Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has...Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.展开更多
Solid solution strengthening is one of the most conventional strategies for optimizing alloys strength,while the corresponding mechanisms can be more complicated than we traditionally thought specifically as heterogen...Solid solution strengthening is one of the most conventional strategies for optimizing alloys strength,while the corresponding mechanisms can be more complicated than we traditionally thought specifically as heterogeneity of microstructure is involved.In this work,by comparing the change of chemical distribution,dislocation behaviors and mechanical properties after doping equivalent amount of tungsten(W)atoms in CrCoNi alloy and pure Ni,respectively,it is found that the alloying element W in CrCoNi alloy resulted in much stronger strengthening effect due to the significant increase of heterogeneity in chemical distribution after doping trace amount of W.The large atomic scale concentration fluctuation of all elements in CrCoNi-3W causes dislocation motion via strong nanoscale segment detrapping and severe dislocation pile up which is not the case in Ni-3W.The results revealed the high sensitivity of elements distribution in multi-principle element alloys to composition and the significant consequent influence in tuning the mechanical properties,giving insight for complex alloy design.展开更多
In the present study,we selected solutes to be added to the Cr Co Ni medium-entropy alloy(MEA)based on the mismatch of self-diffusion activation energy(SDQ)between the alloying elements and constituent elements of the...In the present study,we selected solutes to be added to the Cr Co Ni medium-entropy alloy(MEA)based on the mismatch of self-diffusion activation energy(SDQ)between the alloying elements and constituent elements of the matrix,and then investigated their grain growth behavior and mechanical properties.Mo and Al were selected as the solutes for investigation primarily because they have higher and lower SDQ,respectively,than those of the matrix elements;a secondary factor was their higher and lower shear modulus.Their concentrations were fixed at 3 at.%each because previous work had shown these compositions to be single-phase solid solutions with the face-centered cubic structure.Three alloys were produced by arc melting,casting,homogenizing,cold rolling and annealing at various temperatures and times to produce samples with different grain sizes.They were(a)the base alloy Cr Co Ni,(b)the base alloy plus 3 at.%Mo,and(c)the base alloy plus 3 at.%Al.The activation energies for grain growth of the Cr Co Ni,Cr Co Ni-3Mo and CrCo Ni-3Al MEAs were found to be^251,~368 and^219 k J/mol,respectively,consistent with the notion that elements with higher SDQ(in this study Mo)retard grain growth(likely by a solute-drag effect),whereas those with lower values(Al)accelerate grain growth.The roomtemperature tensile properties show that Mo increases the yield strength by^40%but Al addition has a smaller strengthening effect consistent with their relative shear moduli.The yield strength as a function of grain size for the three single-phase MEAs follows the classical Hall-Petch relationship with much higher slopes(>600 MPaμm-0.5)than traditional solid solutions.This work shows that the grain growth kinetics and solid solution strengthening of the Cr Co Ni MEA can be tuned by selecting solute elements that have appropriate diffusion and physical properties.展开更多
The mechanical behaviors and damping capacities of the binary Mg−Ga alloys with the Ga content ranging from 1 to 5 wt.%were investigated by means of optical microscope(OM),scanning electron microscope(SEM),X-ray diffr...The mechanical behaviors and damping capacities of the binary Mg−Ga alloys with the Ga content ranging from 1 to 5 wt.%were investigated by means of optical microscope(OM),scanning electron microscope(SEM),X-ray diffraction(XRD),hardness test,tensile test and dynamic mechanical analyzer(DMA).The hardness(HV_(0.5))increases with the increase of Ga content,which can be described as HV_(0.5)=41.61+10.35c,and the solid solution strengthening effect∆σ_(s)of the alloy has a linear relationship with c^(n),where c is the molar fraction of solute atoms and n=1/2 or 2/3.Ga exhibits a stronger solid solution strengthening effect than Al,Zn or Sn due to the large atomic radius difference and the modulus mismatch between Ga and Mg atoms.The addition of Ga makes the Mg−Ga alloys have better damping capacity,and this phenomenon can be explained by the Granato−Lücke dislocation model.The lattice distortion and the modulus mismatch generated because of the addition of Ga increase the resistance to motion of the dislocation in the process of swinging or moving,and thus the better damping capacity is acquired.展开更多
Solid solution strengthening(SSS)is one kind of strengthening mechanisms and plays an important role in alloy design,in particular for single-phase alloys including high-entropy alloys(HEAs).The classical Labusch–Nab...Solid solution strengthening(SSS)is one kind of strengthening mechanisms and plays an important role in alloy design,in particular for single-phase alloys including high-entropy alloys(HEAs).The classical Labusch–Nabarro model and its expansions are most widely applicable to treating SSS of solid solution alloys including both conventional alloys(CAs)and HEAs.In this study,the SSS effects in a series of Febased CAs and HEAs are investigated by using the classical Labusch–Nabarro model and its expansions.The size misfit and shear modulus misfit parameters are derived from first-principles calculations.Based on available experimental data in combination with empirical SSS model,we propose fitting constants(i.e.,the ratio between experimental hardness and predicted SSS effect)for these two families of alloys.The predicted host/alloy family-dependent fitting constants can be used to estimate the hardness of these SSS alloys.General agreement between predicted and measured hardness values is satisfactory for both CAs and HEAs,implying that the proposed approach is reliable and successful.展开更多
