Liver cancer stands as a significant global health concern,contributing substantially to cancer incidence and mortality,particularly in Asian countries[1].Hepatocellular carcinoma(HCC)accounts for approximately 90%of ...Liver cancer stands as a significant global health concern,contributing substantially to cancer incidence and mortality,particularly in Asian countries[1].Hepatocellular carcinoma(HCC)accounts for approximately 90%of all liver cancer cases and is characterized by a high-risk profile and a generally poor prognosis[2].To address advanced HCC,systemic therapy has been recommended,leading to the approval of a range of treatment regimens in clinical practice.Traditionally,first-line therapy involved the use of multitargeted tyrosine kinase inhibitors(TKIs)such as sorafenib or lenvatinib,while cabozantinib,ramucirumab.展开更多
Stroke is a major cause of death and disability among adults in China,and an efficient rehabilitation strategy has been an urgent demand for post-stroke rehabilitation.The non-invasive brain stimulation(NBS)can modula...Stroke is a major cause of death and disability among adults in China,and an efficient rehabilitation strategy has been an urgent demand for post-stroke rehabilitation.The non-invasive brain stimulation(NBS)can modulate the excitability of the cerebral cortex and provide after-effects apart from immediate effects to regain extremity motor functions,whereas robotic therapy provides high-intensity and long-duration repetitive movements to stimulate the cerebral cortex backward.The combined strategy of the two techniques is widely regarded as a promising application for stroke patients with dyskinesia.Transcranial magnetic stimulation(TMS)and transcranial electrical stimulation(TES)are important methods of NBS.Their recovery principles,stimulation parameters,and clinical applications have been summarized.The combined treatments of rTMS/tDCS and robotic therapy are analyzed and discussed to overcome the application barriers of the two techniques.The future development trend and the key technical problems are expounded for the clinical applications.展开更多
Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylbor...Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylboronic acid(PBA)were synthesized,of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA.The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges.The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract.After reaching the lesions,the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release,while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside.The drugmicelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation.The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable,safe and flexible anti-infectious drug delivery systems.展开更多
Objective To summarize the experiences of ligating left subclavian artery ( LSA ) in total arch peplacement and stented elephant trunk implantation for Stanford type A aortic dissection patients with difficulty in exp...Objective To summarize the experiences of ligating left subclavian artery ( LSA ) in total arch peplacement and stented elephant trunk implantation for Stanford type A aortic dissection patients with difficulty in exposing the LSA. Methods Total arch replacement and stented elephant trunk implantation were performed on 79 consecutive展开更多
Landslide susceptibility mapping (LSM) assists planners, local administrations, and decision-makers in preventing, mitigating and managing associated risks. This study proposes a novel DES-based framework that effecti...Landslide susceptibility mapping (LSM) assists planners, local administrations, and decision-makers in preventing, mitigating and managing associated risks. This study proposes a novel DES-based framework that effectively captures the spatial developmental patterns of different landslide types, leading to higher precision LSM. The Wanzhou district (administrative division) of Chongqing Province, southwestern China, was selected as the test area, encompassing 881 landslides classified into rockfalls, reservoir-affected (RA) landslides, and non-reservoir-affected (NRA) landslides. Subsequently, three inventory maps and sixteen environment factors were used as inputs, with multicollinearity and importance analyses used to select the best factor combination for three types of landslides. Finally, the susceptibilities of rockfalls, RA and NRA landslides were combined by six combination strategies: Maximum, Mean, Probability, Voting, Stacking, and Dynamic Ensemble Selection (DES) models, and the optimal strategy was identified by area under the receiver operating characteristic curves (AUC), confusion matrix, and landslide distribution statistic. For LSM of individual landslide types, ResNet consistently outperformed traditional machine learning models, achieving testing AUC values of 0.8925, 0.9427, and 0.6754 for rockfalls, RA, and NRA landslides, respectively. The evaluation of the combination strategies revealed that the DES model achieved the highest testing AUC value of 0.8779, followed by Stacking (0.8728), Maximum (0.8704), Probability (0.8669), and Voting (0.8653), whereas the widely-used Mean method performed the worst (0.8503), even lower than the non-classified LSM (0.8587). The findings offer a robust approach for mitigating future landslide risks and minimizing their adverse impacts, providing valuable insights for geohazard management and decision-making.展开更多
