期刊文献+
共找到1,520篇文章
< 1 2 76 >
每页显示 20 50 100
Change of stream network connectivity and its impact on flood control 被引量:2
1
作者 Yu-qin Gao Yun-ping Liu +2 位作者 Xiao-hua Lu Hao Luo Yue Liu 《Water Science and Engineering》 EI CAS CSCD 2020年第4期253-264,共12页
AbstUrbanization can alter the hydrogeomorphology of streams and rivers,change stream network structures,and reduce stream network connectivity,which leads to a decrease in the storage capacity of stream networks and ... AbstUrbanization can alter the hydrogeomorphology of streams and rivers,change stream network structures,and reduce stream network connectivity,which leads to a decrease in the storage capacity of stream networks and aggravates flood damage.Therefore,investigation of the ways in which stream network connectivity impacts flood storage capacity and flood control in urbanized watersheds can provide significant benefits.This study developed a framework to assess stream network connectivity and its impact on flood control.First,a few connectivity indices were adopted to assess longitudinal stream network connectivity.Afterward,the static and dynamic storage capacities of stream networks were evaluated using storage capacity indices and a one-dimensional hydrodynamic model.Finally,the impact of stream network connectivity change on flood control was assessed by investigating the changes in stream network connectivity and storage capacity.This framework was applied to the Qinhuai River Basin,China,where intensive urbanization has occurred in the last few decades.The results show that stream network storage capacity is affected by stream network connectivity.Increasing stream network connectivity enhances stream network storage capacity.©2020 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/). 展开更多
关键词 stream network connectivity Static storage capacity Dynamic storage capacity One-dimensional hydrodynamic model
在线阅读 下载PDF
Modelling Uncertainty of Stream Networks Derived from Elevation Data Using Two Free Softwares: R and SAGA 被引量:1
2
作者 Hammadi Achour Noamen Rebai +1 位作者 Jean Van Den Driessche Samir Bouaziz 《Journal of Geographic Information System》 2012年第2期153-160,共8页
Stream networks are considered important units in many environmental decision making processes. The extraction of streams using digital elevation models (DEMs) presents many advantages. However it is very sensitive to... Stream networks are considered important units in many environmental decision making processes. The extraction of streams using digital elevation models (DEMs) presents many advantages. However it is very sensitive to the uncertainty of the elevation datasets used. The main aim of this paper is to implement geostatistical simulations and assess the propagated uncertainty and map the error of location streams. First, point sampled elevations are used to fit a variogram model. Next two hundred DEM realizations are generated using conditional sequential Gaussian simulation;the stream network map is extracted for each of these realizations, and the collection of stream networks is analyzed to quantify the error propagation. At each grid cell, the probability of the occurrence of a stream and the propagated error are estimated. The more probable stream network are delineated and compared with the digital stream network derived from topographic map. The method is illustrated using a small dataset (8742 sampled elevations) for Anaguid Saharan platform. All computations are run in two free softwares: R and SAGA. R is used to fit variogram and to run sequential Gaussian simulation. SAGA is used to extract streams via RSAGA library. 展开更多