An analytical model is established to study the influence of lattice distortion and fraction of Hf on the yield strength of the BCC TiNbTaZrHfx multi-component high entropy alloys (HEAs). Meanwhile, the mechanism of...An analytical model is established to study the influence of lattice distortion and fraction of Hf on the yield strength of the BCC TiNbTaZrHfx multi-component high entropy alloys (HEAs). Meanwhile, the mechanism of solid solution strengthening caused by lattice distortion is also discussed in the HEA. The distorted unit cell is introduced to indicate the lattice distortion effects induced by the differences of the atomic size and shear modulus by doping other elements in Ti-based metal. The results show that the calculated values of the alloying yield strength considering the path of least resistance are obtained with regard to various grain sizes for the equiatomic TiNbTaZrHf HEA, which is well in line with the experimental results. Furthermore, it is predicted that the alloying yield strength is the largest value in the case of the same grain size for the Hf atomic fraction of 0.122. The meaningful modeling could provide a theoretical method to investigate the yield strength and alloying design of other BCC HEAs in the future.展开更多
Pt-Ir alloy is potential superalloys used above 1300℃because of their high strength and creep resistance.However,the ductility of Pt-Ir alloy has rapidly deteriorated with the increase of Ir,resulting in poor machina...Pt-Ir alloy is potential superalloys used above 1300℃because of their high strength and creep resistance.However,the ductility of Pt-Ir alloy has rapidly deteriorated with the increase of Ir,resulting in poor machinability.This work quantitatively evaluated the solid solution strengthening(SSS)and grain refinement strengthening(GRS)of Pt-Ir alloy using first-principles calculations combined with experimental characterization.Here,the stretching force constants in the second nearest neighbor region(SFC^(2nd))of pure Ir(193.7 eV·nm^(-2))are 3.40 times that of pure Pt(57.0 eV·nm^(-2)),i.e.,the interatomic interaction is greatly enhanced with the increase of Ir content,which leads to the decrease of ductility,and modulus misfit plays a dominant role in SSS.Then,the physical mechanisms responsible for the hardness(H_(V))of Pt-Ir alloy,using the power-law-scaled function of electron work function coupled SSS and GRS,are attributed to the electron redistribution caused by different Ir content.Furthermore,a thorough assessment of the thermodynamic characteristics of Pt-Ir binary alloy was conducted,culminating in development of a mapping model that effectively relates enmposition,temperature and strength.The results revealed that the compressive strength incrcases with the Ir content,and the highest strength was observed in Pt_(0.25)Ir_(0.75).This study provides valuable insights into the Pt-Ir alloy system.展开更多
Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-...Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.展开更多
Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and...Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and Labusch’s theories,while the model parameters are incorporated without fitting to experimental data of complex alloys.In thiswork,four diffusionmultiples consisting of multicomponent alloys and pure Niare prepared and characterized.The composition and microhardness of singleγphase regions in samples are used to quantify the SSS.Then,Fleischer’s and Labusch’s theories are examined based on high-throughput experiments,respectively.The fitted solid solution coefficients are obtained based on Labusch’s theory and experimental data,indicating higher accuracy.Furthermore,six machine learning algorithms are established,providing a more accurate prediction compared with traditional physical models and fitted physical models.The results show that the coupling of highthroughput experiments and machine learning has great potential in the field of performance prediction and alloy design.展开更多
In this study,a novel Ni-W-Co-Mo medium heavy alloy(MHA)was designed to improve its mechanical strength via Mo doping.In the Ni-42W-10Co-x Mo alloy series,where x represents the weight percent of Mo and varies between...In this study,a novel Ni-W-Co-Mo medium heavy alloy(MHA)was designed to improve its mechanical strength via Mo doping.In the Ni-42W-10Co-x Mo alloy series,where x represents the weight percent of Mo and varies between 0,1,2,5,and 10,the microstructure transitions from a dendritic structure to a hypo-eutectic structure as the Mo content increases from 0 to 5wt.%.Moreover,as the Mo content increases from 0 to 10wt.%,the distribution of theμ-phase shifts from being individually dispersed to forming aggregates,and its volume fraction rises from 0.5%to 7.9%.Notably,theμ-phase evolves into an eutectic microstructure,which helps in minimizing the segregation of elements.This change is accompanied by a substantial enhancement in mechanical properties;specifically,the compressive yield strength at room temperature increases from 350 MPa to 646 MPa,indicating a significant 85%increase.Similarly,the microhardness increases from 230 HV to 304 HV.Molecular dynamics simulations further reveal that the strengthening mechanism of Ni-42W-10Co-x Mo alloys is Mo-induced solid solution strengthening and precipitation strengthening.展开更多
The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microsco...The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The results suggest that yield strength increases and then decreases with the increment of Ti content.The Ti_(60)(AlVCr)_(40)alloy has the best combination of high strength of 1204 MPa and uniform plastic strain of 70%,possessing a high specific yield strength of 255 MPa·cm^(3)/g.The enhancement of strength is mainly attributed to the synergic effects of solid-solution and coherent nano-precipitation strengthening,while dislocation motion such as dislocation pinning,entanglement and dislocation cells significantly increases the strain-hardening capacity.展开更多
