期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
IPv4大区块地址价格急剧下跌
1
《中国教育网络》 2025年第7期41-41,共1页
2024年,/16区块的价格接近50美元/地址;而到2025年5月,这一数字已跌破21美元。IPv4地址市场继续面临通货紧缩的压力。最近的数据显示,所有区块的价格都在稳步下降。根据Hilco Streambank提供的2025年5月的IPv4.Global数据,近一年来,每... 2024年,/16区块的价格接近50美元/地址;而到2025年5月,这一数字已跌破21美元。IPv4地址市场继续面临通货紧缩的压力。最近的数据显示,所有区块的价格都在稳步下降。根据Hilco Streambank提供的2025年5月的IPv4.Global数据,近一年来,每个地址的平均价格均呈下降趋势,其中大区块(尤其是/16)的价格跌幅最大。 展开更多
关键词 16区块 价格下跌 Hilco streambank IPV4地址 通货紧缩
在线阅读 下载PDF
Approximation of surface-groundwater interaction mediated by vertical streambank in sloping terrains 被引量:6
2
作者 Rajeev K.Bansal 《Journal of Ocean Engineering and Science》 SCIE 2017年第1期18-27,共10页
New analytical solutions are derived to estimate the interaction of surface and groundwater in a stream-aquifer system.The analytical model consists of an unconfined sloping aquifer of semi-infinite extant,interacting... New analytical solutions are derived to estimate the interaction of surface and groundwater in a stream-aquifer system.The analytical model consists of an unconfined sloping aquifer of semi-infinite extant,interacting with a stream of varying water level in the presence of a thin vertical sedimentary layer of lesser hydraulic conductivity.Flow of subsurface seepage is characterized by a nonlinear Boussinesq equation subjected to mixed boundary conditions,including a nonlinear Cauchy boundary condition to approximate the flow through the sedimentary layer.Closed form analytical expressions for water head,discharge rate and volumetric exchange are derived by solving the linearized Boussinesq equation using Laplace transform technique.Asymptotic cases such as zero slope,absence of vertical clogging layer and abrupt change in stream-stage can be derived from the main results by taming one or more parameters.Analytical solutions of the linearized Boussinesq equation are compared with numerical solution of corresponding nonlinear equation to assess the validity of the linearization.Advantages of using a nonlinear Robin boundary condition,and combined effects of aquifer parameters on the bank storage characteristic of the aquifer are illustrated with a numerical example. 展开更多
关键词 Stream-aquifer interaction streambank Sloping aquifer Boussinesq equation Laplace transform
原文传递
GIS在河道生态护岸工程中的应用 被引量:2
3
作者 夏继红 严忠民 《水利水电技术》 CSCD 北大核心 2004年第2期15-17,共3页
河岸是具有“四维”特性的水陆交界带.生态护岸工程是保护河岸结构稳定和生态稳定的系统工程.文中主要介绍GIS在生态护岸的规划设计、施工、管理过程中的应用.将GIS技术应用于生态护岸的统筹规划、优化设计、监控管理和综合评估,可... 河岸是具有“四维”特性的水陆交界带.生态护岸工程是保护河岸结构稳定和生态稳定的系统工程.文中主要介绍GIS在生态护岸的规划设计、施工、管理过程中的应用.将GIS技术应用于生态护岸的统筹规划、优化设计、监控管理和综合评估,可以提高设计管理效率,减少施工的生态干扰,为方案选择提供科学评判依据. 展开更多
关键词 GIS 河岸 生态护岸工程 规划设计 施工管理
在线阅读 下载PDF
河道植被护坡技术 被引量:24
4
作者 孙宇 《水科学与工程技术》 2005年第1期34-36,共3页
植被在与近地面大气、水流、土壤和其它要素的相互作用中表现出特定的水文机械效应和生态效应,从而能够有效的控制侵蚀。植被护坡因其特殊的作用机理相对于传统的护坡工程有着很多优势。只要遵循科学的设计原则,合理的选择护坡技术,使... 植被在与近地面大气、水流、土壤和其它要素的相互作用中表现出特定的水文机械效应和生态效应,从而能够有效的控制侵蚀。植被护坡因其特殊的作用机理相对于传统的护坡工程有着很多优势。只要遵循科学的设计原则,合理的选择护坡技术,使植被与河坡等要素能尽快融合成一个生态的护坡系统,并能与周围的生态系统和谐共存,就能实现对河坡的生态保护。 展开更多
关键词 河坡 植被 设计原则 护坡工程 生态效应
在线阅读 下载PDF
河岸缓冲带植被布局对氮流失的影响 被引量:3
5
作者 韩旭 杜崇 +1 位作者 陈嘉硕 唐思玉 《农业工程学报》 EI CAS CSCD 北大核心 2022年第16期172-179,共8页
河岸缓冲带(Rriver Buffer Strips,RBSs)已被证明能有效拦截水流并去除氮,该研究旨在揭示不同配置缓冲带对脱氮效果的影响。实地布置河岸植被缓冲带,开展地下径流试验。缓冲带设置3种不同植物种类(水曲柳,五叶枫,杨树),和不同宽度(0、5... 河岸缓冲带(Rriver Buffer Strips,RBSs)已被证明能有效拦截水流并去除氮,该研究旨在揭示不同配置缓冲带对脱氮效果的影响。实地布置河岸植被缓冲带,开展地下径流试验。缓冲带设置3种不同植物种类(水曲柳,五叶枫,杨树),和不同宽度(0、5、10、20、30 m),河岸坡度为3%,树木密度为540株/hm^(2)。在此条件下,研究各类河岸植被缓冲带对地下径流铵态氮、硝态氮和总氮的截留效果。结果表明:20 m宽度河岸植被缓冲带能很好地截留各形态氮素。30 m宽度下,河岸植被缓冲带径流水中的铵态氮、硝态氮和总氮的截留率最高,分别为70.4%、67.7%和69.1%。在不同植物种类缓冲带比较中,杨树可显著降低径流铵态氮和总氮浓度,水曲柳可显著降低径流硝态氮浓度。在宽度与不同植物种类的交互关系中,20 m宽度杨树缓冲带对铵态氮和硝态氮的截留率最高,30 m宽度杨树缓冲带对总氮的截留率最高,为62.1%。研究结果可为东北地区中小型河流河岸缓冲设计最大化截留径流氮污染物提供参考。 展开更多
关键词 植被 坡度 河岸 缓冲带 截留率 宽度 地下径流深度
在线阅读 下载PDF
浅谈湿地植物在河道中的应用 被引量:2
6
作者 时红 《安徽农学通报》 2017年第20期28-29,31,共3页
针对河道生态整治中面临的湿地植物恢复和种群优化问题,总结国内外相关研究成果,以典型河道内湿地植物为对象,分析常见湿地植物去除污染物的能力,评估常见湿地植物对行洪的影响,构建适宜的河道生态系统,为今后江西河道生态整治和水生态... 针对河道生态整治中面临的湿地植物恢复和种群优化问题,总结国内外相关研究成果,以典型河道内湿地植物为对象,分析常见湿地植物去除污染物的能力,评估常见湿地植物对行洪的影响,构建适宜的河道生态系统,为今后江西河道生态整治和水生态保护提供理论和实践指导。 展开更多
关键词 湿地植物 河道 生态系统
在线阅读 下载PDF
URBAN STREAM RESTORATION AND APPLIED PRACTICES IN NORTHEAST ILLINOIS
7
作者 Jonathan Koepke 《Journal of Green Building》 2017年第2期13-27,共15页