Diabetic foot ulcer is a serious complication of diabetes.Excessive accumulation of advanced glycation end products(AGEs)is one of the critical pathogenic factors in postponing diabetic wound healing.The main pathogen...Diabetic foot ulcer is a serious complication of diabetes.Excessive accumulation of advanced glycation end products(AGEs)is one of the critical pathogenic factors in postponing diabetic wound healing.The main pathogenic mechanisms of AGEs include inducing cellular dysfunction,prolonging inflammatory response,increasing oxidative stress and reducing endogenous nitric oxide(NO)production.Combination therapy of blocking the deleterious effects of AGEs and supplementing exogenous NO is hypothesized to promote diabetic wound healing.Here,we presented nanoparticles/hydrogel composite dressings to co-delivery rosiglitazone and S-nitroso glutathione into the wound bed.The designed co-delivery system augmented the survival of fibroblasts,reduced oxidative stress levels,reversed the change of mitochondrial membrane potential and decreased the proinflammatory cytokine expression.Local sustained release of therapeutic agents significantly improved the wound healing of diabetic rats including increasing the wound closure rate,alleviating inflammation,promoting collagen fiber production and angiogenesis.Our finding indicated this local deliver strategy aimed at inhibiting the toxic effects of AGEs has great clinical potential for diabetic wound treatment.展开更多
A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression (SVMR) ensemble is proposed by resampling from given training...A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression (SVMR) ensemble is proposed by resampling from given training data sets repeatedly and aggregating several independent SVMRs, each of which is trained to use a replicated training set. After training, several independently trained SVMRs need to be aggregated in an appropriate combination manner. Generally, the linear weighting is usually used like expert weighting score in Boosting Regression and it is without optimization capacity. Three combination techniques are proposed, including simple arithmetic mean, linear least square error weighting and nonlinear hierarchical combining that uses another upper-layer SVMR to combine several lower-layer SVMRs. Finally, simulation experiments demonstrate the accuracy and validity of the presented algorithm.展开更多
Modular Solar-Powered Aircraft(M-SPA)is a kind of High-Altitude Long-Endurance(HALE)aircraft which exploits the mission advantage of swarm UAV and the HALE advantage of large aspect-ratio SPA.M-SPA’s separated mode a...Modular Solar-Powered Aircraft(M-SPA)is a kind of High-Altitude Long-Endurance(HALE)aircraft which exploits the mission advantage of swarm UAV and the HALE advantage of large aspect-ratio SPA.M-SPA’s separated mode and combined mode give it the potential to maximize the mission efficiency with limited solar energy.In this paper,firstly,oriented by the mission of maximizing the cruise area,the overall design of the M-SPA is modeled,including the energy model,the aerodynamic model and the flight environment settings.Secondly,by analyzing the energy consumption of the flight modes,we design a multi-phase flight mission strategy.Then,a 24-hour three-dimensional(3D)flight profile of the M-SPA is optimized,including the sub-SPA cooperative path planning in the separation mode.Finally,inspired by the Traveling Salesman Problem(TSP),an improved Ant Colony Algorithm(ACA)is exploited to find the optimal path for each sub-SPA,which is further developed into a dynamic separation and combination scheme for the M-SPA.The simulation results show that the mission performance of the M-SPA outperforms that of the conventional SPA,and explicitly,the mission coverage of the M-SPA is slightly less than a linear increase under comparable simulation conditions.展开更多
Effective emission control of cooking oil fumes(COFs),particularly for grease particles,has always been a cause of great concern for catering industry.The review and evaluation of combinations of purification technolo...Effective emission control of cooking oil fumes(COFs),particularly for grease particles,has always been a cause of great concern for catering industry.The review and evaluation of combinations of purification technology are urgently required.This work presents a literature review and combination strategy evaluation of purification technology of grease particles of commercial kitchens.A variety of mainstream purification technologies,such as mechanical separation(M),filtration(F),washing absorption(W)and electrostatic deposition(E)are discussed.In order to establish a complete and efficient fume purification system for commercial kitchen,this study proposes the four-point principles of combined purification technologies as:(1)from easy to difficult(for grease particle diameter);(2)fire prevention and noise reduction;(3)electrostatic deposition postposition;(4)Absorption and dissolution(by-product from electrostatic).Based on the above principles and separation characteristics,the recommended combinations of purification strategies are M-E,F-E,M-F-E and M-E-F.The combination strategy of M-F-E is adopted as an example to evaluate and optimize COFs purification system use life cycle assessment approach.The results indicate that the optimization of the M-F-E purification system using rotating mesh plate instead of baffle filter can reduce the environmental impact of global warming and eutrophication by about 35%which reduces the emissions of CO_(2)and SO_(2)from 92.533 kg and 0.110 kg to 60.214 kg and 0.072 kg,respectively.Besides the review of relevant purification technologies,the study also proposes the combination of principles of purification technologies and the evaluation and optimization of life cycle assessment for the optimal design of combined purification system.展开更多
Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attemp...Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attempts have been made to achieve more accurate and reliable forecasting results,of which the combining of individual models remains a widely applied approach.In general,individual models are combined under two main strategies:series and parallel.While it has been proven that these strategies can improve overall forecasting accuracy,the literature on time series forecasting remains vague on the choice of an appropriate strategy to generate a more accurate hybrid model.Methods:Therefore,this study’s key aim is to evaluate the performance of series and parallel strategies to determine a more accurate one.Results:Accordingly,the predictive capabilities of five hybrid models are constructed on the basis of series and parallel strategies compared with each other and with their base models to forecast stock price.To do so,autoregressive integrated moving average(ARIMA)and multilayer perceptrons(MLPs)are used to construct two series hybrid models,ARIMA-MLP and MLP-ARIMA,and three parallel hybrid models,simple average,linear regression,and genetic algorithm models.Conclusion:The empirical forecasting results for two benchmark datasets,that is,the closing of the Shenzhen Integrated Index(SZII)and that of Standard and Poor’s 500(S&P 500),indicate that although all hybrid models perform better than at least one of their individual components,the series combination strategy produces more accurate hybrid models for financial time series forecasting.展开更多
The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chem...The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chemoresistance,invasiveness,and the immune microenvironment.Therapeutically,their promising effects are being evaluated in diversified preclinical and clinical trials,demonstrating encouraging outcomes in multiple malignancies.In this review,we have updated recent understandings of KMTs'functions and the development of their targeted inhibitors.First,we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis,tumor suppression,and immune regulation.In addition,we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors.In summary,we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.展开更多
As the science and technology develop,crime methods and scenes have become increasingly complex and diverse.Trace evidence analysis has become amore and more important criminal investigation technology and liquid is t...As the science and technology develop,crime methods and scenes have become increasingly complex and diverse.Trace evidence analysis has become amore and more important criminal investigation technology and liquid is the main form of trace evidence.Food can provide not only energy,but clues to solve crimes.In this study,we build a hyperspectral imaging system to detect liquid residue traces,including apple juice,coffee,cola,milk and tea,on denims with light,middle and dark colors.The obtained hyperspectral images are first subjected to spectral calibration and hyperspectral data pretreatment.Subsequently,Partial Least Squares(PLS)is applied to select the informative wavelengths from the preprocessed spectra.For modeling phase,the combination optimal strategy,support vector machine(SVM)combined with random forest(RF),is developed to establish classification models.The experimental results demonstrate that the combination optimal model can achieve TPR,FPR,Precision,Recall,F1,and AUC of 83.5%,2.30%,79.7%,83.5%,81.6%,and 94.7%for classifying fabrics contaminated by various food residuals.With respect to the classification of liquid and fabric types,the combination optimalmodel also yields satisfactory classification performance.In future work,wewill expand the types of liquid,and make appropriate adjustment to algorithms for improving the robustness of classification models.This research may play a positive role in the construction of a harmonious society.展开更多
The flowering forecast provides recommendations for orchard cleaning, pest control, field management and fertilization, which can help increase tree vigor and resistance. Flowering forecast is not only an important pa...The flowering forecast provides recommendations for orchard cleaning, pest control, field management and fertilization, which can help increase tree vigor and resistance. Flowering forecast is not only an important part of the construction of agro-meteorological index system, but also an important part of the meteorological service system. In this paper, by analyzing local meteorological data and phenological data of “Red Fuji” apples in Fen County, Linfen City, Shanxi Province, with the help of machine learning and neural networks, we proposed a method based on the combination of time series forecasting and classification forecasting is proposed to complete the dynamic forecasting model of local flowering in Ji County. Then, we evaluated the effectiveness of the model based on the number of error days and the number of days in advance. The implementation shows that the proposed multivariable LSTM network has a good effect on the prediction of meteorological factors. The model loss is less than 0.2. In the two-category task of flowering judgment, the idea of combining strategies in ensemble learning improves the effect of flowering judgment, and its AUC value increases from 0.81 and 0.80 of single model RF and AdaBoost to 0.82. The proposed model has high applicability and accuracy for flowering forecast. At the same time, the model solves the problem of rounding decimals in the prediction of flowering dates by the regression method.展开更多