关键词 DEM stream network UNCERTAINTY Modeling R SAGA
暂未订购
IDSSCNN-XgBoost:Improved Dual-Stream Shallow Convolutional Neural Network Based on Extreme Gradient Boosting Algorithm for Micro Expression Recognition
3
作者 Adnan Ahmad Zhao Li +1 位作者 Irfan Tariq Zhengran He 《Computers, Materials & Continua》 SCIE EI 2025年第1期729-749,共21页
Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been pr... Micro-expressions(ME)recognition is a complex task that requires advanced techniques to extract informative features fromfacial expressions.Numerous deep neural networks(DNNs)with convolutional structures have been proposed.However,unlike DNNs,shallow convolutional neural networks often outperform deeper models in mitigating overfitting,particularly with small datasets.Still,many of these methods rely on a single feature for recognition,resulting in an insufficient ability to extract highly effective features.To address this limitation,in this paper,an Improved Dual-stream Shallow Convolutional Neural Network based on an Extreme Gradient Boosting Algorithm(IDSSCNN-XgBoost)is introduced for ME Recognition.The proposed method utilizes a dual-stream architecture where motion vectors(temporal features)are extracted using Optical Flow TV-L1 and amplify subtle changes(spatial features)via EulerianVideoMagnification(EVM).These features are processed by IDSSCNN,with an attention mechanism applied to refine the extracted effective features.The outputs are then fused,concatenated,and classified using the XgBoost algorithm.This comprehensive approach significantly improves recognition accuracy by leveraging the strengths of both temporal and spatial information,supported by the robust classification power of XgBoost.The proposed method is evaluated on three publicly available ME databases named Chinese Academy of Sciences Micro-expression Database(CASMEII),Spontaneous Micro-Expression Database(SMICHS),and Spontaneous Actions and Micro-Movements(SAMM).Experimental results indicate that the proposed model can achieve outstanding results compared to recent models.The accuracy results are 79.01%,69.22%,and 68.99%on CASMEII,SMIC-HS,and SAMM,and the F1-score are 75.47%,68.91%,and 63.84%,respectively.The proposed method has the advantage of operational efficiency and less computational time. 展开更多
关键词 ME recognition dual stream shallow convolutional neural network euler video magnification TV-L1 XgBoost
在线阅读 下载PDF
Error resilient concurrent video streaming over wireless mesh networks 被引量:2
4
作者 CHUAH Chen-nee YOO Ben S.J. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第5期684-695,共12页
