期刊文献+
共找到325篇文章
< 1 2 17 >
每页显示 20 50 100
Examining the impact of urban environment on healthy vitality of outdoor running based on street view imagery and urban big data
1
作者 GU Xinyue ZHU Lei LIU Xintao 《Journal of Geographical Sciences》 2025年第3期641-663,共23页
Urban environments offer a wealth of opportunities for residents to respite from their hectic life.Outdoor running or jogging becomes increasingly popular of an option.Impacts of urban environments on outdoor running,... Urban environments offer a wealth of opportunities for residents to respite from their hectic life.Outdoor running or jogging becomes increasingly popular of an option.Impacts of urban environments on outdoor running,despite some initial studies,remain underexplored.This study aims to establish an analytical framework that can holistically assess the urban environment on the healthy vitality of running.The proposed framework is applied to two modern Chinese cities,i.e.,Guangzhou and Shenzhen.We construct three interpretable random forest models to explore the non-linear relationship between environmental variables and running intensity(RI)through analyzing the runners'trajectories and integrating with multi-source urban big data(e.g.,street view imagery,remote sensing,and socio-economic data)across the built,natural,and social dimensions,The findings uncover that road density has the greatest impact on RI,and social variables(e.g.,population density and housing price)and natural variables(e.g.,slope and humidity)all make notable impact on outdoor running.Despite these findings,the impact of environmental variables likely change across different regions due to disparate regional construction and micro-environments,and those specific impacts as well as optimal thresholds also alter.Therefore,construction of healthy cities should take the whole urban environment into account and adapt to local conditions.This study provides a comprehensive evaluation on the influencing variables of healthy vitality and guides sustainable urban planning for creating running-friendly cities. 展开更多
关键词 street view imagery urban pavements healthy cities urban vitality running-friendly cities running intensity
原文传递
Local color and morphological image feature based vegetation identification and its application to human environment street view vegetation mapping, or how green is our county? 被引量:5
2
作者 Istvan G.Lauko Adam Honts +1 位作者 Jacob Beihoff Scott Rupprecht 《Geo-Spatial Information Science》 SCIE CSCD 2020年第3期222-236,I0003,共16页
Measuring the amount of vegetation in a given area on a large scale has long been accomplished using satellite and aerial imaging systems.These methods have been very reliable in measuring vegetation coverage accurate... Measuring the amount of vegetation in a given area on a large scale has long been accomplished using satellite and aerial imaging systems.These methods have been very reliable in measuring vegetation coverage accurately at the top of the canopy,but their capabilities are limited when it comes to identifying green vegetation located beneath the canopy cover.Measuring the amount of urban and suburban vegetation along a street network that is partially beneath the canopy has recently been introduced with the use of Google Street View(GSV)images,made accessible by the Google Street View Image API.Analyzing green vegetation through the use of GSV images can provide a comprehensive representation of the amount of green vegetation found within geographical regions of higher population density,and it facilitates an analysis performed at the street-level.In this paper we propose a fine-tuned color based image filtering and segmentation technique and we use it to define and map an urban green environment index.We deployed this image processing method and,using GSV images as a high-resolution GIS data source,we computed and mapped the green index of Milwaukee County,a 3,082 km^(2) urban/suburban county in Wisconsin.This approach generates a high-resolution street-level vegetation estimate that may prove valuable in urban planning and management,as well as for researchers investigating the correlation between environmental factors and human health outcomes. 展开更多
