This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The dat...This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The data of LBO limits were analyzed and fittedaccording to the Damk?hler(Da)and Reynolds(Re)numbers,and the fitting accuracy of LBO datawas highly improved by a modified characteristic length simultaneously considering the length andwidth of the bluff body,which is usually neglected in the previous studies.Moreover,to our knowl-edge,this is the first time that simultaneous transverse and spanwise OH*-Chemiluminescence(CL)imaging has been performed to examine the three-dimensional behavior of the LBO process.The flame stability is heavily affected by the mass and energy transport between reactants andproducts in both directions,potentially leading to the flame pinch-off.The intensity and positionof the upstream flame after pinch-off are decisive to the occurrence of the following LBO.Whenthe upstream flame after pinch-off is weak and close to the bluff body,it cannot re-ignite thedownstream unburnt gas.Subsequently,a permanent downstream extinction occurs,and theLBO takes place.The results help understand the LBO mechanism of 2D bluff-body stabilizedflames.展开更多
The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbu...The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the nearwall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Rer can be as low as 1000. The properties of the inner and outer peaks in the spanwise spec- tra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.展开更多
Spanwise flexibility is a key factor influencing propulsion performance of pectoral foils. Performances of bionic fish with oscillating pectoral foils can be enhanced by properly selecting the spanwise flexibility. Th...Spanwise flexibility is a key factor influencing propulsion performance of pectoral foils. Performances of bionic fish with oscillating pectoral foils can be enhanced by properly selecting the spanwise flexibility. The influence law of spanwise flexibility on thrust generation and propulsion efficiency of a rectangular hydro-foil is discussed. Series foils constructed by the two-component silicon rubber are developed. NACA0015 shape of chordwise cross-section is employed. The foils are strengthened by fin rays of different rigidity to realize variant spanwise rigidity and almost the same chordwise flexibility. Experiments on a towing platform developed are carried out at low Reynolds numbers of 10 000, 15 000, and 20 000 and Strouhal numbers from 0.1 to 1. The following experimental results are achieved: (1) The average forward thrust increases with the St number increased; (2) Certain degree of spanwise flexibility is beneficial to the forward thrust generation, but the thrust gap is not large for the fins of different spanwise rigidity; (3) The fin of the maximal spanwise flexibility owns the highest propulsion efficiency; (4) Effect of the Reynolds number on the propulsion efficiency is significant. The experimental results can be utilized as a reference in deciding the spanwise flexibility of bionic pectoral fins in designing of robotic fish prototype propelled by flapping-wing.展开更多
The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated v...The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.展开更多
The technology development related to aerodynamics is leading to ever increasing loads of wings, airfoils and turbine and compressor blades. The increase in aerodynamic forces is often leading to flow separation and d...The technology development related to aerodynamics is leading to ever increasing loads of wings, airfoils and turbine and compressor blades. The increase in aerodynamic forces is often leading to flow separation and depreciation of the aerodynamic performance of flying objects or propulsion systems. Flow control methods are required to avoid these negative effects. In the recent two decades the flow control by means of air-jet vortex generators has been also intensively investigated. In this method a streamwise vortex is introduced by an oblique jet. The necessity to supply air by a pipe system may be considered a disadvantage. In order to eliminate this feature, it has been proposed to put out a rod instead of a jet. It has been shown that the application of a rod can introduce the same effect as a jet, as long as the streamwise vortex generation is concerned and appropriate dimensions are used. The present paper focuses on the influence of rod vortex generators on a flow pattern downstream. The results presented here concern experimental and numerical investigations and provide guidelines for the design of a new flow control method dedicated mainly to external flows.展开更多
The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation(DNS) of the streak transient growth in the minimal channel flow at Re_τ- 400.The streak profile i...The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation(DNS) of the streak transient growth in the minimal channel flow at Re_τ- 400.The streak profile is obtained by conditionally averaging the DNS data of the fully developed turbulent channel flow at the same Reynolds number.The near-wall streamwise vortices are produced by the transient growth of the streak which is initially subjected to the sinuous perturbation of the spanwise velocity.It is shown that the arch head of the hairpin vortex first grows from the downstream end of the stronger streamwise vortex and then connects with the weaker,opposite-signed streamwise vortex in their overlap region,forming a complete individual hairpin structure.The vorticity transport along the vortex lines indicates that the strength increase and the spatial expansion of the arch head are due to the stretching and the turning of the vorticity vector,respectively.The hairpin packets could be further produced from the generated individual hairpin vortex following the parent-offspring process.展开更多