In this paper, we propose a multi-source multi-path video streaming system for supporting high quality concurrent video-on-demand (VoD) services over wireless mesh networks (WMNs), and leverage forward error correctio... In this paper, we propose a multi-source multi-path video streaming system for supporting high quality concurrent video-on-demand (VoD) services over wireless mesh networks (WMNs), and leverage forward error correction to enhance the error resilience of the system. By taking wireless interference into consideration, we present a more realistic networking model to capture the characteristics of WMNs and then design a route selection scheme using a joint rate/interference-distortion optimiza- tion framework to help the system optimally select concurrent streaming paths. We mathematically formulate such a route selec- tion problem, and solve it heuristically using genetic algorithm. Simulation results demonstrate the effectiveness of our proposed scheme. 展开更多
关键词 Wireless MESH network CONCURRENT VIDEO streaming INTERFERENCE
在线阅读 下载PDF
QoS Guaranteed Pre-Pushing Scheme in Peer-Assisted Streaming Network
5
作者 LIN Fuhong LU Xing 《China Communications》 SCIE CSCD 2014年第A02期111-117,共7页
In peer-assisted streaming network, service provider needs to pre-pushing resources to some users for caching. This scheme can increase the resource availability. In traditional strategy, in order to guarantee the use... In peer-assisted streaming network, service provider needs to pre-pushing resources to some users for caching. This scheme can increase the resource availability. In traditional strategy, in order to guarantee the user's quality of service (QoS), the pre-pushing action can only start at the time point that the certain user has not used the computer for more than 20 minutes. If the user comes back, the pre-pushing action will be stopped. We claim that this is not an efficient scheme. In this paper, we propose a novel pre-pushing scheme to improve the pre-pushing efficiency, while meeting the user's QoS requirements. The basic idea is using the user's available bandwidth as much as possible in the condition of meeting the user's QoS requirements. Then we design an available bandwidth calculating strategy. The numerical simulation demonstrates that our proposed scheme outperforms the traditional one. 展开更多
关键词 peer-assisted streaming network downlink bandwidth pre-pushing available bandwidth
在线阅读 下载PDF
A Real-Time TCP Stream Reassembly Mechanism in High-Speed Network 被引量:3
6
作者 熊兵 陈晓苏 陈宁 《Journal of Southwest Jiaotong University(English Edition)》 2009年第3期185-191,共7页
With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network str... With the continual growth of the variety and complexity of network crime means, the traditional packet feature matching cannot detect all kinds of intrusion behaviors completely. It is urgent to reassemble network stream to perform packet processing at a semantic level above the network layer. This paper presents an efficient TCP stream reassembly mechanism for real-time processing of high-speed network traffic. By analyzing the characteristics of network stream in high-speed network and TCP connection establishment process, several polices for designing the reassembly mechanism are built. Then, the reassembly implementation is elaborated in accordance with the policies. Finally, the reassembly mechanism is compared with the traditional reassembly mechanism by the network traffic captured in a typical gigabit gateway. Experiment results illustrate that the reassembly mechanism is efficient and can satisfy the real-time property requirement of traffic analysis system in high-speed network. 展开更多