Both solute-segregated long-period stacking ordered(LPSO)structure and stacking faults(SFs)are essential in strengthening rare-earth(RE)Mg alloys.Herein,LPSO-enriched Mg and SFs-enriched Mg are fabricated and comparab...Both solute-segregated long-period stacking ordered(LPSO)structure and stacking faults(SFs)are essential in strengthening rare-earth(RE)Mg alloys.Herein,LPSO-enriched Mg and SFs-enriched Mg are fabricated and comparably investigated for fatigue performances.During fatigue,the Mg nanolayers between LPSO lamellae or SFs act as the gliding channels of dislocations.However,SFs-enriched Mg exhibits outstanding fatigue strength due to solute strengthening within Mg nanolayers.Solute strengthening is assumed to contribute to the local accumulation of basal dislocations and the activation of non-basal dislocations.Dislocations are restricted locally and cannot glide long distances to specimen surfaces,which mitigates fatigue-induced extrusions and slip markings,ultimately leading to an increase in fatigue strength.These findings guide the development of RE-Mg alloys towards a synergy between high tensile and high fatigue performances.展开更多
The synergistic effect of low Gd+Mn additions on the evolution of microstructure and mechanical properties of Mg−xGd−0.8Mn alloy was investigated.Gd addition shows a strong grain refinement effect on the extruded Mg−x...The synergistic effect of low Gd+Mn additions on the evolution of microstructure and mechanical properties of Mg−xGd−0.8Mn alloy was investigated.Gd addition shows a strong grain refinement effect on the extruded Mg−xGd−0.8Mn alloy,and leads to a continuous decrease in the area fraction of basal texture grains and the corresponding maximum density of texture components.However,the maximum density of the basal texture components grows abruptly as Gd content increases to 6 wt.%.When the Gd content is below 6 wt.%,the asymmetry of the tensile and compressive yield of the alloy is negatively correlated to the Gd content due to grain refinement and texture weakening effects.Besides,the contribution of grain refinement to higher alloy yield strength is more significant than that of grain orientation.Compared with the extruded Mg−xGd alloy,the extruded Mg−xGd−0.8Mn alloy shows a lower limit composition point that corresponds to solid solution strengthening and plasticizing effect(2 wt.%and 4 wt.%).Finally,the trend of basal slip and prismatic slip resistance variations of the extruded Mg−xGd−0.8Mn alloys was predicted.展开更多
Magnesium-lithium(Mg-Li) alloy,as the lightest metal structure material,has unparalleled market prospects in aerospace,weapons and equipment,electronic technology,transportation,and many other fields.However,it is har...Magnesium-lithium(Mg-Li) alloy,as the lightest metal structure material,has unparalleled market prospects in aerospace,weapons and equipment,electronic technology,transportation,and many other fields.However,it is hard to balance the superlight and high strength of Mg-Li alloy,and the inferior high-temperature strength and poor high-temperature stability limit the wide application of Mg-Li alloy.At present,the main methods to improve the mechanical properties of Mg-Li alloy are alloying,grain refinement,and compound strengthening.The domestic and overseas research progress in the strengthening and toughening methods and mechanisms of Mg-Li alloy are reviewed,and the future development of the high strength and high toughness Mg-Li alloy is prospected.展开更多
In the current work,a parallel comparison of the influence of Al,Mo and Ti,on the microstructure and strengthening of the CoCrFeNi alloy was conducted.To achieve this,inconsistencies on variables including the extent ...In the current work,a parallel comparison of the influence of Al,Mo and Ti,on the microstructure and strengthening of the CoCrFeNi alloy was conducted.To achieve this,inconsistencies on variables including the extent of alloying,thermomechanical processing and property-evaluation method were avoided.Microstructurally,following cold-rolling,annealing of the 4 at.%Al-doped alloys at 800-1000℃ did not result in phase separation;nevertheless,that of the 4 at.%Mo-and Ti-doped alloys led to the respective formation ofσandηphase and,consequently,caused extra strengthening through the Orowan dislocation bypassing mechanism.Our systematic qualitative analysis and DFT calculations showed that Al and Ti are more effective than Mo in reducing the stacking fault energy(SFE)of the CoCrFeNi alloy,because they can induce more considerable deformation of electronic density,making the gliding of atomic layers easier.Following identical thermomechnical processing,Al-,Mo-,and Ti-doping causes different extent of solid solution strengthening and grain boundary strengthening.Mo causes the most pronounced solid solution strengthening but does not benefit the grain boundary strengthening;in contrast,the effectiveness of grain boundary strengthening is boosted by the doping Al and Ti.Current analyses support that Labusch instead of Fleischer mechanism is applicable to explain the differences in solid solution strengthening,and the observed differences in grain boundary strengthening arise from the different tendency of Al,Mo and Ti to reduce the SFE of CoCrFeNi.In addition,we determined the value of the dimensionless parameter f in the Labusch model for CoCrFeNi-based alloys and observed a close relation between Hall-Petch slope and SFE.Although more in-depth studies are needed to provide full and mechanistic understandings,both these findings in fact presents significant values toward designing novel singlephase high-strength CoCrFeNi-based alloys through manipulating the solid solution and grain boundary strengthening by compositional tuning.展开更多
Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect o...Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.展开更多
The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical ...The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical microscopy and transmissionelectron microscopy. The results reveal that Mg has a strong influence on the distribution and volume fraction of dispersoids duringprecipitation heat treatment. The microhardness and yield strength at ambient temperature increase with increasing Mg content. Thesolid solution and dispersoid strengthening mechanisms of materials after heat treatment are quantitatively analyzed. Dispersoidstrengthening for the alloys is the predominant strengthening mechanism after precipitation heat treatment. An analytical model isintroduced to predict the evolution of ambient-temperature yield strength.展开更多
