The tectonic stress patterns were determined by a fuzzy comprehensive assessment method. Data of in-situ survey and fault information were utilized in the method. First, by making pressure and tension in the direction...The tectonic stress patterns were determined by a fuzzy comprehensive assessment method. Data of in-situ survey and fault information were utilized in the method. First, by making pressure and tension in the directions of along-river, cross-river, shear clockwise, and shear counterclockwise , 26 types of tectonic stress patterns were presented. And the stress vector of each pattern was obtained with FE software by taking unit displacement as boundary load. Then, by taking the 26 types of tectonic stress patterns as index set and 3 main stresses as factor set and choosing various operators, comparison of directions of computational stress vector and survey stress vector was made and the most possible tectonic stress pattern was obtained. Taking the 26 types of tectonic stress patterns as index set and strike angle as factor set, comparison of relationships between formation of fault and tectonic stress was made,and the tectonic stress patterns were assessed with known fault information. By summarizing the above assessment results, the most impossible tectonic stress pattern was obtained . Finally an engineering case was quoted to validate that the method is more feasible and reliable than traditional empirical method.展开更多
The India plates continuous motion to the north, the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation on the uplifted plateau are regarded as main d...The India plates continuous motion to the north, the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation on the uplifted plateau are regarded as main driving forces that make the patterns of stress field of East Asia continent at present time. The method of numerical simulation is used to study the deformation and the stress field of East Asia continent under different boundary conditions, different denudation coefficients and different rock mechanics parameters within a trapezoid geological frame. Comparing with the results obtained by modern space geodetic technique (such as GPS) the results derived from seismological data show that the predicted data by our model can fit them very well. The degree of the fitness in the west is better than that in the east. These results imply that the main driving force of the deformation and the stress patterns of the west part of East Asia continent may come from the collision and compression between the India and the Eurasia plates. The interaction to the Pacific and the Philippines plates in the east part need to be considered. It also shows that the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation cannot be negligible in the evolution of the stress patterns.展开更多
A two-dimensional finite element method (FEM) model that incorporates faults, elastic rock physical properties, topographical load due to gravity and far-field plate velocity boundary conditions was used to recogniz...A two-dimensional finite element method (FEM) model that incorporates faults, elastic rock physical properties, topographical load due to gravity and far-field plate velocity boundary conditions was used to recognize the seismogenic stress state along the fold-and-thrust belt of the Precordillera-Sierras Pampeanas ranges of western Argentina. A plane strain model with nine experiments was presented here to examine the fault strength with two major rock phyical properties: cohesion and angle of internal friction. Mohr-Coulomb failure criterion with bulk rock properties were applied to analyse faults. The stress field at any point of the model was assumed to be comprised of gravitational and tectonic components. The analysis was focused to recognize the seismogenic shear strain concentrated in the internal-cristaline domain of the orogene shown by the modeling. Modeling results are presented in terms of four parameters, i. e., (i) distributions, orientations, and magnitudes of principal stresses (σ1 and σ3), (ii) displacement vector1 (iii) strain distribution, and (iv) maximum shear stress (τmax) contour line within the model. The simulation results show that the compressive stress is distributed in and around the fault systems. The overall orientation of of σ1 is in horizontal directions, although reorientations do occur within some stress weaker parts, especially subsequent to the faults. A large-scale shear stress is accumulating along the active faults of Tapias-Villicum Fault (TVF), Salinas-Berros Fault (SBF), Ampacama-Niquizanga Fault (ANF) and Las Charas Fault (CF), which could act as local stress and strain modulators to localize the earthquakesoccurrence.展开更多
By considering numerical features, spatial variation, and spatial association, the spatial patterns of China's irrigation water withdrawals in 2001 and 2010 were explored at the regional, provincial, and prefectur...By considering numerical features, spatial variation, and spatial association, the spatial patterns of China's irrigation water withdrawals in 2001 and 2010 were explored at the regional, provincial, and prefectural scales. In addition, an overlay analysis was used to develop specific water-saving guidance for areas under different levels of water stress and with different degrees of irrigation water withdrawals. It was found that at the regional scale, irrigation water withdrawals were highest in the Middle-Lower Yangtze River region in both years, while at the provincial scale, the largest irrigation water withdrawals occurred in Xinjiang. During 2001–2010, the total of irrigation water withdrawals decreased; however, in the Northeast region, especially in Heilongjiang Province, it experienced a dramatic increase. The spatial variation was largest at the prefectural scale, with an apparent effect. The spatial association was globally negative at the provincial scale, and Xinjiang was the only significant high-low outlier. In contrast, the association displayed a significant positive relationship at the prefectural scale, and several clusters and outliers were detected. Finally, it was found that the water stress in the northern part of China worsened and water-saving irrigation techniques urgently need to be applied in the Northeast region, the Huang-Huai-Hai Plain region, and Gansu-Xinjiang region. This study verified that a multi-scale and aspect analysis of the spatial patterns of irrigation water withdrawals were essential and provided water-saving advice for different areas.展开更多