The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. ...The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.展开更多
The evolution of the three-dimensional time-developing mixing layer was simulated numerically using the pseudo-spectral method. The initial perturbations consisted of the two-dimensional fundamental wave and the stre...The evolution of the three-dimensional time-developing mixing layer was simulated numerically using the pseudo-spectral method. The initial perturbations consisted of the two-dimensional fundamental wave and the streamwise-invariant three-dimensional disturbance. A comparison of the formations of the streamwise vortices with different amplitude functions for three-dimensional disturbances was made. In one case the results are similar to that of Rogers and Moser (1992), whereas a different way in which the quadrupole forms and sudden expansion of the rib were observed in another case. The simulation also confirms that stretching by the forming roller rather than Rayleigh centrifugal instability is responsible for the formation of the rib. Finally, numerical flow visualization results were presented. (Edited author abstract) 9 Refs.展开更多
The relationship between wall shear stresses and near-wall streamwise vortices is investigated via a direct numerical simulation(DNS) of turbulent flows over a wavy boundary with traveling-wave motion. The results ind...The relationship between wall shear stresses and near-wall streamwise vortices is investigated via a direct numerical simulation(DNS) of turbulent flows over a wavy boundary with traveling-wave motion. The results indicate that the wall shear stresses are still closely related to the near-wall streamwise vortices in the presence of a wave. The wave age and wave phase significantly affect the distribution of a two-point correlation coefficient between the wall shear stresses and streamwise vorticity. For the slow wave case of c/Um = 0.14, the correlation is attenuated above the leeward side while the distribution of correlation function is more elongated and also exhibits a larger vertical extent above the crest. With respect to the fast wave case of c/U_m=1.4, the distribution of the correlation function is recovered in a manner similar to that in the flat-wall case. In this case, the maximum correlation coefficient exhibits only slight differences at different wave phases while the vertical distribution of the correlation function depends on the wave phase.展开更多
A streamwise vorticity equation is derived in generalized natural coordinates. This equation reveals that the total change and local change of the streamwise vorticity are mainly determined by the curvature of streaml...A streamwise vorticity equation is derived in generalized natural coordinates. This equation reveals that the total change and local change of the streamwise vorticity are mainly determined by the curvature of streamline, unsteady feature of streamline and magnitude of velocity. This equation enables the study of mesoscale or small-scale systems since the term associated with pressure gradient force in the original vorticity equation is replaced by terms associated with streamlines and wind speed. With this modification the wind field rather than the pressure field is used in the calculation considering that 1) the pressure field is to adapt wind field. 2) Smoother and more consecutive streamline pattern is easier to obtain either by data analysis or by the numerical simulation. From this sense, this present study suggests the application of this equation to studying the evolution of severe storm system as well as other simplified cases. Key words Wind field instead of pressure field - Generalized natural coordinate - Streamwise vorticity This work was supported by the project on the study of the formative mechanism and predictive theory of the significant climate and weather disaster in China under Grant G 1998040907 and by the key project on the Dynamic Study of Severe Mesoscale Covective Systems sponsored by the National Natural Science Foundation of China under Grant No. 49735180.展开更多
