期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Finite difference streamline diffusion method using nonconforming space for incompressible time-dependent Navier-Stokes equations 被引量:1
1
作者 陈刚 冯民富 何银年 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第9期1083-1096,共14页
This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and th... This paper proposes a new nonconforming finite difference streamline diffusion method to solve incompressible time-dependent Navier-Stokes equations with a high Reynolds number. The backwards difference in time and the Crouzeix-Raviart (CR) element combined with the P0 element in space are used. The result shows that this scheme has good stabilities and error estimates independent of the viscosity coefficient. 展开更多
关键词 Navier-Stokes equation high Reynolds number Ladyzhenskaya-Babugka- Brezzi (LBB) condition finite difference streamline diffusion method discrete Gronwall's inequality
在线阅读 下载PDF
A streamline diffusion nonconforming finite element method for the time-dependent linearized Navier-Stokes equations 被引量:1
2
作者 陈豫眉 谢小平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第7期861-874,共14页
A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretizatio... A nonconforming finite element method of finite difference streamline diffusion type is proposed to solve the time-dependent linearized Navier-Stokes equations. The backward Euler scheme is used for time discretization. Crouzeix-Raviart nonconforming finite element approximation, namely, nonconforming (P1)2 - P0 element, is used for the velocity and pressure fields with the streamline diffusion technique to cope with usual instabilities caused by the convection and time terms. Stability and error estimates are derived with suitable norms. 展开更多
关键词 streamline diffusion method finite difference method nonconforming finite element method time-dependent linearized Navier-Stokes equations error estimate
在线阅读 下载PDF
A new streamline diffusion finite element method for the generalized Oseen problem 被引量:1
3
作者 Chao XU Dongyang SHI Xin LIAO 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2018年第2期291-304,共14页
This paper aims to present a new streamline diffusion method with low order rectangular Bernardi-Raugel elements to solve the generalized Oseen equations. With the help of the Bramble-Hilbert lemma, the optimal errors... This paper aims to present a new streamline diffusion method with low order rectangular Bernardi-Raugel elements to solve the generalized Oseen equations. With the help of the Bramble-Hilbert lemma, the optimal errors of the velocity and pressure are estimated, which are independent of the considered parameter e. With an interpolation postprocessing approach, the superconvergent error of the pressure is obtained. Finally, a numerical experiment is carried out to confirm the theoretical results. 展开更多
关键词 streamline diffusion method Bernardi-Raugel element Oseen problem superconvergent error estimate
在线阅读 下载PDF
Analysis of Linear Triangular Elements for Convection-diffusion Problems by Streamline Diffusion Finite Element Methods
4
作者 ZHOU Jun-ming JIN Da-yong ZHANG Shu-hua 《Chinese Quarterly Journal of Mathematics》 CSCD 北大核心 2007年第1期43-51,共9页
This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error esti... This paper is devoted to studying the superconvergence of streamline diffusion finite element methods for convection-diffusion problems. In [8], under the condition that ε ≤ h^2 the optimal finite element error estimate was obtained in L^2-norm. In the present paper, however, the same error estimate result is gained under the weaker condition that ε≤h. 展开更多
关键词 CONVECTION-diffusion streamline diffusion finite element methods linear triangular elements SUPERCONVERGENCE
在线阅读 下载PDF
Adaptive Finite Element Method for Steady Convection-Diffusion Equation
5
作者 Gelaw Temesgen Mekuria Jakkula Anand Rao 《American Journal of Computational Mathematics》 2016年第3期275-285,共12页
This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary condi... This paper examines the numerical solution of the convection-diffusion equation in 2-D. The solution of this equation possesses singularities in the form of boundary or interior layers due to non-smooth boundary conditions. To overcome such singularities arising from these critical regions, the adaptive finite element method is employed. This scheme is based on the streamline diffusion method combined with Neumann-type posteriori estimator. The effectiveness of this approach is illustrated by different examples with several numerical experiments. 展开更多
关键词 Convection-diffusion Problem streamline diffusion Finite Element method Boundary and Interior Layers A Posteriori Error Estimators Adaptive Mesh Refinement
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部