Human immunodeficiency virus(HIV)-1 infection creates a persistent latent reservoir even after antiretroviral therapy,which is the main barrier to HIV cure.One of the most explored strategies is the use of latent reve...Human immunodeficiency virus(HIV)-1 infection creates a persistent latent reservoir even after antiretroviral therapy,which is the main barrier to HIV cure.One of the most explored strategies is the use of latent reversal agents(LRAs)to activate HIV latent reservoirs,followed by immunotherapy to remove infected cells.Immunomodulatory LRAs have the dual advantage of activating viral latency and promoting immune cell elimination of HIV-infected cells.The emergence of novel immunotherapies has also enhanced the possibility ofHIV clearance.Here we review the activity and potential mechanisms of immunomodulatory agonists and immunotherapies.The possible combinational strategies to achieve HIV functional cure and the problems encountered using this approach are discussed.展开更多
Immunotherapy acts as an essential modality in modulating a broad variety of immune responses to cure diseases and has been regarded as a powerful therapeutic strategy in cancer treatment in the past decades.However,t...Immunotherapy acts as an essential modality in modulating a broad variety of immune responses to cure diseases and has been regarded as a powerful therapeutic strategy in cancer treatment in the past decades.However,the application of immunotherapeutic agents is limited by their low tumor targeting capability,poor tumor penetration ability,and potential immune-related adverse events in physiological environments.Engineered liposomal nanoplatforms can help to reduce immune-related side effects,precisely deliver the drugs to the tumor site,and enhance the treatment power of immunotherapeutic agents by restricting them within the cavities of the liposomes and modifying the liposomes with targeting components and biocompatible materials to reduce their burst release,unwanted dispersion,and blood clearance.This review discusses the recent progress in the development of liposome-assisted immunotherapy for treating various cancers,including the design of liposomal nanoplatforms,the features of different immunotherapy modalities,and the strategies for activating immune responses.In addition,this review also introduces the strategies for strengthening liposome-based immunotherapy by optimizing liposomal design,exploring the pairing of different drugs,and combining with different therapeutic modalities.Finally,this review proposes some current limitations and future research directions for liposomal nanoplatform-assisted cancer immunotherapy.展开更多
Cancer is a primary cause of mortality in humans.Conventional chemotherapy has hazardous side effects and numerous limitations,necessitating the urgent exploration of novel anti-cancer agents.Based on existing literat...Cancer is a primary cause of mortality in humans.Conventional chemotherapy has hazardous side effects and numerous limitations,necessitating the urgent exploration of novel anti-cancer agents.Based on existing literature and data,this article reviews the anti-tumor mechanism,current application status,and future development of bee venom peptides.The research findings demonstrate that bee venom peptide,a natural cell lytic peptide,possesses many anti-tumor mechanisms,including the direct destruction of tumor cells,the induction of tumor cell apoptosis,and immunological modulation.It can disrupt the integrity of the cell membrane and lead to cell death.It can also activate apoptosis signaling pathways through endoplasmic reticulum,mitochondria,and death receptors,promoting apoptosis of tumor cells.Meanwhile,it can reshape the immune microenvironment and stimulate immune responses.The author also discussed issues such as poor stability,low bioavailability,lack of targeting,and potential safety of bee venom peptides.In the future,it is recommended to develop new derivatives of bee venom peptides and optimize combination therapy strategies.展开更多
Invasive fungal infections(IFIs)have become prominent global health threats,escalating the burden on public health systems.The increasing occurrence of invasive fungal infections is due primarily to the extensive appl...Invasive fungal infections(IFIs)have become prominent global health threats,escalating the burden on public health systems.The increasing occurrence of invasive fungal infections is due primarily to the extensive application of chemotherapy,immunosuppressive therapies,and broad-spectrum antifungal agents.At present,therapeutic practices utilize multiple categories of antifungal agents,such as azoles,polyenes,echinocandins,and pyrimidine analogs.Nevertheless,the clinical effectiveness of these treatments is progressively weakened by the emergence of drug resistance,thereby substantially restricting their therapeutic utility.Consequently,there is an imperative need to expedite the discovery of novel antifungal agents.This review seeks to present an exhaustive synthesis of novel antifungal drugs and candidate agents that are either under current clinical investigation or anticipated to progress into clinical evaluation.These emerging compounds exhibit unique benefits concerning their modes of action,antimicrobial spectra,and pharmacokinetic characteristics,potentially leading to improved therapeutic outcomes relative to conventional antifungal regimens.It is anticipated that these novel therapeutic agents will furnish innovative treatment modalities and enhance clinical outcomes in managing invasive fungal infections.展开更多