In the present paper, physical mechanism responsible for origin of streamwise vortices in mode A appeared in the threedimensional (3-D) wake transition of a square-section cylinder is investigated. Direct numerical si...In the present paper, physical mechanism responsible for origin of streamwise vortices in mode A appeared in the threedimensional (3-D) wake transition of a square-section cylinder is investigated. Direct numerical simulations at a Reynolds number of 180 firstly show that such streamwise vorticity is not originated from lateral surfaces. Then through the analysis of local flow field in the immediate neighborhood of rear surface, based on the theory of vortex-induced vortex, a new physical mechanism is identified. At first, the vertical vorticity on rear surface is generated by the intrinsic three-dimensional instability with the same instability wavelength of mode A. Then the streamwise vorticity at a specific sign is induced by such vertical vorticity, convected and concentrated in the shear layers. Finally, streamwise vortices are formed and shed with alternatively shedding spanwise vortices in the near wake. Moreover, the effect of induced spanwise vorticity on original two-dimensional (2-D) spanwise vorticity is also presented in detail.展开更多
Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth.Although all flow parameters change along the streamwise direction,previous studies hav...Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth.Although all flow parameters change along the streamwise direction,previous studies have revealed that these parameters’vertical distributions at different sections can be universally described with a single profile when being nondimensionalised by appropriate scales.This study focuses on the population trends of spanwise rotational motions at various sections along the main flow direction by particle imaging velocimetry(PIV)measurement.The wall-normal population distributions of density,radius,swirling strength,and convection velocity of the prograde and retrograde motions show similar trends in uniform open-channel flows.The dimensionless representation is invariant along the main flow direction.This study’s results indicate the self-similar characteristic of population trends of spanwise rotational motions prevails in decelerating open-channel flow.展开更多
A streamwise-body-force-model (SBFM) is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or...A streamwise-body-force-model (SBFM) is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The val- idation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.展开更多
Serpentine nozzles are widely used in combat aircraft to realize strong stealth characteristics.Based on the layout characteristics within a confined space,a series of double serpentine nozzles with spanwise offsets a...Serpentine nozzles are widely used in combat aircraft to realize strong stealth characteristics.Based on the layout characteristics within a confined space,a series of double serpentine nozzles with spanwise offsets are established.Using computational fluid dynamics and Taguchi method,the influence mechanisms of the Distribution of Area(DA),Distributions of Centerline for the first and second‘S’sections in the Vertical direction(DCV1 and DCV2),and Distribution of Centerline in the Spanwise direction(DCS)are analyzed.The impact of these factors on the total pressure recovery coefficient can be ranked as DA>DCV2>DCS>DCV1,whereas their impacts on the discharge coefficient and axial thrust coefficient can be ranked as DCV2>DCS>DA>DCV1.Considering the statistical significance of these factors,a nozzle in which DA changes rapidly at the exit and DCV1,DCV2,and DCS change rapidly at the entrance gives the best aerodynamic performance.Compared to the worst configuration,the total pressure recovery coefficient,discharge coefficient,and axial thrust coefficient are improved by 1.6%,3.5%and 3.6%,respectively.DA influences the gas flow acceleration in the entire serpentine channel,resulting in different wall shear stress and friction losses.The various centerline distributions influence the gas flow acceleration effects and form complex wave structures in the constantarea extension section,resulting in different local and friction losses.展开更多
The transition features of the wake behind a uniform circular cylinder at \%Re\%=200, which is just beyond the critical Reynolds number of 3\|D transition, are investigated in detail by direct numerical simulations of...The transition features of the wake behind a uniform circular cylinder at \%Re\%=200, which is just beyond the critical Reynolds number of 3\|D transition, are investigated in detail by direct numerical simulations of 3\|D incompressible Navier\|Stokes equations. The spanwise characteristic length determines the transition features and global properties of the wake.展开更多
A mechanism for generation of near wall quasi-streamwise hairpin-like vortex (QHV) and secondary quasi-streamwise vortices (SQV) is presented. The conceptual model of resonant triad in the theory of hydrodynamic i...A mechanism for generation of near wall quasi-streamwise hairpin-like vortex (QHV) and secondary quasi-streamwise vortices (SQV) is presented. The conceptual model of resonant triad in the theory of hydrodynamic instability and direct numerical simulation of a turbulent boundary layer were applied to reveal the formation of QHV and SQV. The generation procedures and the characteristics of the vortex structures are obtained, which share some similarities with previous numerical simulations. The research using resonant triad conceptual model and numerical simulation provides a possibility for investigating and controling the vortex structures, which play a dominant role in the evolution of coherent structures in the near-wall region.展开更多