关键词 TCP stream reassembly High-speed network Real-time property Reassembly policy
在线阅读 下载PDF
Multimedia Streaming for Ad Hoc Wireless Mesh Networks Using Network Coding
7
作者 Basil Saeed Chung-Horng Lung +1 位作者 Thomas Kunz Anand Srinivasan 《International Journal of Communications, Network and System Sciences》 2013年第5期204-220,共17页
Over the past years, we have witnessed an explosive growth in the use of multimedia applications such as audio and video streaming with mobile and static devices. Multimedia streaming applications need new approaches ... Over the past years, we have witnessed an explosive growth in the use of multimedia applications such as audio and video streaming with mobile and static devices. Multimedia streaming applications need new approaches to multimedia transmissions to meet the growing volume demand and quality expectations of multimedia traffic. This paper studies network coding which is a promising paradigm that has the potential to improve the performance of networks for multimedia streaming applications in terms of packet delivery ratio (PDR), latency and jitter. This paper examines several network coding protocols for ad hoc wireless mesh networks and compares their performance on multimedia streaming applications with optimized broadcast protocols, e.g., BCast, Simplified Multicast Forwarding (SMF), and Partial Dominant Pruning (PDP). The results show that the performance increases significantly with the Random Linear Network Coding (RLNC) scheme. 展开更多
关键词 Wireless Broadcast Multimedia streamING Audio streamING Video streamING network CODING Random Linear network CODING PDP SMF BCast
在线阅读 下载PDF
Joint routing and rate allocation for multiple video streams in ad-hoc wireless networks
8
作者 SINGH Jatinder Pal GIROD Bernd 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第5期727-736,共10页
The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the vi... The support for multiple video streams in an ad-hoc wireless network requires appropriate routing and rate allocation measures ascertaining the set of links for transmitting each stream and the encoding rate of the video to be delivered over the chosen links. The routing and rate allocation procedures impact the sustained quality of each video stream measured as the mean squared error (MSE) distortion at the receiver, and the overall network congestion in terms of queuing delay per link. We study the trade-off between these two competing objectives in a convex optimization formulation, and discuss both centralized and dis- tributed solutions for joint routing and rate allocation for multiple streams. For each stream, the optimal allocated rate strikes a balance between the selfish motive of minimizing video distortion and the global good of minimizing network congestions, while the routes are chosen over the least-congested links in the network. In addition to detailed analysis, network simulation results using ns-2 are presented for studying the optimal choice of parameters and to confirm the effectiveness of the proposed measures. 展开更多