Described as a“don't eat me”signal,CD47 becomes a vital immune checkpoint in cancer.Its interaction with signal regulatory protein alpha(SIRPa)prevents macrophage phagocytosis.In recent years,a growing body of e...Described as a“don't eat me”signal,CD47 becomes a vital immune checkpoint in cancer.Its interaction with signal regulatory protein alpha(SIRPa)prevents macrophage phagocytosis.In recent years,a growing body of evidences have unveiled that CD47-based combination therapy exhibits a superior anti-cancer effect.Latest clinical trials about CD47 have adopted the regimen of collaborating with other therapies or developing CD47-directed bispecific antibodies,indicating the combination strategy as a general trend of the future.In this review,clinical and preclinical cases about the current combination strategies targeting CD47 are collected,their underlying mechanisms of action are discussed,and ideas from future perspectives are shared.展开更多
Understanding the structure-property relationships in polycyclic conjugated hydrocarbons(PCHs)is crucial in controlling their electronic properties and developing new optically functional materials.Aromaticity is a fu...Understanding the structure-property relationships in polycyclic conjugated hydrocarbons(PCHs)is crucial in controlling their electronic properties and developing new optically functional materials.Aromaticity is a fundamentally important and intriguing property of numerous organic chemical structures and has stimulated a myriad of experimental and theoretical investigations.Exploiting aromaticity rules for the rational design of optoelectronic materials with the desired photophysical characteristics is a challenging yet fascinating task.Herein we present an in-depth computational and spectroscopic study on the structure-property relationships of dinaphthopentalenes(DNPs).Results highlight that the different fusion patterns between 4nπand 4n+2πunits endow these PCHs with the tunable aromaticity in the ground state/excited state,which leads to the diverse electronic structures and consequently the distinctive excited state photophysics.Accordingly,we propose a combined aromaticity design strategy for rationally modulating and tailoring electronic and optical properties of PCH skeletons.These outcomes not only present a full picture of the excited state dynamics of the DNP system and afford a new class of efficient singlet fission-active materials but also provide some basic guidelines for exploiting aromaticity rules to design and develop new optical function materials.展开更多
基金This work was supported by the Science and Technology Development Fund,Macao SAR(No.0053-2021-AGJ)the Internal Research Grant of the State Key Laboratory of Quality Research in Chinese Medicine,University of Macao(No.SKL-QRCM-IRG2023-011)the Natural Science Foundation of Sichuan Province(No.2023NSFSC1783).
文摘Liver cancer stands as a significant global health concern,contributing substantially to cancer incidence and mortality,particularly in Asian countries[1].Hepatocellular carcinoma(HCC)accounts for approximately 90%of all liver cancer cases and is characterized by a high-risk profile and a generally poor prognosis[2].To address advanced HCC,systemic therapy has been recommended,leading to the approval of a range of treatment regimens in clinical practice.Traditionally,first-line therapy involved the use of multitargeted tyrosine kinase inhibitors(TKIs)such as sorafenib or lenvatinib,while cabozantinib,ramucirumab.
基金Supported by National Natural Science Foundation of China(Grant Nos.52375279,52175001)National Key R&D Program of China(Grant No.2018YFB1307004).
文摘Stroke is a major cause of death and disability among adults in China,and an efficient rehabilitation strategy has been an urgent demand for post-stroke rehabilitation.The non-invasive brain stimulation(NBS)can modulate the excitability of the cerebral cortex and provide after-effects apart from immediate effects to regain extremity motor functions,whereas robotic therapy provides high-intensity and long-duration repetitive movements to stimulate the cerebral cortex backward.The combined strategy of the two techniques is widely regarded as a promising application for stroke patients with dyskinesia.Transcranial magnetic stimulation(TMS)and transcranial electrical stimulation(TES)are important methods of NBS.Their recovery principles,stimulation parameters,and clinical applications have been summarized.The combined treatments of rTMS/tDCS and robotic therapy are analyzed and discussed to overcome the application barriers of the two techniques.The future development trend and the key technical problems are expounded for the clinical applications.