A new view of the spatial relation between fluctuating wall pressure and near-wall streamwise vortices (NWSV) is proposed for wall bounded turbulent flow by use of the direct numerical simulation (DNS) database. T...A new view of the spatial relation between fluctuating wall pressure and near-wall streamwise vortices (NWSV) is proposed for wall bounded turbulent flow by use of the direct numerical simulation (DNS) database. The results show that the wall region with low pressure forms just below the strong NWSV, which is mostly associated with the overhead NWSV. The wall region with high pressure forms downstream of the NWSV, which has a good correspondence with the downwash of the fluids induced by the upstream NWSV. The results provide a significant basis for the detection of NWSV.展开更多
Formation and evolution of secondary streamwise vortices in the compressible transitional boundary layers over a flat plate are studied using a direct numerical simu- lation method with high-order accuracy and highly ...Formation and evolution of secondary streamwise vortices in the compressible transitional boundary layers over a flat plate are studied using a direct numerical simu- lation method with high-order accuracy and highly effective non-reflecting characteristic boundary conditions. Generation and development processes of the secondary streamwise vortices in the complicated transitional boundary flow are clearly analyzed based on the of numerical results, and the effects on the formation of the ring-like vortex that is vital to the boundary layer transition are explored. A new mechanism forming the ring-like vortex through the mutual effect of the primary and secondary streamwise vortices is expressed.展开更多
The effects induced by streamwise conduction on the thermal characteristics of forced convection for single-phase liquid flow in rectangular microchannel heat sinks under imposed constant wall temperature have been st...The effects induced by streamwise conduction on the thermal characteristics of forced convection for single-phase liquid flow in rectangular microchannel heat sinks under imposed constant wall temperature have been studied. By employing the fin approach in the first law of analysis, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow under local thermal non-equilibrium for the solid and fluid phases. These two models were solved to obtain closed form analytical solutions for the fluid and solid temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the fluid temperature distributions. The effects of the Peclet number, aspect ratio, and thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks were analyzed and discussed. This study reveals the conditions under which the effect of streamwise conduction is significant and should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.展开更多
The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity compon...The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity components has been compreheusively examined. Different from previous researches which attributed the deviation of velocity from the classical log-law to the wave Reynolds stress, i.e. - ρ uv^- only, this study demonstrates that the momentum flux caused by mean velocities, i.e., u^- and v^-, is also responsible for the velocity deviation, and it is found that the streamwise velocity for a flow in the presence of non-zero wall-normal velocity does not follow the classical log-law, but the modified log-law proposed in this study based on simplified mixing-length theorem. The validity of the modified log-law has been verified by use of available experimental data from published sources for combined wave-current flows, and good agreement between the predicted and observed velocity profiles has been achieved.展开更多
基金the financial support of the National Natural Science Foundation of China(Nos.U2141221 and 52076136)the National Science and Technology Major Project,China(Nos.J2019-Ⅲ-0004-0047 and Y2022-Ⅲ-0001-0010)+1 种基金the Center for Basic Science of Aero Engines and Gas Turbines Project,China(No.P2022-B-Ⅱ019-001)the Natural Science Foundation of Shanghai,China(Nos.22ZR1467900 and 23ZR1481400)。
文摘This study systematically investigated the Lean Blowoff(LBO)limits of Two-Dimensional(2D)bluff-body stabilized premixed flames by varying the air mass flow rate,inflowtemperature,bluff-body width,and fuel type.The data of LBO limits were analyzed and fittedaccording to the Damk?hler(Da)and Reynolds(Re)numbers,and the fitting accuracy of LBO datawas highly improved by a modified characteristic length simultaneously considering the length andwidth of the bluff body,which is usually neglected in the previous studies.Moreover,to our knowl-edge,this is the first time that simultaneous transverse and spanwise OH*-Chemiluminescence(CL)imaging has been performed to examine the three-dimensional behavior of the LBO process.The flame stability is heavily affected by the mass and energy transport between reactants andproducts in both directions,potentially leading to the flame pinch-off.The intensity and positionof the upstream flame after pinch-off are decisive to the occurrence of the following LBO.Whenthe upstream flame after pinch-off is weak and close to the bluff body,it cannot re-ignite thedownstream unburnt gas.Subsequently,a permanent downstream extinction occurs,and theLBO takes place.The results help understand the LBO mechanism of 2D bluff-body stabilizedflames.