Room temperature tensile tests were carried on the hot-rolled state ultra-low carbon and low alloy cabainite and martensite steels which were get by different finishing temperatures and different cooling methods.We us...Room temperature tensile tests were carried on the hot-rolled state ultra-low carbon and low alloy cabainite and martensite steels which were get by different finishing temperatures and different cooling methods.We used the Scanning Electron Microscopy (SEM),Electron Backscattered Diffraction (EBSD) and X-Ray Diffractometer (XRD) to identify the metallographic structure and analyse the precipitated phase.The inherent mechanism of high strength of ultra-low carbon and low alloy bainite and martensite steels was discussed,and the analysis indicated that the reinforcement of ultra-low carbon and low alloy bainite and martensite steels was mainly produced by the superposition of the dislocation strengthening,solution strengthening and grain refinement strengthening.展开更多
The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the p...The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the phase stability,stacking fault energy(SFE),deformation mechanisms,lattice distortion,and mechanical properties of(CoCrNi)100-x Mox(0≤x≤10)MEAs was synthetically explored with the first-principles calculations.It indicates that the FCC phase remains metastable at 0 K,and its stability degenerates with increasing Mo content.The monotonous decrease of SFE is revealed with the rise of Mo content,which promotes the activation of stacking faults,deformation twinning,or martensitic transformation.Raising Mo content also causes the aggravation of lattice distortion and thus triggers in-tense solid solution strengthening.Significantly,the essential criterion for the composition design of FCC(CoCrNi)100-x Mo MEAs with superior strength-ductility combination was established based on the syner-gistic effects between multiple deformation mechanisms and solid solution strengthening.According to the criterion,the optimal composition is predetermined as(CoCrNi)93 Mo7 MEA.The criterion is proved to be effective,and it can provide valuable inspiration for the development of alloying-element reinforced FCC multi-principal element alloys.展开更多
The surface of AZ91 D magnesium alloy was remelted by plasma beam. The microstructure, composition, hardness, wear and corrosion resistance of the plasma remelted layer(PRL) were characterized. The results show that...The surface of AZ91 D magnesium alloy was remelted by plasma beam. The microstructure, composition, hardness, wear and corrosion resistance of the plasma remelted layer(PRL) were characterized. The results show that there is extremely fine and dendrite structure in the PRL at low magnification observation, which is still composed of α-Mg and β-Mg17Al12 phases. But at high magnification observation, the microstructure of the PRL is equiaxial crystalline grains with size of 3-5 μm. And also the content of α-Mg phase decreases while that of β-Mg17Al12 increases and distributes more uniformly in α-Mg matrix compared with the substrate. The hardness of the PRL is much higher than that of the substrate. There are plastic deformation, grains uprooting and tearing evidence with tiny even dimples in the tensile fracture of the PRL, which are different from the substrate. Furthermore, the surface wear and corrosion resistance of AZ91 D are improved significantly after plasma remelting.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22379019,52172184)Sichuan Science and Technology Program(No.2024YFHZ0313)S&T Special Program of Huzhou(No.2023GZ03)。
文摘Ultrathin Li-rich Li-Cu binary alloy has become a competitive anode material for Li metal batteries of high energy density.However,due to the poor-lithiophilicity of the single skeleton structure of Li-Cu alloy,it has limitations in inducing Li nucleation and improving electrochemical performance.Hence,we introduced Ag species to Li-Cu alloy to form a 30μm thick Li-rich Li-Cu-Ag ternary alloy(LCA)anode,with Li-Ag infinite solid solution as the active phase,and Cu-based finite solid solutions as three-dimensional(3D)skeleton.Such nano-wire networks with LiCu4 and CuxAgy finite solid solution phases were prepared through a facile melt coating technique,where Ag element can act as lithiophilic specie to enhance the lithiophilicity of built-in skeleton,and regulate the deposition behavior of Li effectively.Notably,the formation of CuxAgy solid solution can strengthen the structural stability of the skeleton,ensuring the geometrical integrity of Li anode,even at the fully delithiated state.Meanwhile,the Li-Ag infinite solid solution phase can promote the Li plating/stripping reversibility of the LCA anode with an improved coulombic efficiency(CE).The synergistic effect between infinite and finite solid solutions could render an enhanced electrochemical performance of Li metal batteries.The LCA|LCA symmetric cells showed a long lifespan of over 600 h with stable polarization voltage of 40 mV,in 1 mA·cm^(-2)/1 mAh·cm^(-2).In addition,the full cells matching our ultrathin LCA anode with 17.2 mg·cm^(-2)mass loading of LiFePO_(4) cathode,can continuously operate beyond 110 cycles at 0.5C,with a high capacity retention of 91.5%.Kindly check and confirm the edit made in the article title.
基金supported by National Natural Science Foundation of China[grant numbers 51671168,51871197]National Key Research and Development Program of China[grant number 2017YFA0208200]+1 种基金111 project[grant number B16042]the State Key Program for Basic Research in China[grant no.2015CB6593001]。
文摘Solid solution strengthening is one of the most conventional strategies for optimizing alloys strength,while the corresponding mechanisms can be more complicated than we traditionally thought specifically as heterogeneity of microstructure is involved.In this work,by comparing the change of chemical distribution,dislocation behaviors and mechanical properties after doping equivalent amount of tungsten(W)atoms in CrCoNi alloy and pure Ni,respectively,it is found that the alloying element W in CrCoNi alloy resulted in much stronger strengthening effect due to the significant increase of heterogeneity in chemical distribution after doping trace amount of W.The large atomic scale concentration fluctuation of all elements in CrCoNi-3W causes dislocation motion via strong nanoscale segment detrapping and severe dislocation pile up which is not the case in Ni-3W.The results revealed the high sensitivity of elements distribution in multi-principle element alloys to composition and the significant consequent influence in tuning the mechanical properties,giving insight for complex alloy design.