关键词 Urban environment mapping greenview index panoramic street view urban landscape urban planning
原文传递
Rapid visual screening of soft-story buildings from street view images using deep learning classification 被引量:2
3
作者 Qian Yu Chaofeng Wang +4 位作者 Frank McKenna Stella XYu Ertugrul Taciroglu Barbaros Cetiner Kincho HLaw 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2020年第4期827-838,共12页
Rapid and accurate identification of potential structural deficiencies is a crucial task in evaluating seismic vulnerability of large building inventories in a region. In the case of multi-story structures, abrupt ver... Rapid and accurate identification of potential structural deficiencies is a crucial task in evaluating seismic vulnerability of large building inventories in a region. In the case of multi-story structures, abrupt vertical variations of story stiffness are known to significantly increase the likelihood of collapse during moderate or severe earthquakes. Identifying and retrofitting buildings with such irregularities—generally termed as soft-story buildings—is, therefore, vital in earthquake preparedness and loss mitigation efforts. Soft-story building identification through conventional means is a labor-intensive and time-consuming process. In this study, an automated procedure was devised based on deep learning techniques for identifying soft-story buildings from street-view images at a regional scale. A database containing a large number of building images and a semi-automated image labeling approach that effectively annotates new database entries was developed for developing the deep learning model. Extensive computational experiments were carried out to examine the effectiveness of the proposed procedure, and to gain insights into automated soft-story building identification. 展开更多
关键词 soft-story building deep learning CNN rapid visual screening street view image
在线阅读 下载PDF
Perception of pleasure in the urban running environment with street view images and running routes 被引量:1
4
作者 ZHANG An SONG Liuyi ZHANG Fan 《Journal of Geographical Sciences》 SCIE CSCD 2022年第12期2624-2640,共17页
The urban environment affects human behavior and health.Most studies on the feelings of street spaces have not considered a specific kind of realistic scene,such as running.To overcome this limitation,we explored the ... The urban environment affects human behavior and health.Most studies on the feelings of street spaces have not considered a specific kind of realistic scene,such as running.To overcome this limitation,we explored the relationship between the urban environment and the pleasure of running.We collected 8260 street view images from 153 running routes in Beijing and invited more than 400 volunteers of different genders and ages to rate their sense of pleasure in street view images of the urban running environment through an online survey.Then,the proportion of visual elements in street images was extracted based on semantic segmentation,and the landscape was divided.Finally,a linear mixed model was used to predict the pleasure scores of different gender and age groups for different landscapes.The results show significant differences in the pleasure scores for different landscapes and age groups.Middle-aged people’s sense of pleasure was lower than that of the young and the elderly.More greenery was associated with a higher pleasure score,while the proportion of urban elements such as buildings was negatively correlated with the pleasure score.The results indicate that running in a natural landscape is pleasurable and beneficial for mental health. 展开更多