基金supported by the National Natural Science Foundation of China (Grants 11302238, 11232011, 11572331, and 11490551)the support from the Strategic Priority Research Program (Grant XDB22040104)+1 种基金the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences (Grant QYZDJ-SSW-SYS002)the National Basic Research Program of China (973 Program 2013CB834100 : Nonlinear Science)
文摘The pre-multiplied spanwise energy spectra of streamwise velocity fluctuations are investigated in this paper. Two distinct spectral peaks in the spanwise spectra are observed in low-Reynolds-number wall-bounded turbulence. The spectra are calculated from direct numerical simulation (DNS) of turbulent channel flows and zero-pressure-gradient boundary layer flows. These two peaks locate in the nearwall and outer regions and are referred to as the inner peak and the outer peak, respectively. This result implies that the streamwise velocity fluctuations can be separated into large and small scales in the spanwise direction even though the friction Reynolds number Rer can be as low as 1000. The properties of the inner and outer peaks in the spanwise spec- tra are analyzed. The locations of the inner peak are invariant over a range of Reynolds numbers. However, the locations of the outer peak are associated with the Reynolds number, which are much higher than those of the outer peak of the pre-multiplied streamwise energy spectra of the streamwise velocity.
基金supported by National Hi-tech Research and Development Program of China(863 Program, Grant No. 2006AA04Z252)National Natural Science Foundation of China(Grant No. 51005006)+1 种基金Research Fund for the Doctoral Program of Higher Education of China(Grand No. 20101102110022)Innovation Foundation of Beihang University for PhD Graduates, China
文摘Spanwise flexibility is a key factor influencing propulsion performance of pectoral foils. Performances of bionic fish with oscillating pectoral foils can be enhanced by properly selecting the spanwise flexibility. The influence law of spanwise flexibility on thrust generation and propulsion efficiency of a rectangular hydro-foil is discussed. Series foils constructed by the two-component silicon rubber are developed. NACA0015 shape of chordwise cross-section is employed. The foils are strengthened by fin rays of different rigidity to realize variant spanwise rigidity and almost the same chordwise flexibility. Experiments on a towing platform developed are carried out at low Reynolds numbers of 10 000, 15 000, and 20 000 and Strouhal numbers from 0.1 to 1. The following experimental results are achieved: (1) The average forward thrust increases with the St number increased; (2) Certain degree of spanwise flexibility is beneficial to the forward thrust generation, but the thrust gap is not large for the fins of different spanwise rigidity; (3) The fin of the maximal spanwise flexibility owns the highest propulsion efficiency; (4) Effect of the Reynolds number on the propulsion efficiency is significant. The experimental results can be utilized as a reference in deciding the spanwise flexibility of bionic pectoral fins in designing of robotic fish prototype propelled by flapping-wing.
基金supported by the National Natural Science Foundation of China(Nos.11402088 and 51376062)the Fundamental Research Funds for the Central Universities(No.2014MS33)State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS15005)
文摘The spatial relations between the measurable wall quantities (streamwise shear stress τwx, spanwise shear stress τwz, and pressure fluctuations Pw) and the near-wall streamwise vortices (NWSV) are investigated via direct numerical simulation (DNS) databases of fully developed turbulent channel flow at a low Reynolds number. In the stan- dard turbulent channel flow, the results show that all the wall measurable variables are closely associated with the NWSV. But after applying a stochastic interference, the relation based on τwx breaks down while the correlations based on Pw and τwz are still robust. Hence, two wall flow quantities based on Pw and τwz are proposed to detect the NWSV. As an appli- cation, two new control schemes are developed to suppress the near-wall vortical structures using the actuation of wall blowing/suction and obtain 16 % and 11% drag reduction, respectively.
基金supported by a grant from the Polish Ministry of Science and Higher Education (No. N502209438)
文摘The technology development related to aerodynamics is leading to ever increasing loads of wings, airfoils and turbine and compressor blades. The increase in aerodynamic forces is often leading to flow separation and depreciation of the aerodynamic performance of flying objects or propulsion systems. Flow control methods are required to avoid these negative effects. In the recent two decades the flow control by means of air-jet vortex generators has been also intensively investigated. In this method a streamwise vortex is introduced by an oblique jet. The necessity to supply air by a pipe system may be considered a disadvantage. In order to eliminate this feature, it has been proposed to put out a rod instead of a jet. It has been shown that the application of a rod can introduce the same effect as a jet, as long as the streamwise vortex generation is concerned and appropriate dimensions are used. The present paper focuses on the influence of rod vortex generators on a flow pattern downstream. The results presented here concern experimental and numerical investigations and provide guidelines for the design of a new flow control method dedicated mainly to external flows.