关键词 AD-HOC wireless networks VIDEO streaming Rate allocation MULTI-PATH ROUTING
在线阅读 下载PDF
Author Gender Prediction in an Email Stream Using Neural Networks
9
作者 William Deitrick Zachary Miller +3 位作者 Benjamin Valyou Brian Dickinson Timothy Munson Wei Hu 《Journal of Intelligent Learning Systems and Applications》 2012年第3期169-175,共7页
With the rapid growth of the Internet in recent years, the ability to analyze and identify its users has become increasingly important. Authorship analysis provides a means to glean information about the author of a d... With the rapid growth of the Internet in recent years, the ability to analyze and identify its users has become increasingly important. Authorship analysis provides a means to glean information about the author of a document originating from the internet or elsewhere, including but not limited to the author’s gender. There are well-known linguistic differences between the writing of men and women, and these differences can be effectively used to predict the gender of a document’s author. Capitalizing on these linguistic nuances, this study uses a set of stylometric features and a set of word count features to facilitate automatic gender discrimination on emails from the popular Enron email dataset. These features are used in conjunction with the Modified Balanced Winnow Neural Network proposed by Carvalho and Cohen, an improvement on the original Balanced Winnow created by Littlestone. Experiments with the Modified Balanced Winnow show that it is effectively able to discriminate gender using both stylometric and word count features, with the word count features providing superior results. 展开更多
关键词 1-Gram Word Counts Balanced WINNOW ENRON EMAIL GENDER PREDICTION Neural network stream Mining Stylometric Features
暂未订购
结合对比学习和双流网络融合知识图谱摘要模型 被引量:3
10
作者 赵霞 王钊 《计算机应用研究》 北大核心 2025年第3期720-727,共8页
提出了一种融合对比学习与双流网络的新型知识图谱摘要模型(KGDR-CLSUM),旨在解决现有模型在生成摘要时存在的事实性错误和信息提取不足的问题。该模型通过设计双流网络同时处理文本特征和知识图谱特征,并采用对比学习来强化这两类特征... 提出了一种融合对比学习与双流网络的新型知识图谱摘要模型(KGDR-CLSUM),旨在解决现有模型在生成摘要时存在的事实性错误和信息提取不足的问题。该模型通过设计双流网络同时处理文本特征和知识图谱特征,并采用对比学习来强化这两类特征的有效融合。此外,引入动量蒸馏策略以降低知识图谱中的数据噪声,从而提升摘要生成的质量和准确性。在CNN/Daily Mail数据集上,KGDR-CLSUM相较于基线模型PEGASUS BASE,在ROUGE-1、ROUGE-2和ROUGE-L指标上分别提升了3.03%、3.42%和2.56%,在XSum数据集上更是达到了7.54%、8.78%和8.51%的显著提升。此外,人工评分显著高于ChatGPT,进一步证明了该模型的优越性能。结果表明,KGDR-CLSUM在生成摘要时,尤其在短文本生成任务中,能够有效降低错误信息,并显著提高摘要的质量。 展开更多
关键词 文本摘要 知识图谱 动量蒸馏 对比学习 双流网络
在线阅读 下载PDF
Data Stream Subspace Clustering for Anomalous Network Packet Detection 被引量:1
11
作者 Zachary Miller Wei Hu 《Journal of Information Security》 2012年第3期215-223,共9页
As the Internet offers increased connectivity between human beings, it has fallen prey to malicious users who exploit its resources to gain illegal access to critical information. In an effort to protect computer netw... As the Internet offers increased connectivity between human beings, it has fallen prey to malicious users who exploit its resources to gain illegal access to critical information. In an effort to protect computer networks from external attacks, two common types of Intrusion Detection Systems (IDSs) are often deployed. The