were observed on the magnesium layer in some areas.