基金supported by the National Natural Science Foundation of China(Grants 11490551,11472154, 11132005,and 11322221)
文摘The generation of a hairpin vortex from near-wall streamwise vortices is studied via the direct numerical simulation(DNS) of the streak transient growth in the minimal channel flow at Re_τ- 400.The streak profile is obtained by conditionally averaging the DNS data of the fully developed turbulent channel flow at the same Reynolds number.The near-wall streamwise vortices are produced by the transient growth of the streak which is initially subjected to the sinuous perturbation of the spanwise velocity.It is shown that the arch head of the hairpin vortex first grows from the downstream end of the stronger streamwise vortex and then connects with the weaker,opposite-signed streamwise vortex in their overlap region,forming a complete individual hairpin structure.The vorticity transport along the vortex lines indicates that the strength increase and the spatial expansion of the arch head are due to the stretching and the turning of the vorticity vector,respectively.The hairpin packets could be further produced from the generated individual hairpin vortex following the parent-offspring process.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP,Grant No. 20100032120047)State Key Laboratory of Ocean Engineering of Shanghai Jiao Tong University (Grant No.1104)the National Natural Science Foundation of China (Grant No. 51209161)
文摘The streamwise flow-induced vibration of a circular cylinder with symmetric vortex shedding in the first instability range is investigated, and a wake oscillator model for the dynamic response prediction is proposed. An approach is applied to calibrate the empirical parameters in the present model; the numerical and experimental results are compared to validate the proposed model. It can be found that the present prediction model is accurate and sufficiently simple to be easily applied in practice.
基金The project supported by the Zhejiang Province Natural Science Special Fund for Youth Scientists' Cultivation.
文摘The evolution of the three-dimensional time-developing mixing layer was simulated numerically using the pseudo-spectral method. The initial perturbations consisted of the two-dimensional fundamental wave and the streamwise-invariant three-dimensional disturbance. A comparison of the formations of the streamwise vortices with different amplitude functions for three-dimensional disturbances was made. In one case the results are similar to that of Rogers and Moser (1992), whereas a different way in which the quadrupole forms and sudden expansion of the rib were observed in another case. The simulation also confirms that stretching by the forming roller rather than Rayleigh centrifugal instability is responsible for the formation of the rib. Finally, numerical flow visualization results were presented. (Edited author abstract) 9 Refs.
基金Project supported by the the National Natural Science Foundation of China(Nos.91752205 and 11772172)the "13th Five-Year Plan" Equipment Development Common Technology Pre-research(No.41407020501)
文摘The relationship between wall shear stresses and near-wall streamwise vortices is investigated via a direct numerical simulation(DNS) of turbulent flows over a wavy boundary with traveling-wave motion. The results indicate that the wall shear stresses are still closely related to the near-wall streamwise vortices in the presence of a wave. The wave age and wave phase significantly affect the distribution of a two-point correlation coefficient between the wall shear stresses and streamwise vorticity. For the slow wave case of c/Um = 0.14, the correlation is attenuated above the leeward side while the distribution of correlation function is more elongated and also exhibits a larger vertical extent above the crest. With respect to the fast wave case of c/U_m=1.4, the distribution of the correlation function is recovered in a manner similar to that in the flat-wall case. In this case, the maximum correlation coefficient exhibits only slight differences at different wave phases while the vertical distribution of the correlation function depends on the wave phase.
文摘A streamwise vorticity equation is derived in generalized natural coordinates. This equation reveals that the total change and local change of the streamwise vorticity are mainly determined by the curvature of streamline, unsteady feature of streamline and magnitude of velocity. This equation enables the study of mesoscale or small-scale systems since the term associated with pressure gradient force in the original vorticity equation is replaced by terms associated with streamlines and wind speed. With this modification the wind field rather than the pressure field is used in the calculation considering that 1) the pressure field is to adapt wind field. 2) Smoother and more consecutive streamline pattern is easier to obtain either by data analysis or by the numerical simulation. From this sense, this present study suggests the application of this equation to studying the evolution of severe storm system as well as other simplified cases. Key words Wind field instead of pressure field - Generalized natural coordinate - Streamwise vorticity This work was supported by the project on the study of the formative mechanism and predictive theory of the significant climate and weather disaster in China under Grant G 1998040907 and by the key project on the Dynamic Study of Severe Mesoscale Covective Systems sponsored by the National Natural Science Foundation of China under Grant No. 49735180.
