A reasonable unsupported roof distance(URD) when advancing underground coal mine roadways can contribute greatly to safe and rapid roadway development.A mechanical model of the roof,using the relationship between the ...A reasonable unsupported roof distance(URD) when advancing underground coal mine roadways can contribute greatly to safe and rapid roadway development.A mechanical model of the roof,using the relationship between the roof stress distribution and URD,obtained by the difference method,and roof stability according to the in-situ roof stress and rock mass strength was developed.We subsequently designed a proper range of URD,developed a testing method of URD with the function of mining protection,evaluated roof stability through analyzing the test data and then determined a reasonable URD.Considering the factors of the geological conditions,the immediate roof stability and the efficiency of the labor arrangement system,the URD of the advancing roadway of 9802 working face in Zhangshuanglou coal mine was determined to be 6 m using the proposed method.The results show that,when a 2 m length of roadway was reinforced by temporary support and high pre-stressed bolt support after the roadway advancement of 6 m per cycle,the speed and the security of the roadway development can be achieved and the advance rate can reach more than 400 m per month.展开更多
Asphalt mixture is the most widely used pavement material all over the world. In China, more than 90% of service expressways are asphalt pavement. However, current asphalt pavement design method still has irrationalit...Asphalt mixture is the most widely used pavement material all over the world. In China, more than 90% of service expressways are asphalt pavement. However, current asphalt pavement design method still has irrationality. Even though maximum tensile stress theory is used as failure criterion, pavement structure under the effects of wheel load is in three-dimensional complex stress state. Obviously, one-dimensional strength theory cannot reflect the failure characteristics and the resistance of pavement structure. So it is necessary to study the failure criterion of asphalt mixture under three-dimensional com- plex stress state. Due to limitations of test equipment, there are almost no studies in related area. Under this background, this paper develops a new triaxial test method, ac- cording to the investigation of strength characteristics of asphalt mixture under complex stress state through plane isobaric/axial tensile test, plane isobaric/axial compression test, plane tensile and compression/axial tensile test, to reveal the general rules of asphalt mixture's strength failure. The failure mode is divided into three types: tensile failure, shear failure and rheological failure. The tensile meridian and compression meridian in the stress space and strength envelope in the π plane where hydrostatic pressure is greater than zero are obtained, and the failure criterion of asphalt mixture under complex stress state is established, providing theoretical method and scientific basis for structure design as well as strength check of asphalt pavement under three-dimensional stress state.展开更多
基金supported by the State Key Laboratory of Coal Resources and Sate Mining,China University of Mining and Technology (No.SKLCRSM13X07)the National Natural Science Foundation of China (No.51174195)+1 种基金Chinese National Programs for Fundamental Research and Development (No.2013CB227900)the Fundamental Research Funds for the Central Universities (No.2014XT01)
文摘A reasonable unsupported roof distance(URD) when advancing underground coal mine roadways can contribute greatly to safe and rapid roadway development.A mechanical model of the roof,using the relationship between the roof stress distribution and URD,obtained by the difference method,and roof stability according to the in-situ roof stress and rock mass strength was developed.We subsequently designed a proper range of URD,developed a testing method of URD with the function of mining protection,evaluated roof stability through analyzing the test data and then determined a reasonable URD.Considering the factors of the geological conditions,the immediate roof stability and the efficiency of the labor arrangement system,the URD of the advancing roadway of 9802 working face in Zhangshuanglou coal mine was determined to be 6 m using the proposed method.The results show that,when a 2 m length of roadway was reinforced by temporary support and high pre-stressed bolt support after the roadway advancement of 6 m per cycle,the speed and the security of the roadway development can be achieved and the advance rate can reach more than 400 m per month.
基金supported by the Key Program of National Natural Science Foundation of China (51038002)National Natural Science Foundation of China (50808026, 11072041, 51208066)+1 种基金supported by Open Fund of the Key Laboratory of Highway Engineering of Ministry of Education, Changsha University of Science & Technology (kfj130103)the Planned Science and Technology Project of Hunan Province (2014TT2032)
文摘Asphalt mixture is the most widely used pavement material all over the world. In China, more than 90% of service expressways are asphalt pavement. However, current asphalt pavement design method still has irrationality. Even though maximum tensile stress theory is used as failure criterion, pavement structure under the effects of wheel load is in three-dimensional complex stress state. Obviously, one-dimensional strength theory cannot reflect the failure characteristics and the resistance of pavement structure. So it is necessary to study the failure criterion of asphalt mixture under three-dimensional com- plex stress state. Due to limitations of test equipment, there are almost no studies in related area. Under this background, this paper develops a new triaxial test method, ac- cording to the investigation of strength characteristics of asphalt mixture under complex stress state through plane isobaric/axial tensile test, plane isobaric/axial compression test, plane tensile and compression/axial tensile test, to reveal the general rules of asphalt mixture's strength failure. The failure mode is divided into three types: tensile failure, shear failure and rheological failure. The tensile meridian and compression meridian in the stress space and strength envelope in the π plane where hydrostatic pressure is greater than zero are obtained, and the failure criterion of asphalt mixture under complex stress state is established, providing theoretical method and scientific basis for structure design as well as strength check of asphalt pavement under three-dimensional stress state.