关键词 pleasure assessment running routes street view landscape types age groups
原文传递
Changes of Street Quality Based on Street View Images in Different Periods:A Case Study of Jingshan East Street,Dongcheng District,Beijing City
5
作者 HUANG Yuhong 《Journal of Landscape Research》 2023年第2期39-44,共6页
With the continuous calls for energy conservation and emission reduction in recent years,more and more people choose walking as their travel mode.The improvement of the quality of street space will directly affect peo... With the continuous calls for energy conservation and emission reduction in recent years,more and more people choose walking as their travel mode.The improvement of the quality of street space will directly affect people's willingness to walk.By sorting out relevant research on street quality measurement,extracting quality keywords with high frequency of reference as impact factors,and using street view image data from different eras,semantic segmentation technology,factor analysis,and questionnaire survey methods,this paper evaluates the street quality of Jingshan East Street,Dongcheng District,Beijing,further explores the impact of different factors on street quality,and analyzes possible ways to improve it. 展开更多
关键词 street quality street view image Semantic segmentation Factor analysis
在线阅读 下载PDF
Detecting window-to-wall ratio for urban-scale building simulations using deep learning with street view imagery and an automatic classification algorithm
6
作者 Anthony Robert Suppa Alessandro Aliberti +1 位作者 Marta Carla Bottero Vincenzo Corrado 《Building Simulation》 2025年第8期2175-2199,共25页
Machine learning techniques can fill data gaps for urban-scale building simulations,particularly gaps around window-to-wall ratio(WWR).This study presents a comprehensive workflow to(1)automatically extract and stitch... Machine learning techniques can fill data gaps for urban-scale building simulations,particularly gaps around window-to-wall ratio(WWR).This study presents a comprehensive workflow to(1)automatically extract and stitch images from Google Street View(GSV);(2)label images with a custom Rhino-based tool to aid annotation of occluded glazing;(3)detect wall,garage,and glazing objects by training and validating a YOLOv9 deep learning model with three added post-scripts;(4)calculate WWR at façade,building,and district scales;and(5)simulate district energy consumption in an urban building energy model(UBEM).Results include a 96%image-capture rate from GSV,indicating a robust extraction and stitching algorithm.Converting model detections into WWR,94%and 100%of façades have detected WWRs within±5%and±10%of ground truth WWRs,respectively.A novel automatic algorithm upscales façade detection to estimate WWR at non-street-facing sides and rears,resulting in distinct WWRs for each face of each building.For a case study in Turin,Italy,WWR detections are+5.2%and+6.9%greater when upscaling based on OpenStreetMap and municipal GIS data,respectively,compared to TABULA,leading to 1.5%and 35.5%increases in heating and cooling energy need in the UBEM.The workflow is made openly available to support future research in other contexts. 展开更多
关键词 building-and district-scale WWR machine learning street view imagery automatic image extraction and stitching building façade classification urban building energy modeling(UBEM)
原文传递
A novel approach for assessing color harmony of historical buildings via street view image 被引量:1
7