文摘In the present paper, physical mechanism responsible for origin of streamwise vortices in mode A appeared in the threedimensional (3-D) wake transition of a square-section cylinder is investigated. Direct numerical simulations at a Reynolds number of 180 firstly show that such streamwise vorticity is not originated from lateral surfaces. Then through the analysis of local flow field in the immediate neighborhood of rear surface, based on the theory of vortex-induced vortex, a new physical mechanism is identified. At first, the vertical vorticity on rear surface is generated by the intrinsic three-dimensional instability with the same instability wavelength of mode A. Then the streamwise vorticity at a specific sign is induced by such vertical vorticity, convected and concentrated in the shear layers. Finally, streamwise vortices are formed and shed with alternatively shedding spanwise vortices in the near wake. Moreover, the effect of induced spanwise vorticity on original two-dimensional (2-D) spanwise vorticity is also presented in detail.
基金the National Natural Science Foundation of China(Grant No.51679020)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202100731).
文摘Decelerating open-channel flow is a type of flow that gradually moves forward with decreasing velocity and increasing water depth.Although all flow parameters change along the streamwise direction,previous studies have revealed that these parameters’vertical distributions at different sections can be universally described with a single profile when being nondimensionalised by appropriate scales.This study focuses on the population trends of spanwise rotational motions at various sections along the main flow direction by particle imaging velocimetry(PIV)measurement.The wall-normal population distributions of density,radius,swirling strength,and convection velocity of the prograde and retrograde motions show similar trends in uniform open-channel flows.The dimensionless representation is invariant along the main flow direction.This study’s results indicate the self-similar characteristic of population trends of spanwise rotational motions prevails in decelerating open-channel flow.
基金supported by the National Natural Science Foundation of China (No.51176005)
文摘A streamwise-body-force-model (SBFM) is developed and applied in the overall flow simulation for the distributed propulsion system, combining internal and external flow fields. In view of axial stage effects, fan or compressor effects could be simplified as body forces along the streamline. These body forces which are functions of local parameters could be added as source terms in Navier-Stokes equations to replace solid boundary conditions of blades and hubs. The val- idation of SBFM with uniform inlet and distortion inlet of compressors shows that pressure performance characteristics agree well with experimental data. A three-dimensional simulation of the integration configuration, via a blended wing body aircraft with a distributed propulsion system using the SBFM, has been completed. Lift coefficient and drag coefficient agree well with wind tunnel test results. Results show that to reach the goal of rapid integrated simulation combining internal and external flow fields, the computational fluid dynamics method based on SBFM is reasonable.
基金supported by the National Science and Technology Major Project of China(No.J2019-III-0009-0053).
文摘Serpentine nozzles are widely used in combat aircraft to realize strong stealth characteristics.Based on the layout characteristics within a confined space,a series of double serpentine nozzles with spanwise offsets are established.Using computational fluid dynamics and Taguchi method,the influence mechanisms of the Distribution of Area(DA),Distributions of Centerline for the first and second‘S’sections in the Vertical direction(DCV1 and DCV2),and Distribution of Centerline in the Spanwise direction(DCS)are analyzed.The impact of these factors on the total pressure recovery coefficient can be ranked as DA>DCV2>DCS>DCV1,whereas their impacts on the discharge coefficient and axial thrust coefficient can be ranked as DCV2>DCS>DA>DCV1.Considering the statistical significance of these factors,a nozzle in which DA changes rapidly at the exit and DCV1,DCV2,and DCS change rapidly at the entrance gives the best aerodynamic performance.Compared to the worst configuration,the total pressure recovery coefficient,discharge coefficient,and axial thrust coefficient are improved by 1.6%,3.5%and 3.6%,respectively.DA influences the gas flow acceleration in the entire serpentine channel,resulting in different wall shear stress and friction losses.The various centerline distributions influence the gas flow acceleration effects and form complex wave structures in the constantarea extension section,resulting in different local and friction losses.