first type is signature-based IDSs which can detect intrusions efficiently by scanning network packets and comparing them with human-generated signatures describing previously-observed attacks. The second type is anomaly-based IDSs able to detect new attacks through modeling normal network traffic without the need for a human expert. Despite this advantage, anomaly-based IDSs are limited by a high false-alarm rate and difficulty detecting network attacks attempting to blend in with normal traffic. In this study, we propose a StreamPreDeCon anomaly-based IDS. StreamPreDeCon is an extension of the preference subspace clustering algorithm PreDeCon designed to resolve some of the challenges associated with anomalous packet detection. Using network packets extracted from the first week of the DARPA '99 intrusion detection evaluation dataset combined with Generic Http, Shellcode and CLET attacks, our IDS achieved 94.4% sensitivity and 0.726% false positives in a best case scenario. To measure the overall effectiveness of the IDS, the average sensitivity and false positive rates were calculated for both the maximum sensitivity and the minimum false positive rate. With the maximum sensitivity, the IDS had 80% sensitivity and 9% false positives on average. The IDS also averaged 63% sensitivity with a 0.4% false positive rate when the minimal number of false positives is needed. These rates are an improvement on results found in a previous study as the sensitivity rate in general increased while the false positive rate decreased. 展开更多
关键词 ANOMALY DETECTION INTRUSION DETECTION System network Security PREFERENCE SUBSPACE Clustering stream Data Mining
暂未订购
Dynamic multimedia stream adaptation and rate control for heterogeneous networks
12
作者 SZWABE Andrzej SCHORR Andreas +1 位作者 HAUCK Franz J. KASSLER Andreas J. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2006年第z1期63-69,共7页
Dynamic adaptation of multimedia content is seen as an important feature of next generation networks and pervasive systems enabling terminals and applications to adapt to changes in e.g. context, access network, and a... Dynamic adaptation of multimedia content is seen as an important feature of next generation networks and pervasive systems enabling terminals and applications to adapt to changes in e.g. context, access network, and available Quality-of-Service(QoS) due to mobility of users, devices or sessions. We present the architecture of a multimedia stream adaptation service which enables communication between terminals having heterogeneous hardware and software capabilities and served by heterogeneous networks. The service runs on special content adaptation nodes which can be placed at any location within the network. The flexible structure of our architecture allows using a variety of different adaptation engines. A generic transcoding engine is used to change the codec of streams. An MPEG-21 Digital Item Adaptation (DIA) based transformation engine allows adjusting the data rate of scalable media streams. An intelligent decision-taking engine implements adaptive flow control which takes into account current network QoS parameters and congestion information. Measurements demonstrate the quality gains achieved through adaptive congestion control mechanisms under conditions typical for a heterogeneous network. 展开更多