作者 Ruyi Yang Xinyan Deng +4 位作者 Hanyu Shi Zhuxuanzi Wang Haoyang He Jiaqi Xu Yang Xiao 《Frontiers of Architectural Research》 CSCD 2024年第4期764-775,共12页
While new buildings continue to emerge in the process of urbanization,historical buildings,as valuable legacies carrying national historical memory,play an important role in the urban landscape.Previous studies have s... While new buildings continue to emerge in the process of urbanization,historical buildings,as valuable legacies carrying national historical memory,play an important role in the urban landscape.Previous studies have shown that color harmony is a crucial factor in coordinating urban landscapes.However,the evaluation of color harmony in historic areas and buildings lacks effective quantitative standards,often overlooking factors such as complementary color harmony and the compatibility of analogous colors.This study aims to build a new method to evaluate the color harmony of historical buildings through street view technology,semantic segmentation algorithms,quantification of color harmony methods based on image property detection and classification,questionnaire verification,and takes Shanghai’s historical buildings as an example to explore.Our study categorizes six types of color harmony indexes for Shanghai street-facing historic buildings into three levels,with the top tier serving as a benchmark for excellence and the lowest tier highlighting areas in need of urban environmental improvement.This study uniquely considers color compatibility within hue ranges and expanded relationship types like complementary harmony.This approach,applicable to cities globally,offers practical tools for urban planners and conservators in managing and preserving historic areas and buildings. 展开更多
关键词 Historic buildings Historic area Color harmony street view technology Computer vision
原文传递
Evaluation of Street Space Renovation in Historic Areas Using Deep Learning Based on Street View Imagery in the Human Visual Field
8
作者 Zhu Xiaotong Bai Mei +2 位作者 Bai Yuxin Li Min(Translated) Liu Jiayan(Proofread) 《China City Planning Review》 CSCD 2024年第4期25-34,共10页
Regular evaluation of street space is essential for achieving sustainable development and dynamic maintenance of historic areas.Although quantitative evaluations using street view imagery are precise and efficient,the... Regular evaluation of street space is essential for achieving sustainable development and dynamic maintenance of historic areas.Although quantitative evaluations using street view imagery are precise and efficient,they often fall short in capturing pedestrians’visual experience,largely because images are collected from vehicles.Accordingly,this paper acquires street view imagery in the human visual field before and after the street space renovation by adjusting relevant parameters,and performs image semantic segmentation.From a pedestrian’s viewpoint,the paper develops street space evaluation indicators across four dimensions:comfort,identity,diversity,and walkability.The mean square deviation method is applied to assign weights to these indicators,enabling a comprehensive evaluation of street space in historic areas.In addition to evaluating the renovation results,it proposes improvement suggestions that may provide insights into the evaluation practices of street space renovations in historic areas and contribute to improving street space quality. 展开更多
关键词 street space human visual field street view imagery historic areas deep learning
原文传递
Panorama completion for street views 被引量:8
9
作者 Zhe Zhu Ralph R.Martin Shi-Min Hu 《Computational Visual Media》 2015年第1期49-57,共9页