基金the U.S.Department of Energy,Office of Science,Basic Energy Sciences,Materials Sciences and Engineering Division,E.P.Georgethe National Nature Science Foundation of China(No.51971099)+3 种基金the open fund of State Key Laboratory for Advanced Metals and Materials(No.2018-ZD03),X.W.Liuthe National Nature Science Foundation of China(No.51975425),L.C.Zengthe open fund of State Key Laboratory of Materials Processing and Die&Mould Technology(P2019-005),H.Duthe Research and Development Program of Jiangxi Academy of Sciences(No.2020-YZD-23),Q.Hu。
文摘In the present study,we selected solutes to be added to the Cr Co Ni medium-entropy alloy(MEA)based on the mismatch of self-diffusion activation energy(SDQ)between the alloying elements and constituent elements of the matrix,and then investigated their grain growth behavior and mechanical properties.Mo and Al were selected as the solutes for investigation primarily because they have higher and lower SDQ,respectively,than those of the matrix elements;a secondary factor was their higher and lower shear modulus.Their concentrations were fixed at 3 at.%each because previous work had shown these compositions to be single-phase solid solutions with the face-centered cubic structure.Three alloys were produced by arc melting,casting,homogenizing,cold rolling and annealing at various temperatures and times to produce samples with different grain sizes.They were(a)the base alloy Cr Co Ni,(b)the base alloy plus 3 at.%Mo,and(c)the base alloy plus 3 at.%Al.The activation energies for grain growth of the Cr Co Ni,Cr Co Ni-3Mo and CrCo Ni-3Al MEAs were found to be^251,~368 and^219 k J/mol,respectively,consistent with the notion that elements with higher SDQ(in this study Mo)retard grain growth(likely by a solute-drag effect),whereas those with lower values(Al)accelerate grain growth.The roomtemperature tensile properties show that Mo increases the yield strength by^40%but Al addition has a smaller strengthening effect consistent with their relative shear moduli.The yield strength as a function of grain size for the three single-phase MEAs follows the classical Hall-Petch relationship with much higher slopes(>600 MPaμm-0.5)than traditional solid solutions.This work shows that the grain growth kinetics and solid solution strengthening of the Cr Co Ni MEA can be tuned by selecting solute elements that have appropriate diffusion and physical properties.
基金supported by the National Natural Science Foundation of China(Nos.51571089, 51871093)the Natural Science Foundation of Hunan Province, China(No. 2019JJ40044)
文摘The mechanical behaviors and damping capacities of the binary Mg−Ga alloys with the Ga content ranging from 1 to 5 wt.%were investigated by means of optical microscope(OM),scanning electron microscope(SEM),X-ray diffraction(XRD),hardness test,tensile test and dynamic mechanical analyzer(DMA).The hardness(HV_(0.5))increases with the increase of Ga content,which can be described as HV_(0.5)=41.61+10.35c,and the solid solution strengthening effect∆σ_(s)of the alloy has a linear relationship with c^(n),where c is the molar fraction of solute atoms and n=1/2 or 2/3.Ga exhibits a stronger solid solution strengthening effect than Al,Zn or Sn due to the large atomic radius difference and the modulus mismatch between Ga and Mg atoms.The addition of Ga makes the Mg−Ga alloys have better damping capacity,and this phenomenon can be explained by the Granato−Lücke dislocation model.The lattice distortion and the modulus mismatch generated because of the addition of Ga increase the resistance to motion of the dislocation in the process of swinging or moving,and thus the better damping capacity is acquired.
基金The National Natural Science Foundation of China(No.51871175)Opening Project of Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research,College of Stomatology,Xi’an Jiaotong University(No.2021LHM-KFKT005)+2 种基金the Innovation Fund of Materials Research of the Chinese Academy of Engineering Physics(No.CX201909)Fund of Key Laboratory of Surface Physics and Chemistry(No.XKFZ201902)are acknowledged for financial supportthe financial support of the US AFOSR(No.FA9550-20-1-0015)。
文摘Solid solution strengthening(SSS)is one kind of strengthening mechanisms and plays an important role in alloy design,in particular for single-phase alloys including high-entropy alloys(HEAs).The classical Labusch–Nabarro model and its expansions are most widely applicable to treating SSS of solid solution alloys including both conventional alloys(CAs)and HEAs.In this study,the SSS effects in a series of Febased CAs and HEAs are investigated by using the classical Labusch–Nabarro model and its expansions.The size misfit and shear modulus misfit parameters are derived from first-principles calculations.Based on available experimental data in combination with empirical SSS model,we propose fitting constants(i.e.,the ratio between experimental hardness and predicted SSS effect)for these two families of alloys.The predicted host/alloy family-dependent fitting constants can be used to estimate the hardness of these SSS alloys.General agreement between predicted and measured hardness values is satisfactory for both CAs and HEAs,implying that the proposed approach is reliable and successful.
基金support from the National Natural Science Foundation of China (No. 11372103 and 11572118)the Hunan Provincial Science Fund for Distinguished Young Scholars (No. 2015JJ1006)+1 种基金the Fok Ying-Tong Education Foundation, China (No. 141005)the project of Innovation-driven Plan of Central South University, the State Key Laboratory of Powder Metallurgy
文摘An analytical model is established to study the influence of lattice distortion and fraction of Hf on the yield strength of the BCC TiNbTaZrHfx multi-component high entropy alloys (HEAs). Meanwhile, the mechanism of solid solution strengthening caused by lattice distortion is also discussed in the HEA. The distorted unit cell is introduced to indicate the lattice distortion effects induced by the differences of the atomic size and shear modulus by doping other elements in Ti-based metal. The results show that the calculated values of the alloying yield strength considering the path of least resistance are obtained with regard to various grain sizes for the equiatomic TiNbTaZrHf HEA, which is well in line with the experimental results. Furthermore, it is predicted that the alloying yield strength is the largest value in the case of the same grain size for the Hf atomic fraction of 0.122. The meaningful modeling could provide a theoretical method to investigate the yield strength and alloying design of other BCC HEAs in the future.