关键词 stream adaptation QUALITY-OF-SERVICE (QoS) HETEROGENEOUS networks Rate control MPEG-21 DIA
在线阅读 下载PDF
基于改进TCNN算法的脑电动态连续情绪识别研究
13
作者 揭丽琳 刘勇 +3 位作者 王铭勋 邹杨萌 徐亦璐 鲁宇明 《电子学报》 北大核心 2025年第4期1347-1360,共14页
在现实生活中,人类情绪具有动态和多样化的特征,受外部环境、社交互动以及个体内在状态的共同影响.针对脑电情绪识别研究通常局限于实验室的静态场景,未能充分考虑情绪的动态连续性的问题,本文提出了一种基于改进TCNN算法的脑电动态连... 在现实生活中,人类情绪具有动态和多样化的特征,受外部环境、社交互动以及个体内在状态的共同影响.针对脑电情绪识别研究通常局限于实验室的静态场景,未能充分考虑情绪的动态连续性的问题,本文提出了一种基于改进TCNN算法的脑电动态连续情绪识别方法 .首先,设计了适用于动态情境的脑电数据采集范式,使用64通道的脑电设备收集24名受试者在经历开心至平静、平静至开心、平静至悲伤、悲伤至平静、平静至紧张和紧张至平静六种动态连续情绪转变时的脑电信号,并进行了动态连续情绪标签的标注.其次,对现有的TCNN算法进行了改进,构建了一种双流网络模型进行动态连续情绪识别.该模型通过短期流利用时序卷积模块捕捉局部时间序列特征,而长期流则通过Transformer模块捕捉全局时间序列特征.最后,对提取的脑电特征进行特征层融合,以获得更加精准的动态连续情绪识别结果.结果表明:在采集的动态连续情绪数据集上,本文方法在六种情绪的valence和arousal上分别取得了最小误差均值0.083和0.084;在DEAP数据集上,valence和arousal的误差分别低至0.108和0.113.与四种传统机器学习算法以及GRU、CGRU、CNN、CNN-LSTM、CNN-Bi-LSTM、TCNN等六种深度学习模型相比,本文方法表现出了更高的识别精度和稳定性,能够有效满足应用场景的需求. 展开更多
关键词 脑电信号 情绪识别 特征提取 特征融合 双流网络模型
在线阅读 下载PDF
面向6G核心网的AI-Native NWDAF网元开发架构 被引量:2
14
作者 何世文 戴诗棋 +3 位作者 董浩磊 彭石林 张晓宇 钱育蓉 《移动通信》 2025年第1期81-90,共10页
内生智能的通信网络被认为是第六代移动通信网络发展的关键技术之一。在深入分析开发内生智能网络数据分析功能网元所面临的数据采集、隐私保护、模型管理以及灵活可扩展等挑战的基础上,提出一种具备并行化数据采集与处理能力、高效化... 内生智能的通信网络被认为是第六代移动通信网络发展的关键技术之一。在深入分析开发内生智能网络数据分析功能网元所面临的数据采集、隐私保护、模型管理以及灵活可扩展等挑战的基础上,提出一种具备并行化数据采集与处理能力、高效化模型训练与管理机制以及强容错性和可扩展性的内生智能网络数据分析功能网元开发架构。该架构旨在实现数据采集、数据分析、数据存储、模型决策一体化的目标,从而能有效应对第六代移动通信网络环境中的复杂需求。结合Kubernetes、流式化处理、微服务化等前沿技术,开发了实验室环境中的验证系统平台,进而验证了所提出架构的有效性并分析了系统性能。 展开更多
关键词 内生智能 流式处理 网络数据分析功能网元
在线阅读 下载PDF
Sentiment Analysis on the Social Networks Using Stream Algorithms
15
作者 Nathan Aston Timothy Munson +3 位作者 Jacob Liddle Garrett Hartshaw Dane Livingston Wei Hu 《Journal of Data Analysis and Information Processing》 2014年第2期60-66,共7页
The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for id... The rising popularity of online social networks (OSNs), such as Twitter, Facebook, MySpace, and LinkedIn, in recent years has sparked great interest in sentiment analysis on their data. While many methods exist for identifying sentiment in OSNs such as communication pattern mining and classification based on emoticon and parts of speech, the majority of them utilize a suboptimal batch mode learning approach when analyzing a large amount of real time data. As an alternative we present a stream algorithm using Modified Balanced Winnow for sentiment analysis on OSNs. Tested on three real-world network datasets, the performance of our sentiment predictions is close to that of batch learning with the ability to detect important features dynamically for sentiment analysis in data streams. These top features reveal key words important to the analysis of sentiment. 展开更多
关键词 Modified BALANCED WINNOW SENTIMENT Analysis TWITTER Online Social networks Feature Selection Data streamS
在线阅读 下载PDF
融合关键区域信息的双流网络视频表情识别
16
作者 孔英会 崔文婷 +1 位作者 张珂 车辚辚 《智能系统学报》 北大核心 2025年第3期658-669,共12页
人脸表情识别是计算机视觉领域中的一个重要研究课题,而视频中的表情识别在很多场景下具有实用价值。视频序列包含丰富的帧内空间信息与帧间时间信息,同时面部关键区域的提取也对表情识别结果有重要影响,本文提出一种融合关键区域信息... 人脸表情识别是计算机视觉领域中的一个重要研究课题,而视频中的表情识别在很多场景下具有实用价值。视频序列包含丰富的帧内空间信息与帧间时间信息,同时面部关键区域的提取也对表情识别结果有重要影响,本文提出一种融合关键区域信息的双流网络表情识别方法。构建空间-时间双流网络,其中空间网络分支结合面部运动单元和CSFA(channel-spatial frame attention),重点关注影响表情识别结果的面部关键区域,以实现空间特征的有效提取;时间分支通过Farneback提取光流获得帧间的表情运动信息,并借助空间关键区域掩模选取降低光流计算复杂度。对空间-时间双流网络识别结果进行决策融合,得到最终视频表情识别结果。该方法在eNTERFACE'05、CK+数据集上进行实验测试,结果表明本文所提方法可有效提升识别精度,且提高了运行效率。 展开更多