This paper considers panorama images used for street views. Their viewing angle of 360° causes pixels at the top and bottom to appear stretched and warped. Although current image completion algorithms work well, ... This paper considers panorama images used for street views. Their viewing angle of 360° causes pixels at the top and bottom to appear stretched and warped. Although current image completion algorithms work well, they cannot be directly used in the presence of such distortions found in panoramas of street views. We thus propose a novel approach to complete such 360° panoramas using optimizationbased projection to deal with distortions. Experimental results show that our approach is efficient and provides an improvement over standard image completion algorithms. 展开更多
关键词 image completion PANORAMA street views structure-rectifying warp
原文传递
Exploring associations between streetscape factors and crime behaviors using Google Street View images 被引量:3
10
作者 Mingyu Deng Wei Yang +1 位作者 Chao Chen Chenxi Liu 《Frontiers of Computer Science》 SCIE EI CSCD 2022年第4期45-58,共14页
Understanding the influencing mechanism of the urban streetscape on crime is fairly important to crime prevention and urban management.Recently,the development of deep learning technology and big data of street view i... Understanding the influencing mechanism of the urban streetscape on crime is fairly important to crime prevention and urban management.Recently,the development of deep learning technology and big data of street view images,makes it possible to quantitatively explore the relationship between streetscape and crime.This study computed eight streetscape indexes of the street built environment using Google Street View images firstly.Then,the association between the eight indexes and recorded crime events was revealed with a poisson regression model and a geographically weighted poisson regression model.An experiment was conducted in downtown and uptown Manhattan,New York.Global regression results show that the influences of Motorization Index on crimes are significant and positive,while the effects of the Light View Index and Green View Index on crimes depend heavily on the socioeconomic factors.From a local perspective,the Pedestrian Space Index,Green View Index,Light View Index and Motorization Index have a significant spatial influence on crimes,while the same visual streetscape factors have different effects on different streets due to the combination differences of socioeconomic,cultural and streetscape elements.The key streetscape elements of a given street that affect a specific criminal activity can be identified according to the strength of the association.The results provide both theoretical and practical implications for crime theories and crime prevention efforts. 展开更多
关键词 CRIME Google street view streetSCAPE spatial analysis geographically weighted poisson regression
原文传递
A news picture geo-localization pipeline based on deep learning and street view images 被引量:2
11
作者 Tianyou Chu Yumin Chen +3 位作者 Heng Su Zhenzhen Xu Guodong Chen Annan Zhou 《International Journal of Digital Earth》 SCIE EI 2022年第1期1485-1505,共21页
Numerous news or event pictures are taken and shared on the internet every day that have abundant information worth being mined,but only a small fraction of them are geotagged.The visual content of the news image hint... Numerous news or event pictures are taken and shared on the internet every day that have abundant information worth being mined,but only a small fraction of them are geotagged.The visual content of the news image hints at clues of the geographical location because they are usually taken at the site of the incident,which provides a prerequisite for geo-localization.This paper proposes an automated pipeline based on deep learning for the geo-localization of news pictures in a large-scale urban environment using geotagged street view images as a reference dataset.The approach obtains location information by constructing