The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbu...The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the nearwall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Rer can be as low as 1000. The properties of the inner and outer peaks in the spanwise spec- tra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.展开更多
The performance of an annular jet pump( AJP) is determined by its area ratio A( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q( ratio of primary and secondary flow rate,Qs/Qj),while ...The performance of an annular jet pump( AJP) is determined by its area ratio A( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q( ratio of primary and secondary flow rate,Qs/Qj),while the nozzle lip thickness is neglected in the present studies. This paper presents a study on the effect of the thickness on the flow field and performance of an AJP with A = 1. 75. With the increasing flow rate ratio and nozzle lip thickness,a small vortex forms at the nozzle lip and keeps on growing. However,as the flow rate ratio or nozzle lip thickness is extremely low,the vortex at the lip vanishes thoroughly. Moreover,the recirculation width varies conversely with the nozzle lip thickness when the flow rate ratio q ≤ 0. 13. While the deviation of the recirculation width with different nozzle lip thickness is negligible with q ≥ 0. 13. Additionally the existence of nozzle lip hinders the momentum exchange between the primary and secondary flow and leads to a mutation of velocity gradient near the nozzle exit,which shift the recirculation downstream. Finally,based on the numerical results of the streamwise and spanwise vortex distributions in the suction chamber, the characteristics of the mixing process and the main factors accounting for the AJP performance are clarified.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11302238, 11232011, 11572331, and 11490551)the support from the Strategic Priority Research Program (Grant XDB22040104)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant QYZDJ-SSW-SYS002)the National Basic Research Program of China (973 Program 2013CB834100 : Nonlinear Science)
文摘The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the nearwall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Rer can be as low as 1000. The properties of the inner and outer peaks in the spanwise spec- tra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51179134)the National Key Basic Research Program of China(Grant No.2014CB239203)Program for New Century Excellent Talents in University(Grant No.NCET-12-0424)
文摘The performance of an annular jet pump( AJP) is determined by its area ratio A( ratio of cross sectional area of throat and annular nozzle) and flow rate ratio q( ratio of primary and secondary flow rate,Qs/Qj),while the nozzle lip thickness is neglected in the present studies. This paper presents a study on the effect of the thickness on the flow field and performance of an AJP with A = 1. 75. With the increasing flow rate ratio and nozzle lip thickness,a small vortex forms at the nozzle lip and keeps on growing. However,as the flow rate ratio or nozzle lip thickness is extremely low,the vortex at the lip vanishes thoroughly. Moreover,the recirculation width varies conversely with the nozzle lip thickness when the flow rate ratio q ≤ 0. 13. While the deviation of the recirculation width with different nozzle lip thickness is negligible with q ≥ 0. 13. Additionally the existence of nozzle lip hinders the momentum exchange between the primary and secondary flow and leads to a mutation of velocity gradient near the nozzle exit,which shift the recirculation downstream. Finally,based on the numerical results of the streamwise and spanwise vortex distributions in the suction chamber, the characteristics of the mixing process and the main factors accounting for the AJP performance are clarified.