The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm&...The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm×50 mm exhibit parallel through edge cracks, and thus permit quantitative measurements of the crack patterns. The cracks evolve with the severity of ther- mal shock. It is found that there is a correlation between the length and density of the thermal shock cracks. The increase of crack length weakens the residual strength, whereas the increase of crack density improves it. In a considerably wide temperature range, the two contrary effects just counteract each other; consequently a plateau appears in the variation curve of the residual strength. A comparison between the numerical and experimental results of the residual strength is made, and they are found in good agreement. This work is helpful to a deep understanding of the thermal shock failure of ceramics.展开更多
The latest geopotential model, EGM96, was employed to compute the free-air gravity anomaly, geoidal separation, the average density anomalies of the crust and the uppermost mantle, and the distribution pattern of the ...The latest geopotential model, EGM96, was employed to compute the free-air gravity anomaly, geoidal separation, the average density anomalies of the crust and the uppermost mantle, and the distribution pattern of the viscous stress exerted by mantle convection over Xinjiang and its neighboring areas. Based on these results and other data, we try to interpret the geodynamical features of the Tianshan orogen. Our research suggests that the Tianshan orogen is in a tectonic setting of compressive settling, driven by mantle convection. Under the effect of the compressive stress field, asymmetric in north-south direction, the Tianshan orogen upheaved quickly. The center of compressive stress field is in the south of the Tianshan, and the characteristic of stress field is favorable for the view point that the Tarim plat subducts beneath the Tianshan. The southern margin of the Juggar basin and the northern margin of the Tarim basin are two areas where the crust is of mass deficiency. We attribute the mass deficiency to the fact that the crust, in both the north and the south of the Tianshan is bent downwards under the compressive stress. Our research also indicates that the density distribution patterns in the deep of the eastern Tianshan are different from those in the middle and western Tianshan. It may be explained as the results from the east-west oriented distinction of the mantle convection.展开更多
文摘The tectonic stress patterns were determined by a fuzzy comprehensive assessment method. Data of in-situ survey and fault information were utilized in the method. First, by making pressure and tension in the directions of along-river, cross-river, shear clockwise, and shear counterclockwise , 26 types of tectonic stress patterns were presented. And the stress vector of each pattern was obtained with FE software by taking unit displacement as boundary load. Then, by taking the 26 types of tectonic stress patterns as index set and 3 main stresses as factor set and choosing various operators, comparison of directions of computational stress vector and survey stress vector was made and the most possible tectonic stress pattern was obtained. Taking the 26 types of tectonic stress patterns as index set and strike angle as factor set, comparison of relationships between formation of fault and tectonic stress was made,and the tectonic stress patterns were assessed with known fault information. By summarizing the above assessment results, the most impossible tectonic stress pattern was obtained . Finally an engineering case was quoted to validate that the method is more feasible and reliable than traditional empirical method.
基金The Development Program on National Key Basic Researches under the Project Mechanism and Prediction of Continental Strong Earthquakes (G19980407).
文摘The India plates continuous motion to the north, the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation on the uplifted plateau are regarded as main driving forces that make the patterns of stress field of East Asia continent at present time. The method of numerical simulation is used to study the deformation and the stress field of East Asia continent under different boundary conditions, different denudation coefficients and different rock mechanics parameters within a trapezoid geological frame. Comparing with the results obtained by modern space geodetic technique (such as GPS) the results derived from seismological data show that the predicted data by our model can fit them very well. The degree of the fitness in the west is better than that in the east. These results imply that the main driving force of the deformation and the stress patterns of the west part of East Asia continent may come from the collision and compression between the India and the Eurasia plates. The interaction to the Pacific and the Philippines plates in the east part need to be considered. It also shows that the convective removal to the thickening lithosphere caused by small-scale mantle convection and the effect of denudation cannot be negligible in the evolution of the stress patterns.
基金the Ministry of Education, Culture, Sports, Science and Technology (Monbukagakusho) of Japan for its financial support of this research.