an attention-based feature extraction network.Then,the image features are aggregated,and the candidate street view image results are retrieved by the selective matching kernel function.Finally,the coordinates of the news images are estimated by the kernel density prediction method.The pipeline is tested in the news pictures in Hong Kong.In the comparison experiments,the proposed pipeline shows stable performance and generalizability in the large-scale urban environment.In addition,the performance analysis of components in the pipeline shows the ability to recognize localization features of partial areas in pictures and the effectiveness of the proposed solution in news picture geo-localization. 展开更多
关键词 street view images geo-localization image retrieval social media
原文传递
Charting Disaster Recovery via Google Street View: A Social Science Perspective on Challenges Raised by the Fukushima Nuclear Disaster 被引量:1
12
作者 Leslie Mabon 《International Journal of Disaster Risk Science》 SCIE CSCD 2016年第2期175-185,共11页
There is increasing interest in using Google Street View(GSV) for research purposes, particularly with regard to ‘‘virtually auditing'' the built environment to assess environmental quality. Research in this... There is increasing interest in using Google Street View(GSV) for research purposes, particularly with regard to ‘‘virtually auditing'' the built environment to assess environmental quality. Research in this field to date generally suggests GSV is a reliable means of understanding the ‘‘real world'' environment. But limitations around the dates and resolution of images have been identified. An emerging strand within this literature is also concerned with the potential of GSV to understand recovery post-disaster. Using the GSV data set for the evacuated area around the Fukushima Dai'ichi nuclear power plant as a case study, this article evaluates GSV as a means of assessing disaster recovery in a dynamic situation with remaining uncertainty and a significant value and emotive dimension. The article suggests that GSV does have value in giving a high-level overview of the postdisaster situation and has potential to track recovery and resettlement over time. Drawing on social science literature relating to Fukushima, and disasters more widely, the article also argues it is imperative for researchers using GSV to reflect carefully on the wider socio-cultural contexts that are often not represented in the photo montage. 展开更多
关键词 Digital representation of place Fukushima nuclear disaster Google street view Post-disaster recovery Social dimensions of energy
原文传递
基于Photo Sphere Viewer的轻量化可量测街景系统研究
13
作者 刘一宁 王琳 岳照溪 《测绘通报》 CSCD 北大核心 2024年第S01期11-17,共7页
随着新型基础测绘体系发展,测绘技术和装备不断升级,大量街景数据随着车载激光扫描工作一并被采集。针对该数据路线随机性大、密集程度高等特点,以及传统街景地图系统插件受限、扩展性不强、无法量测等局限,本文设计了基于Photo Sphere ... 随着新型基础测绘体系发展,测绘技术和装备不断升级,大量街景数据随着车载激光扫描工作一并被采集。针对该数据路线随机性大、密集程度高等特点,以及传统街景地图系统插件受限、扩展性不强、无法量测等局限,本文设计了基于Photo Sphere Viewer的轻量化可量测街景系统,在开源插件的基础上实现了对其组件的扩充、实现了行进方向、地图交互等系统功能的设计优化,进一步实现了基于深度图的街景地图量测功能。生产作业队伍对系统的使用结果表明,该系统可以辅助生产作业队伍进行属性采集、纹理更新、数据检查等多项工作,操作灵活便捷,且具有较强的可扩展性,便于基于生产需求进行改进调整,提高了生产效率,为新型基础测绘成果进一步深化应用提供了良好的借鉴作用。 展开更多
关键词 Photo Sphere viewer 轻量化 街景量测 街景数据组织 新型基础测绘
原文传递
顾及绿视率的街道可步行性评价 被引量:2
14
作者 唐丽玉 黄子晴 苏宏霖 《西部人居环境学刊》 北大核心 2025年第1期58-64,共7页
城市绿地具有生态、景观和社会等多种服务功能,是健康城市环境的关键因素。街道绿地影响着步行环境的质量,是衡量步行舒适性的重要指标。绿视率为从人本视角量化绿化环境的描述因子。针对当前可步行性评价较少考虑步行环境这一问题,在... 城市绿地具有生态、景观和社会等多种服务功能,是健康城市环境的关键因素。街道绿地影响着步行环境的质量,是衡量步行舒适性的重要指标。绿视率为从人本视角量化绿化环境的描述因子。针对当前可步行性评价较少考虑步行环境这一问题,在步行指数评价方法的基础上,基于路网、兴趣点、百度街景等大数据,以步行指数表征街道功能,以绿视率表征街道环境,对街道可步行性进行综合评价。以福州市中心城区进行实例研究,对比综合评价方法与步行指数评价方法,探讨其与人口活动数量的关系,并探索街道可步行性的影响因素。结果表明:福州市中心城区内的街道可步行性平均得分为58,街道可步行性较好,其中支路、住宅类街道的可步行性最高;整体上,综合评价方法与人口活动数量的正相关系数为0.313,较步行指数评价方法提高0.018;不同交通等级的街道绿化环境对可步行性有不同的影响,支路的绿视率水平与可步行性存在显著的正相关关系(r=0.135)。 展开更多