基金financially supported by the Rare and Precious Metals Material Genetic Engineering Project of Yunnan Province(No.202102AB080019-1)Yunnan Fundamental Research Projects(Nos.202101AW070011 and 202101BE070001015)+4 种基金Yunnan Major Research and Development Plan(No.202203ZA080001)the Central guidance for Local Projects(No.202307AA110003)Yunnan laboratory project(YPML20220502157)the Major R&D Project of Yunnan Province(No.202302AB080021)the Major R&D Project of Yunnan Precious Metals Laboratory Co.,Ltd(No.YPML-2023050205)。
文摘Pt-Ir alloy is potential superalloys used above 1300℃because of their high strength and creep resistance.However,the ductility of Pt-Ir alloy has rapidly deteriorated with the increase of Ir,resulting in poor machinability.This work quantitatively evaluated the solid solution strengthening(SSS)and grain refinement strengthening(GRS)of Pt-Ir alloy using first-principles calculations combined with experimental characterization.Here,the stretching force constants in the second nearest neighbor region(SFC^(2nd))of pure Ir(193.7 eV·nm^(-2))are 3.40 times that of pure Pt(57.0 eV·nm^(-2)),i.e.,the interatomic interaction is greatly enhanced with the increase of Ir content,which leads to the decrease of ductility,and modulus misfit plays a dominant role in SSS.Then,the physical mechanisms responsible for the hardness(H_(V))of Pt-Ir alloy,using the power-law-scaled function of electron work function coupled SSS and GRS,are attributed to the electron redistribution caused by different Ir content.Furthermore,a thorough assessment of the thermodynamic characteristics of Pt-Ir binary alloy was conducted,culminating in development of a mapping model that effectively relates enmposition,temperature and strength.The results revealed that the compressive strength incrcases with the Ir content,and the highest strength was observed in Pt_(0.25)Ir_(0.75).This study provides valuable insights into the Pt-Ir alloy system.
基金financially supported by the National Key Research and Development Program of China(No.2021YFB3803101)the National Natural Science Foundation of China(Nos.52022011,51974028,and 52090041)+1 种基金the Xiaomi Young Scholars ProgramChina National Postdoctoral Program for Innovative Talents(No.BX20230042)。
文摘Solid solution-strengthened copper alloys have the advantages of a simple composition and manufacturing process,high mechanical and electrical comprehensive performances,and low cost;thus,they are widely used in high-speed rail contact wires,electronic component connectors,and other devices.Overcoming the contradiction between low alloying and high performance is an important challenge in the development of solid solution-strengthened copper alloys.Taking the typical solid solution-strengthened alloy Cu-4Zn-1Sn as the research object,we proposed using the element In to replace Zn and Sn to achieve low alloying in this work.Two new alloys,Cu-1.5Zn-1Sn-0.4In and Cu-1.5Zn-0.9Sn-0.6In,were designed and prepared.The total weight percentage content of alloying elements decreased by 43%and 41%,respectively,while the product of ultimate tensile strength(UTS)and electrical conductivity(EC)of the annealed state increased by 14%and 15%.After cold rolling with a 90%reduction,the UTS of the two new alloys reached 576 and 627MPa,respectively,the EC was 44.9%IACS and 42.0%IACS,and the product of UTS and EC(UTS×EC)was 97%and 99%higher than that of the annealed state alloy.The dislocations proliferated greatly in cold-rolled alloys,and the strengthening effects of dislocations reached 332 and 356 MPa,respectively,which is the main reason for the considerable improvement in mechanical properties.
基金supported by National Science and Technology Major Project (J2019-IV-0003-0070)the Natural Science Foundation of China (91860105,52074366)+4 种基金China Postdoctoral Science Foundation (2019M662799)Natural Science Foundation of Hunan Province of China (2021JJ40757)the Science and Technology Innovation Program of Hunan Province (2021RC3131)Changsha Municipal Natural Science Foundation (kq2014126)Project Supported by State Key Laboratory of Powder Metallurgy,Central South University,Changsha,China.
文摘Solid solution strengthening(SSS)is one of the main contributions to the desired tensile properties of nickel-based superalloys for turbine blades and disks.The value of SSS can be calculated by using Fleischer’s and Labusch’s theories,while the model parameters are incorporated without fitting to experimental data of complex alloys.In thiswork,four diffusionmultiples consisting of multicomponent alloys and pure Niare prepared and characterized.The composition and microhardness of singleγphase regions in samples are used to quantify the SSS.Then,Fleischer’s and Labusch’s theories are examined based on high-throughput experiments,respectively.The fitted solid solution coefficients are obtained based on Labusch’s theory and experimental data,indicating higher accuracy.Furthermore,six machine learning algorithms are established,providing a more accurate prediction compared with traditional physical models and fitted physical models.The results show that the coupling of highthroughput experiments and machine learning has great potential in the field of performance prediction and alloy design.
基金financially supported by the National Natural Science Foundation of China(Grant No.51771016)。
文摘In this study,a novel Ni-W-Co-Mo medium heavy alloy(MHA)was designed to improve its mechanical strength via Mo doping.In the Ni-42W-10Co-x Mo alloy series,where x represents the weight percent of Mo and varies between 0,1,2,5,and 10,the microstructure transitions from a dendritic structure to a hypo-eutectic structure as the Mo content increases from 0 to 5wt.%.Moreover,as the Mo content increases from 0 to 10wt.%,the distribution of theμ-phase shifts from being individually dispersed to forming aggregates,and its volume fraction rises from 0.5%to 7.9%.Notably,theμ-phase evolves into an eutectic microstructure,which helps in minimizing the segregation of elements.This change is accompanied by a substantial enhancement in mechanical properties;specifically,the compressive yield strength at room temperature increases from 350 MPa to 646 MPa,indicating a significant 85%increase.Similarly,the microhardness increases from 230 HV to 304 HV.Molecular dynamics simulations further reveal that the strengthening mechanism of Ni-42W-10Co-x Mo alloys is Mo-induced solid solution strengthening and precipitation strengthening.
基金supported by the National Natural Science Foundation of China(Nos.52071176,12072331,51771090,51671103)the Priority Academic Program Development(PAPD)of Jiangsu Higher Education Institutions,China.