关键词 视频表情识别 双流网络 注意力机制 光流 卷积神经网络 掩模 特征融合 面部表情识别
在线阅读 下载PDF
SiamMT:基于自适应特征融合机制的可修正RGBT目标跟踪算法
17
作者 齐咏生 姜政廷 +2 位作者 刘利强 苏建强 张丽杰 《控制与决策》 北大核心 2025年第4期1312-1320,共9页
针对传统RGBT目标跟踪算法网络精确度低、鲁棒性差,以及在目标尺度变化大和长时跟踪过程中存在目标丢失无法找回等问题,提出一种新的基于自适应特征融合机制的可修正RGBT目标跟踪算法.首先,引入一种特征层与模态间双自适应融合机制,充... 针对传统RGBT目标跟踪算法网络精确度低、鲁棒性差,以及在目标尺度变化大和长时跟踪过程中存在目标丢失无法找回等问题,提出一种新的基于自适应特征融合机制的可修正RGBT目标跟踪算法.首先,引入一种特征层与模态间双自适应融合机制,充分利用两模态间的互补信息,增强RGB与红外特征的跨模态融合;然后,设计一种后端时序约束回归模块,利用上一帧信息对IOU计算以及边界框回归进行约束,有效减少相似物干扰;最后,提出一种基于元学习的在线模板更新机制,对回归阶段得分较高的模板图像进行更新存储,解决长时跟踪中累计误差和目标难以找回问题.采用权威的目标跟踪数据集GTOT、RGBT234和VOT-RGBT2019进行算法验证,所提出方法均可取得极具竞争力的结果.将算法移植到嵌入式设备Jetson Xavier NX上进行性能测试,实验结果表明:所提出算法运行速度可达到29帧/s,相比于当前流行的多种RGBT算法,具有更为全面的跟踪性能,且能够有效解决相似物干扰、目标丢失难找回等问题. 展开更多
关键词 目标跟踪 孪生网络 RGBT 元学习 特征融合
原文传递
用于红外-可见光图像分类的跨模态双流交替交互网络
18
作者 郑宗生 杜嘉 +3 位作者 成雨荷 赵泽骋 张月维 王绪龙 《计算机应用》 北大核心 2025年第1期275-283,共9页
多特征模态融合时存在噪声的叠加,而为减小模态间的差异采用的级联方式的结构也未充分利用模态间的特征信息,因此设计一种跨模态双流交替交互网络(DAINet)方法。首先,构建双流交替增强(DAE)模块,以交互双分支形式融合模态特征,并通过学... 多特征模态融合时存在噪声的叠加,而为减小模态间的差异采用的级联方式的结构也未充分利用模态间的特征信息,因此设计一种跨模态双流交替交互网络(DAINet)方法。首先,构建双流交替增强(DAE)模块,以交互双分支形式融合模态特征,并通过学习模态数据的映射关系,以红外-可见光-红外(IR-VIS-IR)和可见光-红外-可见光(VIS-IR-VIS)的双向反馈调节实现模态间噪声的交叉抑制;然后,构建跨模态特征交互(CMFI)模块,并引入残差结构将红外-可见光模态内以及模态间的低层特征和高层特征进行有效融合,从而减小模态间的差异并充分利用模态间的特征信息;最后,在自建红外-可见光多模态台风数据集及RGB-NIR多模态公开场景数据集上进行实验,以验证DAE模块和CMFI模块的有效性。实验结果表明,与简单级联融合方法相比,所提的基于DAINet的特征融合方法在自建台风数据集上的红外模态和可见光模态上的总体分类精度分别提高了6.61和3.93个百分点,G-mean值分别提高了6.24和2.48个百分点,表明所提方法在类别不均衡分类任务上的通用性;所提方法在RGB-NIR数据集上的2种测试模态下的总体分类精度分别提高了13.47和13.90个百分点。同时,所提方法在2个数据集上分别与IFCNN(general Image Fusion framework based on Convolutional Neural Network)和DenseFuse方法进行对比的实验结果表明,所提方法在自建台风数据集上的2种测试模态下的总体分类精度分别提高了9.82、6.02和17.38、1.68个百分点。 展开更多
关键词 跨模态 深度学习 图像分类 特征学习 双流网络
在线阅读 下载PDF
双流运动建模-循环一致性对齐小样本动作识别算法
19
作者 胡正平 董佳伟 王昕宇 《燕山大学学报》 北大核心 2025年第1期83-94,共12页
针对不同场景下动作时空分布不同导致视频对齐困难,进而影响视频识别准确度问题,提出对双流特征进行运动建模和循环一致性对齐的小样本动作识别方法,能够在全局帧和局部块双尺度特征建模和对齐高维运动表示。首先基于双流特征设计了运... 针对不同场景下动作时空分布不同导致视频对齐困难,进而影响视频识别准确度问题,提出对双流特征进行运动建模和循环一致性对齐的小样本动作识别方法,能够在全局帧和局部块双尺度特征建模和对齐高维运动表示。首先基于双流特征设计了运动建模框架,重塑视频序列中动作表示的时空联系,实现对视频动作的准确定位和语义性捕获;然后,为帮助模型学习动作间时空对应关系,引入循环一致性对齐机制,利用软最近邻查询的方法,高效对齐视频动作,显著改善了视频动作的错位问题;最后,结合基于注意力机制的时域交叉匹配模块,对动作类别进行推理分类。实验结果表明,该算法在SSv2、HMDB51、UCF101上分别达到68.6%、77.7%和96.9%的识别精度,实现了对视频动作的有效识别。 展开更多
关键词 小样本学习 动作识别 双流网络 注意力机制 循环一致性对齐
在线阅读 下载PDF
基于CNN-Transformer的电子喉镜病灶及器官分割网络
20
作者 李白芽 《计算机工程》 北大核心 2025年第6期327-337,共11页
在电子喉镜检查中,随着镜头的移动,病灶和器官的形态会发生多种变化,同时病灶和器官与黏膜组织的边界不清晰,导致了对病灶和主要喉部器官进行同步图像分割的准确率不理想。为解决这一问题,提出一种CNN-Transformer双流混合网络。双流混... 在电子喉镜检查中,随着镜头的移动,病灶和器官的形态会发生多种变化,同时病灶和器官与黏膜组织的边界不清晰,导致了对病灶和主要喉部器官进行同步图像分割的准确率不理想。为解决这一问题,提出一种CNN-Transformer双流混合网络。双流混合网络中的卷积神经网络(CNN)分支负责提取细粒度特征,而Transformer分支则负责提取全局语义特征。具体来说,混合网络通过CNN对图像中多种尺度下的细粒度特征进行挖掘,然后将提取到的不同尺度下的CNN特征与Transformer分支提取到的相应尺度下的全局语义特征进行融合。这种双流混合结构既能有效实现捕获到特征的浅层次及局部细节信息表现,同时又能对深层特征和全局信息保持敏感。此外,在进行多层次特征融合前,使用暗部特征强化模块来增强阴影区域图像的特征细节,以保证分割的准确率。为验证方法的有效性,使用了来自不同医疗机构的2425张喉镜手术图像进行实验,并与近期提出的9种方法进行了对比分析,实验结果证明了所提出方法的先进性。 展开更多
关键词 电子喉镜 图像分割 双流混合网络 多尺度特征融合 暗部特征增强
在线阅读 下载PDF
上一页 1 2 76 下一页 到第
使用帮助 返回顶部