关键词 绿视率 可步行性 街景 街道绿地 步行指数
在线阅读 下载PDF
多尺度特征增强的街景绿色景观分割方法
15
作者 程勇 王沂萱 +2 位作者 任周鹏 王军 顾雅康 《测绘工程》 2025年第1期11-21,共11页
针对街景图像中景观复杂多样且多种景观相互遮挡,绿色景观分割效果存在相似景观错分、边界分割模糊、细节丢失等问题,提出一种多尺度特征增强的城市绿色景观分割网络。在编码部分改进多尺度残差网络提取上下文信息以区分相似景观,同时... 针对街景图像中景观复杂多样且多种景观相互遮挡,绿色景观分割效果存在相似景观错分、边界分割模糊、细节丢失等问题,提出一种多尺度特征增强的城市绿色景观分割网络。在编码部分改进多尺度残差网络提取上下文信息以区分相似景观,同时构建多级特征聚合增强模块增强目标特征的边缘细节信息。增加双注意力机制,在局部特征上建模丰富的上下文联系。最后,将多级特征聚合增强模块同样引入解码器,并融合多层级特征来提高目标信息的恢复能力完善边缘信息。在公共街景数据集Cityscapes与自制数据集StreetData的消融实验表明,该网络与基础网络相比,平均交并比分别提高2.96%和5.57%。此外,在两个数据集上进行对比实验,该网络较对比模型平均交并比分别高1.25%~5.29%和1.52%~6.95%。定量分析与实验结果表明,该方法能够有效识别街景的绿色景观,实现高精度的城市绿色景观数据提取。 展开更多
关键词 深度学习 街景图像 多尺度特征增强 城市绿色景观 语义分割
在线阅读 下载PDF
街景图像深度学习驱动下的历史建筑普查与管控研究——以泉州为例
16
作者 潘莹 黄龙英 +1 位作者 施瑛 游永熠 《南方建筑》 北大核心 2025年第4期4-13,共10页
历史建筑作为见证城市演化的物质载体,对于传承文脉、延续风貌具有重要意义。针对历史建筑全域普查工作量大、保护周期长、数量众多、管控困难等问题,以国家历史文化名城泉州为例,结合目标检测、图像分类等深度学习算法与GIS空间分析方... 历史建筑作为见证城市演化的物质载体,对于传承文脉、延续风貌具有重要意义。针对历史建筑全域普查工作量大、保护周期长、数量众多、管控困难等问题,以国家历史文化名城泉州为例,结合目标检测、图像分类等深度学习算法与GIS空间分析方法,构建由“传统风貌体系搭建-传统风貌特征检测-现代建筑区分筛除-传统建筑分布分析”组成的历史建筑智能识别模型,从泉州海量街景图像中高效采集传统建筑信息,绘制历史建筑潜在资源地图,并揭示其时空分布特征。研究表明,基于街景图像深度学习的历史建筑智能识别模型具备成本低、效率高、结果稳定等优势,能够在历史建筑普查、建档、管控工作中,通过优化资源分配、快速采集信息与动态检验管理等方式发挥技术效用,适应了宏观空间尺度下历史建筑的高效普查与动态监测需求,为历史建筑普查与管控实践流程优化提供了技术支撑。 展开更多
关键词 深度学习 街景图像 历史建筑 历史保护 遗产管理 泉州
在线阅读 下载PDF
街道空间质量与城市活力的匹配关系及影响因素研究——以武汉市中心城区为例
17
作者 单卓然 张馨月 +1 位作者 袁满 陈玥迪 《西部人居环境学刊》 北大核心 2025年第5期126-134,共9页
街道空间作为城市空间基本单元,其更新效能是国家治理现代化的重要维度。为量化城市街道空间质量与活力的匹配关系,支撑街道精细化治理,以武汉市中心城区为例,构建“量化评价—动态匹配—多维解耦”技术框架。结合街景图像与社交媒体数... 街道空间作为城市空间基本单元,其更新效能是国家治理现代化的重要维度。为量化城市街道空间质量与活力的匹配关系,支撑街道精细化治理,以武汉市中心城区为例,构建“量化评价—动态匹配—多维解耦”技术框架。结合街景图像与社交媒体数据测度街道空间质量及城市活力,并以此为基础测算两者之间的匹配关系,利用多分类Logistic回归模型解析影响因素。结果表明:武汉市中心城区72.1%的街道存在空间质量与城市活力的错配现象。交叉口密度、区域平均房价、夜间灯光指数、POI混合度等指标,可有效抑制匹配关系的不良转向。研究从微观尺度揭示街道空间“供给—需求”的结构性矛盾,为街道规划从“追求效益”的单一空间扩展向“承载价值”的多维提升转型提供策略支持。 展开更多
关键词 街道空间质量 城市活力 街景图像 影响因素 深度学习
在线阅读 下载PDF
适应复杂建成环境的口袋公园智能化选址方法
18
作者 周聪惠 宋銮鑫 杨柳一 《中国园林》 北大核心 2025年第8期51-57,共7页
传统的空间分析和现场调查评估受限于分析精度和效率,难以在复杂建成环境下支持大范围口袋公园体系的规划和增补选址。为此,以北京为例,整合应用街景大数据与深度学习技术研发口袋公园智能化选址方法。首先根据口袋公园的选址要求建立... 传统的空间分析和现场调查评估受限于分析精度和效率,难以在复杂建成环境下支持大范围口袋公园体系的规划和增补选址。为此,以北京为例,整合应用街景大数据与深度学习技术研发口袋公园智能化选址方法。首先根据口袋公园的选址要求建立涵盖空间、活力、设施、愉悦性4个项目在内的选址适宜性评价体系;其次依托街景大数据和卷积神经网络EfficientNet-B0分别训练4个并行任务学习模型,将模型评分结果整合为选址适宜性以确定口袋公园备选场地;最后通过游憩资源供需强度叠加分析甄别优先发展地段。研究结果能为口袋公园规划精度和效率的提升提供支持工具。 展开更多
关键词 风景园林 口袋公园 深度学习 街景图像 城市绿地
在线阅读 下载PDF
基于PBL-BPNN算法和多源数据的住区更新敏感度研究
19
作者 朱隆斌 赵瑞寅 《地球信息科学学报》 北大核心 2025年第9期2039-2051,共13页
【目的】国家“十四五”规划明确提出实施城市更新行动,特别是以老旧小区为载体的住区更新。但现有的住区更新实践仍缺乏对更新时序的统筹安排与操作指导。【方法】运用PBL-BPNN算法和多源数据构建评价方法和指标体系,并将住区更新敏感... 【目的】国家“十四五”规划明确提出实施城市更新行动,特别是以老旧小区为载体的住区更新。但现有的住区更新实践仍缺乏对更新时序的统筹安排与操作指导。【方法】运用PBL-BPNN算法和多源数据构建评价方法和指标体系,并将住区更新敏感度作为更新可能性的度量值量化更新时序的研究内容。该方法综合考虑住区建成环境、人口分布等多重指标,通过对已更新住区的特征提取,实现更新时序的大规模量化分析。【结果】对比传统评价指标模型和加入多源数据后的模型发现,后者在验证集上10折交叉验证的RMSE为0.142 2,F-score为0.750 9,在测试集上的准确度提升了32.78%,证明了该方法和评价指标的有效性。实证分析发现,南京中心城区的住区更新敏感度呈现“内部高,外部低,多点散布”的空间格局;同时,多源数据中的商业资源、公共空间资源、工作日人数、围合度、丰富度和宜人感6条指标对住区更新敏感度的评价产生较大影响。【结论】该方法运用数据挖掘思想和机器学习技术,突破了传统更新时序评价方法中主观性较强的局限,可作为住区更新规划和实施的决策依据,并为住区更新的时序判断提供技术方法支持。 展开更多
关键词 城市更新 更新时序 住区更新 更新敏感度 机器学习 多源数据 街景图像 南京中心城区
原文传递
基于机器学习的旅游街道空间安全感知评价及其影响因素研究——以厦门鼓浪屿为例
20
作者 李渊 王耀梅 +2 位作者 杜亚男 杨盟盛 张娜 《中国名城》 2025年第5期78-88,共11页
街道空间是旅游目的地的主要游览空间,准确识别影响街道安全感知的视觉要素对改善旅游者的体验至关重要。然而,旅游者的主观感知与客观环境之间的差异难以进行定量研究。以鼓浪屿为研究地,通过全岛交叉口街景图像构建数据集,运用图像语... 街道空间是旅游目的地的主要游览空间,准确识别影响街道安全感知的视觉要素对改善旅游者的体验至关重要。然而,旅游者的主观感知与客观环境之间的差异难以进行定量研究。以鼓浪屿为研究地,通过全岛交叉口街景图像构建数据集,运用图像语义分割技术提取要素占比,并结合主客观评价采用XGBoost算法与SHAP模型分析各街景要素对街道空间安全感知的具体影响。结果显示,鼓浪屿的安全感知在空间分布上呈现出“由岛屿中心向外逐渐递增”的趋势。人行道、树木、建筑、道路、天空、墙壁的图像占比值是影响力最大的6类视觉要素。其中人行道、树木、道路、天空的图像占比值与安全感知呈现出线性递增的关系;建筑和墙壁的图像占比值与安全感知呈现线性递减的关系。此外,各视觉要素之间交互影响。研究通过量化分析不仅能为旅游地的安全感知研究提供理论参考和实践依据,而且可以为街道空间的设计与优化提供科学指导,从而提升旅游者的安全感和体验质量。 展开更多
关键词 旅游街道 图像分割 安全感知 XGBoost SHAP
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部