文摘The effect of Ti content on the microstructure and mechanical properties of as-cast light-weight Ti_(x)(AlVCr)_(100−x)medium entropy alloys was studied by compressive tests,X-ray diffraction,scanning electron microscopy and transmission electron microscopy.The results suggest that yield strength increases and then decreases with the increment of Ti content.The Ti_(60)(AlVCr)_(40)alloy has the best combination of high strength of 1204 MPa and uniform plastic strain of 70%,possessing a high specific yield strength of 255 MPa·cm^(3)/g.The enhancement of strength is mainly attributed to the synergic effects of solid-solution and coherent nano-precipitation strengthening,while dislocation motion such as dislocation pinning,entanglement and dislocation cells significantly increases the strain-hardening capacity.
基金supported by National Natural Science Foundation of China(Nos.12102280,12172238,12332012)Postdoctoral Fellowship Program of CPSF(No.GZB20230473)+1 种基金Support of Ultramicroscopy Research Center(URC,Kyushu University)are highly acknowledged.Yao Chen acknowledges the support of JSPS Fellowship(No.JP22F22720)JSPS KAKENHI(No JP22K03828).
文摘Both solute-segregated long-period stacking ordered(LPSO)structure and stacking faults(SFs)are essential in strengthening rare-earth(RE)Mg alloys.Herein,LPSO-enriched Mg and SFs-enriched Mg are fabricated and comparably investigated for fatigue performances.During fatigue,the Mg nanolayers between LPSO lamellae or SFs act as the gliding channels of dislocations.However,SFs-enriched Mg exhibits outstanding fatigue strength due to solute strengthening within Mg nanolayers.Solute strengthening is assumed to contribute to the local accumulation of basal dislocations and the activation of non-basal dislocations.Dislocations are restricted locally and cannot glide long distances to specimen surfaces,which mitigates fatigue-induced extrusions and slip markings,ultimately leading to an increase in fatigue strength.These findings guide the development of RE-Mg alloys towards a synergy between high tensile and high fatigue performances.
基金National Natural Science Foundation of China(No.U2241231)National Key Research and Development Program of China(No.2021YFB3701100)+1 种基金Scientific Research Project of Jiangxi Provincial Department of Education,China(No.GJJ211038)Doctoral Research Project of Jinggangshan University,China(No.JZB2110)。
文摘The synergistic effect of low Gd+Mn additions on the evolution of microstructure and mechanical properties of Mg−xGd−0.8Mn alloy was investigated.Gd addition shows a strong grain refinement effect on the extruded Mg−xGd−0.8Mn alloy,and leads to a continuous decrease in the area fraction of basal texture grains and the corresponding maximum density of texture components.However,the maximum density of the basal texture components grows abruptly as Gd content increases to 6 wt.%.When the Gd content is below 6 wt.%,the asymmetry of the tensile and compressive yield of the alloy is negatively correlated to the Gd content due to grain refinement and texture weakening effects.Besides,the contribution of grain refinement to higher alloy yield strength is more significant than that of grain orientation.Compared with the extruded Mg−xGd alloy,the extruded Mg−xGd−0.8Mn alloy shows a lower limit composition point that corresponds to solid solution strengthening and plasticizing effect(2 wt.%and 4 wt.%).Finally,the trend of basal slip and prismatic slip resistance variations of the extruded Mg−xGd−0.8Mn alloys was predicted.
基金the National Natural Science Foundation of China(Nos.51771115,51775334,51821001 and U2037601)the Joint Fund for Space Science and Technology(No.6141B06310106)。
文摘Magnesium-lithium(Mg-Li) alloy,as the lightest metal structure material,has unparalleled market prospects in aerospace,weapons and equipment,electronic technology,transportation,and many other fields.However,it is hard to balance the superlight and high strength of Mg-Li alloy,and the inferior high-temperature strength and poor high-temperature stability limit the wide application of Mg-Li alloy.At present,the main methods to improve the mechanical properties of Mg-Li alloy are alloying,grain refinement,and compound strengthening.The domestic and overseas research progress in the strengthening and toughening methods and mechanisms of Mg-Li alloy are reviewed,and the future development of the high strength and high toughness Mg-Li alloy is prospected.
基金financially supported by the National Natural Science Foundation of China(No.51901077)the Science and Technology Innovation Platform and Talent Plan of Hunan Province(No.2019RS1020)+1 种基金the open project of State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body(No.71865003)Hunan University,Changsha,China.YG acknowledges support from NSF DMR 1809640。
文摘In the current work,a parallel comparison of the influence of Al,Mo and Ti,on the microstructure and strengthening of the CoCrFeNi alloy was conducted.To achieve this,inconsistencies on variables including the extent of alloying,thermomechanical processing and property-evaluation method were avoided.Microstructurally,following cold-rolling,annealing of the 4 at.%Al-doped alloys at 800-1000℃ did not result in phase separation;nevertheless,that of the 4 at.%Mo-and Ti-doped alloys led to the respective formation ofσandηphase and,consequently,caused extra strengthening through the Orowan dislocation bypassing mechanism.Our systematic qualitative analysis and DFT calculations showed that Al and Ti are more effective than Mo in reducing the stacking fault energy(SFE)of the CoCrFeNi alloy,because they can induce more considerable deformation of electronic density,making the gliding of atomic layers easier.Following identical thermomechnical processing,Al-,Mo-,and Ti-doping causes different extent of solid solution strengthening and grain boundary strengthening.Mo causes the most pronounced solid solution strengthening but does not benefit the grain boundary strengthening;in contrast,the effectiveness of grain boundary strengthening is boosted by the doping Al and Ti.Current analyses support that Labusch instead of Fleischer mechanism is applicable to explain the differences in solid solution strengthening,and the observed differences in grain boundary strengthening arise from the different tendency of Al,Mo and Ti to reduce the SFE of CoCrFeNi.In addition,we determined the value of the dimensionless parameter f in the Labusch model for CoCrFeNi-based alloys and observed a close relation between Hall-Petch slope and SFE.Although more in-depth studies are needed to provide full and mechanistic understandings,both these findings in fact presents significant values toward designing novel singlephase high-strength CoCrFeNi-based alloys through manipulating the solid solution and grain boundary strengthening by compositional tuning.