基金State Key Fundamental Research Project of"L arge Scale Scientific Com putation Research" ( G19990 3 2 81)NSFC( 10 2 72 10 4) Keji Chuangxin Project of CAS ( KJCX2 -SW-L 0 3 )
文摘The transition features of the wake behind a uniform circular cylinder at \%Re\%=200, which is just beyond the critical Reynolds number of 3\|D transition, are investigated in detail by direct numerical simulations of 3\|D incompressible Navier\|Stokes equations. The spanwise characteristic length determines the transition features and global properties of the wake.
基金Project supported by the National Natural Science Foundation of China Nos.50476004 and 10732090)
文摘A mechanism for generation of near wall quasi-streamwise hairpin-like vortex (QHV) and secondary quasi-streamwise vortices (SQV) is presented. The conceptual model of resonant triad in the theory of hydrodynamic instability and direct numerical simulation of a turbulent boundary layer were applied to reveal the formation of QHV and SQV. The generation procedures and the characteristics of the vortex structures are obtained, which share some similarities with previous numerical simulations. The research using resonant triad conceptual model and numerical simulation provides a possibility for investigating and controling the vortex structures, which play a dominant role in the evolution of coherent structures in the near-wall region.
基金Project supported by the National Natural Science Foundation of China(No.11402088)the Fundamental Research Funds for the Central Universities(No.2014MS33)the State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS15005)
文摘A new view of the spatial relation between fluctuating wall pressure and near-wall streamwise vortices (NWSV) is proposed for wall bounded turbulent flow by use of the direct numerical simulation (DNS) database. The results show that the wall region with low pressure forms just below the strong NWSV, which is mostly associated with the overhead NWSV. The wall region with high pressure forms downstream of the NWSV, which has a good correspondence with the downwash of the fluids induced by the upstream NWSV. The results provide a significant basis for the detection of NWSV.
基金supported by the National Natural Science Foundation of China (No. 10772082)AFOSR(No. FA9550-08-1-0201)
文摘Formation and evolution of secondary streamwise vortices in the compressible transitional boundary layers over a flat plate are studied using a direct numerical simu- lation method with high-order accuracy and highly effective non-reflecting characteristic boundary conditions. Generation and development processes of the secondary streamwise vortices in the complicated transitional boundary flow are clearly analyzed based on the of numerical results, and the effects on the formation of the ring-like vortex that is vital to the boundary layer transition are explored. A new mechanism forming the ring-like vortex through the mutual effect of the primary and secondary streamwise vortices is expressed.
文摘The effects induced by streamwise conduction on the thermal characteristics of forced convection for single-phase liquid flow in rectangular microchannel heat sinks under imposed constant wall temperature have been studied. By employing the fin approach in the first law of analysis, models with and without streamwise conduction term in the energy equation were developed for hydrodynamically and thermally fully-developed flow under local thermal non-equilibrium for the solid and fluid phases. These two models were solved to obtain closed form analytical solutions for the fluid and solid temperature distributions and the analysis emphasized details of the variations induced by the streamwise conduction on the fluid temperature distributions. The effects of the Peclet number, aspect ratio, and thermal conductivity ratio on the thermal characteristics of forced convection in microchannel heat sinks were analyzed and discussed. This study reveals the conditions under which the effect of streamwise conduction is significant and should not be neglected in the forced convective heat transfer analysis of microchannel heat sinks.
文摘The aim of this paper is to present an analytical expression for the streamwise velocity distribution in a non-uniform flow in the presence of waves; the correlation between the horizontal and vertical velocity components has been compreheusively examined. Different from previous researches which attributed the deviation of velocity from the classical log-law to the wave Reynolds stress, i.e. - ρ uv^- only, this study demonstrates that the momentum flux caused by mean velocities, i.e., u^- and v^-, is also responsible for the velocity deviation, and it is found that the streamwise velocity for a flow in the presence of non-zero wall-normal velocity does not follow the classical log-law, but the modified log-law proposed in this study based on simplified mixing-length theorem. The validity of the modified log-law has been verified by use of available experimental data from published sources for combined wave-current flows, and good agreement between the predicted and observed velocity profiles has been achieved.