基金financial support from National Key Research and Development Program(2017YFD0501403)National Natural Science Foundation of China(Nos.81872819)+4 种基金Natural Science Foundation of Jiangsu Province(No.BK20171390)supported by Double First-Rate construction plan of China Pharmaceutical University(CPU2018GY26)the Project of State Key Laboratory of Natural Medicines,China Pharmaceutical University(No.SKLNMZZCX201816)the National Science and Technology Major Project(2017ZX09101001)the financial support from Development Funds for Priority Academic Programs in Jiangsu Higher Education Institutions-Young Talent Program。
文摘Stimuli-triggered drug delivery systems hold vast promise in local infection treatment for the site-specific targeting and shuttling of drugs.Herein,chitosan conjugates(SPCS)installed with sialic acid(SA)and phenylboronic acid(PBA)were synthesized,of which SA served as targeting ligand for coccidium and reversible-binding bridge for PBA.The enhanced drug-loading capacity of SPCS micelles was attributed to a combination assembly from hydrophobicity-driving and reversible borate bridges.The drug-loaded SPCS micelles shared superior biostability in upper gastrointestinal tract.After reaching the lesions,the borate bridges were snipped by carbohydrates under a higher pH followed by accelerated drug release,while SA exposure on micellar surface facilitated drug cellular internalization to eliminate parasites inside.The drugmicelles revealed an enhanced anti-coccidial capacity with a higher index of 185.72 compared with commercial preparation.The dual-responsive combination of physicochemical assembly could provide an efficient strategy for the exploitation of stable,safe and flexible anti-infectious drug delivery systems.
文摘Objective To summarize the experiences of ligating left subclavian artery ( LSA ) in total arch peplacement and stented elephant trunk implantation for Stanford type A aortic dissection patients with difficulty in exposing the LSA. Methods Total arch replacement and stented elephant trunk implantation were performed on 79 consecutive
基金the support and assistance from Prof.Kunlong Yin in Faculty of Engineering,China University of Geosciences,Wuhan 430074,ChinaQingli Liu from the Geological Environment Monitoring Station of Wanzhou District,Chongqing,China.
文摘Landslide susceptibility mapping (LSM) assists planners, local administrations, and decision-makers in preventing, mitigating and managing associated risks. This study proposes a novel DES-based framework that effectively captures the spatial developmental patterns of different landslide types, leading to higher precision LSM. The Wanzhou district (administrative division) of Chongqing Province, southwestern China, was selected as the test area, encompassing 881 landslides classified into rockfalls, reservoir-affected (RA) landslides, and non-reservoir-affected (NRA) landslides. Subsequently, three inventory maps and sixteen environment factors were used as inputs, with multicollinearity and importance analyses used to select the best factor combination for three types of landslides. Finally, the susceptibilities of rockfalls, RA and NRA landslides were combined by six combination strategies: Maximum, Mean, Probability, Voting, Stacking, and Dynamic Ensemble Selection (DES) models, and the optimal strategy was identified by area under the receiver operating characteristic curves (AUC), confusion matrix, and landslide distribution statistic. For LSM of individual landslide types, ResNet consistently outperformed traditional machine learning models, achieving testing AUC values of 0.8925, 0.9427, and 0.6754 for rockfalls, RA, and NRA landslides, respectively. The evaluation of the combination strategies revealed that the DES model achieved the highest testing AUC value of 0.8779, followed by Stacking (0.8728), Maximum (0.8704), Probability (0.8669), and Voting (0.8653), whereas the widely-used Mean method performed the worst (0.8503), even lower than the non-classified LSM (0.8587). The findings offer a robust approach for mitigating future landslide risks and minimizing their adverse impacts, providing valuable insights for geohazard management and decision-making.
基金financially supported by the National Natural Science Foundation of China(no.82273878).
文摘Diabetic foot ulcer is a serious complication of diabetes.Excessive accumulation of advanced glycation end products(AGEs)is one of the critical pathogenic factors in postponing diabetic wound healing.The main pathogenic mechanisms of AGEs include inducing cellular dysfunction,prolonging inflammatory response,increasing oxidative stress and reducing endogenous nitric oxide(NO)production.Combination therapy of blocking the deleterious effects of AGEs and supplementing exogenous NO is hypothesized to promote diabetic wound healing.Here,we presented nanoparticles/hydrogel composite dressings to co-delivery rosiglitazone and S-nitroso glutathione into the wound bed.The designed co-delivery system augmented the survival of fibroblasts,reduced oxidative stress levels,reversed the change of mitochondrial membrane potential and decreased the proinflammatory cytokine expression.Local sustained release of therapeutic agents significantly improved the wound healing of diabetic rats including increasing the wound closure rate,alleviating inflammation,promoting collagen fiber production and angiogenesis.Our finding indicated this local deliver strategy aimed at inhibiting the toxic effects of AGEs has great clinical potential for diabetic wound treatment.