基金financial supports from the National Natural Science Foundation of China(Nos.51675092,51775099)the Natural Science Foundation of Hebei Province,China(Nos.E2018501032,E2018501033)。
文摘Mg−Zn−Cu−Zr−Ca samples were solidified under high pressures of 2-6 GPa.Scanning electron microscopy and electron backscatter diffraction were used to study the distribution of Ca in the microstructure and its effect on the solidification structure.The mechanical properties of the samples were investigated through compression tests.The results show that Ca is mostly dissolved in the matrix and the Mg_(2)Ca phase is formed under high pressure,but it is mainly segregated among dendrites under atmospheric pressure.The Mg_(2)Ca particles are effective heterogeneous nuclei ofα-Mg crystals,which significantly increases the number of crystal nuclei and refines the solidification structure of the alloy,with the grain size reduced to 22μm at 6 GPa.As no Ca segregating among the dendrites exists,more Zn is dissolved in the matrix.Consequently,the intergranular second phase changes from MgZn with a higher Zn/Mg ratio to Mg7Zn3 with a lower Zn/Mg ratio.The volume fraction of the intergranular second phase also increases to 22%.Owing to the combined strengthening of grain refinement,solid solution,and dispersion,the compression strength of the Mg-Zn-Cu-Zr-Ca alloy solidified under 6 GPa is up to 520 MPa.
基金the financial support of the Natural Sciences and Engineering Research Council of Canada (NSERC)Rio Tinto Aluminum through the NSERC Industry Research Chair in the Metallurgy of Aluminum Transformation at University of Quebec at Chicoutimi
文摘The effects of magnesium addition on the dispersoid precipitation as well as mechanical properties of 3xxx alloys wereinvestigated. The microstructures in as-cast and heat-treated conditions were evaluated by optical microscopy and transmissionelectron microscopy. The results reveal that Mg has a strong influence on the distribution and volume fraction of dispersoids duringprecipitation heat treatment. The microhardness and yield strength at ambient temperature increase with increasing Mg content. Thesolid solution and dispersoid strengthening mechanisms of materials after heat treatment are quantitatively analyzed. Dispersoidstrengthening for the alloys is the predominant strengthening mechanism after precipitation heat treatment. An analytical model isintroduced to predict the evolution of ambient-temperature yield strength.
文摘Room temperature tensile tests were carried on the hot-rolled state ultra-low carbon and low alloy cabainite and martensite steels which were get by different finishing temperatures and different cooling methods.We used the Scanning Electron Microscopy (SEM),Electron Backscattered Diffraction (EBSD) and X-Ray Diffractometer (XRD) to identify the metallographic structure and analyse the precipitated phase.The inherent mechanism of high strength of ultra-low carbon and low alloy bainite and martensite steels was discussed,and the analysis indicated that the reinforcement of ultra-low carbon and low alloy bainite and martensite steels was mainly produced by the superposition of the dislocation strengthening,solution strengthening and grain refinement strengthening.
基金the funding support for the work by the National Natural Science Foundation of China(NSFC)under Grant No.52071316the Youth Project of Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202300755)+1 种基金the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0697)the Project of Science Foundation in Chongqing Jiaotong University(Grant No.F1210023).
文摘The assistance of alloying elements provides enormous opportunities for the discovery of high-performance face-centered cubic(FCC)medium-entropy alloys(MEAs).In this work,the influence of al-loying element Mo on the phase stability,stacking fault energy(SFE),deformation mechanisms,lattice distortion,and mechanical properties of(CoCrNi)100-x Mox(0≤x≤10)MEAs was synthetically explored with the first-principles calculations.It indicates that the FCC phase remains metastable at 0 K,and its stability degenerates with increasing Mo content.The monotonous decrease of SFE is revealed with the rise of Mo content,which promotes the activation of stacking faults,deformation twinning,or martensitic transformation.Raising Mo content also causes the aggravation of lattice distortion and thus triggers in-tense solid solution strengthening.Significantly,the essential criterion for the composition design of FCC(CoCrNi)100-x Mo MEAs with superior strength-ductility combination was established based on the syner-gistic effects between multiple deformation mechanisms and solid solution strengthening.According to the criterion,the optimal composition is predetermined as(CoCrNi)93 Mo7 MEA.The criterion is proved to be effective,and it can provide valuable inspiration for the development of alloying-element reinforced FCC multi-principal element alloys.
基金Projects(51072104,51272141)supported by the National Natural Science Foundation of ChinaProject(ts20110828)supported by the Taishan Scholars Project of Shandong Province,ChinaProject(2015AA034404)supported by the Ministry of Science and Technology of China
文摘The surface of AZ91 D magnesium alloy was remelted by plasma beam. The microstructure, composition, hardness, wear and corrosion resistance of the plasma remelted layer(PRL) were characterized. The results show that there is extremely fine and dendrite structure in the PRL at low magnification observation, which is still composed of α-Mg and β-Mg17Al12 phases. But at high magnification observation, the microstructure of the PRL is equiaxial crystalline grains with size of 3-5 μm. And also the content of α-Mg phase decreases while that of β-Mg17Al12 increases and distributes more uniformly in α-Mg matrix compared with the substrate. The hardness of the PRL is much higher than that of the substrate. There are plastic deformation, grains uprooting and tearing evidence with tiny even dimples in the tensile fracture of the PRL, which are different from the substrate. Furthermore, the surface wear and corrosion resistance of AZ91 D are improved significantly after plasma remelting.