INTRODUCTION:In-stream and watershed dynamics in urban and urbanizing areas have significant impacts on local property and infrastructure,as well as the quality of the stream itself including:water quality,habitat,phy... INTRODUCTION:In-stream and watershed dynamics in urban and urbanizing areas have significant impacts on local property and infrastructure,as well as the quality of the stream itself including:water quality,habitat,physical characteristics,and biodiversity.As land development occurs,natural vegetation and exposed soils are converted to buildings,pavement and other impervious surfaces.This leads to increased runoff during storm events as well as decreasing the time that it takes that stormwater to reach streams,wetlands,and other stormwater storage and conveyance systems.These hydrologic changes in a watershed often occur at a rapid pace which results in rapid destabilization and degradation of streams and rivers.Rivers and streams are naturally dynamic systems.They naturally erode and reshape themselves based on changes to the watershed or the stream itself.Erosion and deposition are natural processes that have always been important components of stream systems and in and of themselves are not undesirable.When natural stream dynamics are rapidly accelerated,however,an entire series of negative impacts to the stream and the biological systems that are depended on the stream occur.Rapid destabilization of streams often leads to significant bank and bed erosion that negatively impact stream health and frequently leads to negative impact to property,buildings and structures,as well as public infrastructure.Past approaches to stream bank and bed stabilization often involved channelization,armoring,and other gray infrastructure techniques to protect public and private property in the effected reaches of streams and rivers without taking into account the overall stream system dynamics.Early stabilization efforts frequently led to other unintended consequences by accelerating the rate of bank and bed erosion in untreated reaches,inadvertent flooding,and other infrastructure impacts.The complex nature of stream dynamics and fluvial geomorphology when applied to urban stream systems and significantly modified watersheds require the need for detailed analysis of the morphology of the stream.Consideration of the complex factors and processes that make up fluvial morphology are critical when selecting practices or methods of stream restoration.Many agencies and cooperative partners work to accumulate and analyze case studies and detailed research in order to develop a method of evaluating and prescribing different stream restoration techniques based on the morphologic conditions in the stream reach(Lyn D.A.,and Newton J.F.,2015).An accumulation of case studies,research,and scholarly work on stream restoration techniques and practices helps shape and inform designers across multiple agencies in order to effectively select and design restoration practices.Ultimately,in urban streams,the designer is working to establish a condition of dynamic equilibrium in the treated stream reach.Dynamic equilibrium is defined as a stream reach that is in balance with sediment transport,aggradation,degradation,and bank and bed erosion.When those characteristics are in balance based on the inputs of sediment within the watershed,the bed load and sediments the stream transports,and discharge rate and volume,then the stream is considered to be in a relatively stable state(FISRWG,1998).The selection then of stream restoration and stabilization practices in urban areas is dependent on not only the reach being treated,but also on the overall watershed dynamics.In addition to the physics of the actual practices implemented,including resistance to shear stresses and velocity of the water flow within the stream channel being treated,the practices must also take into account the larger picture of stream dynamics including sediment delivery and transport,within the watershed and not just within the treated reach.Successful urban stream restoration and stabilization techniques mimic the structures found in more undisturbed systems through the utilization of similar materials in an engineered configuration.In many streams the use of a combination of hard and soft armorment and stabilization solutions including stone,woody debris materials,modern geosynthetic reinforcement devices and native vegetation to stabilize and naturalize stream channels,thereby provided enhanced habitat,better water quality,and protecting property and infrastructure. 展开更多
关键词 Stream Restoration Watershed Development BIOENGINEERING streambank Stabilization Riparian Restoration
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部