基金The project was supported by the National Science Foundation of China (70572045)
文摘A novel algorithm for constructing support vector machine regression ensemble is proposed. As to regression prediction, support vector machine regression (SVMR) ensemble is proposed by resampling from given training data sets repeatedly and aggregating several independent SVMRs, each of which is trained to use a replicated training set. After training, several independently trained SVMRs need to be aggregated in an appropriate combination manner. Generally, the linear weighting is usually used like expert weighting score in Boosting Regression and it is without optimization capacity. Three combination techniques are proposed, including simple arithmetic mean, linear least square error weighting and nonlinear hierarchical combining that uses another upper-layer SVMR to combine several lower-layer SVMRs. Finally, simulation experiments demonstrate the accuracy and validity of the presented algorithm.
基金supported by the National Natural Science Foundation of China(Nos.61901448,61871401,12002340).
文摘Modular Solar-Powered Aircraft(M-SPA)is a kind of High-Altitude Long-Endurance(HALE)aircraft which exploits the mission advantage of swarm UAV and the HALE advantage of large aspect-ratio SPA.M-SPA’s separated mode and combined mode give it the potential to maximize the mission efficiency with limited solar energy.In this paper,firstly,oriented by the mission of maximizing the cruise area,the overall design of the M-SPA is modeled,including the energy model,the aerodynamic model and the flight environment settings.Secondly,by analyzing the energy consumption of the flight modes,we design a multi-phase flight mission strategy.Then,a 24-hour three-dimensional(3D)flight profile of the M-SPA is optimized,including the sub-SPA cooperative path planning in the separation mode.Finally,inspired by the Traveling Salesman Problem(TSP),an improved Ant Colony Algorithm(ACA)is exploited to find the optimal path for each sub-SPA,which is further developed into a dynamic separation and combination scheme for the M-SPA.The simulation results show that the mission performance of the M-SPA outperforms that of the conventional SPA,and explicitly,the mission coverage of the M-SPA is slightly less than a linear increase under comparable simulation conditions.
基金This research was financially supported by the National Key R&D Program of China(No.2017YFC0211500).
文摘Effective emission control of cooking oil fumes(COFs),particularly for grease particles,has always been a cause of great concern for catering industry.The review and evaluation of combinations of purification technology are urgently required.This work presents a literature review and combination strategy evaluation of purification technology of grease particles of commercial kitchens.A variety of mainstream purification technologies,such as mechanical separation(M),filtration(F),washing absorption(W)and electrostatic deposition(E)are discussed.In order to establish a complete and efficient fume purification system for commercial kitchen,this study proposes the four-point principles of combined purification technologies as:(1)from easy to difficult(for grease particle diameter);(2)fire prevention and noise reduction;(3)electrostatic deposition postposition;(4)Absorption and dissolution(by-product from electrostatic).Based on the above principles and separation characteristics,the recommended combinations of purification strategies are M-E,F-E,M-F-E and M-E-F.The combination strategy of M-F-E is adopted as an example to evaluate and optimize COFs purification system use life cycle assessment approach.The results indicate that the optimization of the M-F-E purification system using rotating mesh plate instead of baffle filter can reduce the environmental impact of global warming and eutrophication by about 35%which reduces the emissions of CO_(2)and SO_(2)from 92.533 kg and 0.110 kg to 60.214 kg and 0.072 kg,respectively.Besides the review of relevant purification technologies,the study also proposes the combination of principles of purification technologies and the evaluation and optimization of life cycle assessment for the optimal design of combined purification system.
文摘Background:Improving financial time series forecasting is one of the most challenging and vital issues facing numerous financial analysts and decision makers.Given its direct impact on related decisions,various attempts have been made to achieve more accurate and reliable forecasting results,of which the combining of individual models remains a widely applied approach.In general,individual models are combined under two main strategies:series and parallel.While it has been proven that these strategies can improve overall forecasting accuracy,the literature on time series forecasting remains vague on the choice of an appropriate strategy to generate a more accurate hybrid model.Methods:Therefore,this study’s key aim is to evaluate the performance of series and parallel strategies to determine a more accurate one.Results:Accordingly,the predictive capabilities of five hybrid models are constructed on the basis of series and parallel strategies compared with each other and with their base models to forecast stock price.To do so,autoregressive integrated moving average(ARIMA)and multilayer perceptrons(MLPs)are used to construct two series hybrid models,ARIMA-MLP and MLP-ARIMA,and three parallel hybrid models,simple average,linear regression,and genetic algorithm models.Conclusion:The empirical forecasting results for two benchmark datasets,that is,the closing of the Shenzhen Integrated Index(SZII)and that of Standard and Poor’s 500(S&P 500),indicate that although all hybrid models perform better than at least one of their individual components,the series combination strategy produces more accurate hybrid models for financial time series forecasting.