文摘A two-dimensional finite element method (FEM) model that incorporates faults, elastic rock physical properties, topographical load due to gravity and far-field plate velocity boundary conditions was used to recognize the seismogenic stress state along the fold-and-thrust belt of the Precordillera-Sierras Pampeanas ranges of western Argentina. A plane strain model with nine experiments was presented here to examine the fault strength with two major rock phyical properties: cohesion and angle of internal friction. Mohr-Coulomb failure criterion with bulk rock properties were applied to analyse faults. The stress field at any point of the model was assumed to be comprised of gravitational and tectonic components. The analysis was focused to recognize the seismogenic shear strain concentrated in the internal-cristaline domain of the orogene shown by the modeling. Modeling results are presented in terms of four parameters, i. e., (i) distributions, orientations, and magnitudes of principal stresses (σ1 and σ3), (ii) displacement vector1 (iii) strain distribution, and (iv) maximum shear stress (τmax) contour line within the model. The simulation results show that the compressive stress is distributed in and around the fault systems. The overall orientation of of σ1 is in horizontal directions, although reorientations do occur within some stress weaker parts, especially subsequent to the faults. A large-scale shear stress is accumulating along the active faults of Tapias-Villicum Fault (TVF), Salinas-Berros Fault (SBF), Ampacama-Niquizanga Fault (ANF) and Las Charas Fault (CF), which could act as local stress and strain modulators to localize the earthquakesoccurrence.
基金Under the auspices of National Science and Technology Support Projects of China(No.2014BAL01B01C)
文摘By considering numerical features, spatial variation, and spatial association, the spatial patterns of China's irrigation water withdrawals in 2001 and 2010 were explored at the regional, provincial, and prefectural scales. In addition, an overlay analysis was used to develop specific water-saving guidance for areas under different levels of water stress and with different degrees of irrigation water withdrawals. It was found that at the regional scale, irrigation water withdrawals were highest in the Middle-Lower Yangtze River region in both years, while at the provincial scale, the largest irrigation water withdrawals occurred in Xinjiang. During 2001–2010, the total of irrigation water withdrawals decreased; however, in the Northeast region, especially in Heilongjiang Province, it experienced a dramatic increase. The spatial variation was largest at the prefectural scale, with an apparent effect. The spatial association was globally negative at the provincial scale, and Xinjiang was the only significant high-low outlier. In contrast, the association displayed a significant positive relationship at the prefectural scale, and several clusters and outliers were detected. Finally, it was found that the water stress in the northern part of China worsened and water-saving irrigation techniques urgently need to be applied in the Northeast region, the Huang-Huai-Hai Plain region, and Gansu-Xinjiang region. This study verified that a multi-scale and aspect analysis of the spatial patterns of irrigation water withdrawals were essential and provided water-saving advice for different areas.
基金supported by the National Natural Science Foundations of China (10972020,11061130550)Fundamental Research Funds for the Central UniversitiesNational Agency for Research of France (International project T-shock)
文摘The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm×50 mm exhibit parallel through edge cracks, and thus permit quantitative measurements of the crack patterns. The cracks evolve with the severity of ther- mal shock. It is found that there is a correlation between the length and density of the thermal shock cracks. The increase of crack length weakens the residual strength, whereas the increase of crack density improves it. In a considerably wide temperature range, the two contrary effects just counteract each other; consequently a plateau appears in the variation curve of the residual strength. A comparison between the numerical and experimental results of the residual strength is made, and they are found in good agreement. This work is helpful to a deep understanding of the thermal shock failure of ceramics.
基金National 305 projection of Xinjiang Uygur Autonomous Region !(96-915-0703) Chinese Joint Seismological Science Foundation, b
文摘The latest geopotential model, EGM96, was employed to compute the free-air gravity anomaly, geoidal separation, the average density anomalies of the crust and the uppermost mantle, and the distribution pattern of the viscous stress exerted by mantle convection over Xinjiang and its neighboring areas. Based on these results and other data, we try to interpret the geodynamical features of the Tianshan orogen. Our research suggests that the Tianshan orogen is in a tectonic setting of compressive settling, driven by mantle convection. Under the effect of the compressive stress field, asymmetric in north-south direction, the Tianshan orogen upheaved quickly. The center of compressive stress field is in the south of the Tianshan, and the characteristic of stress field is favorable for the view point that the Tarim plat subducts beneath the Tianshan. The southern margin of the Juggar basin and the northern margin of the Tarim basin are two areas where the crust is of mass deficiency. We attribute the mass deficiency to the fact that the crust, in both the north and the south of the Tianshan is bent downwards under the compressive stress. Our research also indicates that the density distribution patterns in the deep of the eastern Tianshan are different from those in the middle and western Tianshan. It may be explained as the results from the east-west oriented distinction of the mantle convection.