基金the Science and Technology Commission of Shanghai,China(Grant Nos.:20DZ2270800 and 19JC1410200)Innovative Research Team of High-Level Local Universities in Shanghai,China(Grant No.:SHSMU-ZDCX20210900)the National Natural Science Foundation of China(Grant No.:82073889).
文摘The reversible and precise temporal and spatial regulation of histone lysine methyltransferases(KMTs)is essential for epigenome homeostasis.The dysregulation of KMTs is associated with tumor initiation,metastasis,chemoresistance,invasiveness,and the immune microenvironment.Therapeutically,their promising effects are being evaluated in diversified preclinical and clinical trials,demonstrating encouraging outcomes in multiple malignancies.In this review,we have updated recent understandings of KMTs'functions and the development of their targeted inhibitors.First,we provide an updated overview of the regulatory roles of several KMT activities in oncogenesis,tumor suppression,and immune regulation.In addition,we summarize the current targeting strategies in different cancer types and multiple ongoing clinical trials of combination therapies with KMT inhibitors.In summary,we endeavor to depict the regulation of KMT-mediated epigenetic landscape and provide potential epigenetic targets in the treatment of cancers.
基金sponsored by the National Natural Science Foundation of China(No.61901172,No.61831015,No.U1908210)the Shanghai Sailing Program(No.19YF1414100)+3 种基金the“Chenguang Program”supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.19CG27)the Science and Technology Commission of Shanghai Municipality(No.19511120100,No.18DZ2270700,No.18DZ2270800)the foundation of Key Laboratory of Artificial Intelligence,Ministry of Education(No.AI2019002)and the Fundamental Research Funds for the Central Universities.
文摘As the science and technology develop,crime methods and scenes have become increasingly complex and diverse.Trace evidence analysis has become amore and more important criminal investigation technology and liquid is the main form of trace evidence.Food can provide not only energy,but clues to solve crimes.In this study,we build a hyperspectral imaging system to detect liquid residue traces,including apple juice,coffee,cola,milk and tea,on denims with light,middle and dark colors.The obtained hyperspectral images are first subjected to spectral calibration and hyperspectral data pretreatment.Subsequently,Partial Least Squares(PLS)is applied to select the informative wavelengths from the preprocessed spectra.For modeling phase,the combination optimal strategy,support vector machine(SVM)combined with random forest(RF),is developed to establish classification models.The experimental results demonstrate that the combination optimal model can achieve TPR,FPR,Precision,Recall,F1,and AUC of 83.5%,2.30%,79.7%,83.5%,81.6%,and 94.7%for classifying fabrics contaminated by various food residuals.With respect to the classification of liquid and fabric types,the combination optimalmodel also yields satisfactory classification performance.In future work,wewill expand the types of liquid,and make appropriate adjustment to algorithms for improving the robustness of classification models.This research may play a positive role in the construction of a harmonious society.
文摘The flowering forecast provides recommendations for orchard cleaning, pest control, field management and fertilization, which can help increase tree vigor and resistance. Flowering forecast is not only an important part of the construction of agro-meteorological index system, but also an important part of the meteorological service system. In this paper, by analyzing local meteorological data and phenological data of “Red Fuji” apples in Fen County, Linfen City, Shanxi Province, with the help of machine learning and neural networks, we proposed a method based on the combination of time series forecasting and classification forecasting is proposed to complete the dynamic forecasting model of local flowering in Ji County. Then, we evaluated the effectiveness of the model based on the number of error days and the number of days in advance. The implementation shows that the proposed multivariable LSTM network has a good effect on the prediction of meteorological factors. The model loss is less than 0.2. In the two-category task of flowering judgment, the idea of combining strategies in ensemble learning improves the effect of flowering judgment, and its AUC value increases from 0.81 and 0.80 of single model RF and AdaBoost to 0.82. The proposed model has high applicability and accuracy for flowering forecast. At the same time, the model solves the problem of rounding decimals in the prediction of flowering dates by the regression method.
基金funded by the Beijing Municipal Science and Technology Commission(No.D17110700050000).
文摘Human immunodeficiency virus(HIV)-1 infection creates a persistent latent reservoir even after antiretroviral therapy,which is the main barrier to HIV cure.One of the most explored strategies is the use of latent reversal agents(LRAs)to activate HIV latent reservoirs,followed by immunotherapy to remove infected cells.Immunomodulatory LRAs have the dual advantage of activating viral latency and promoting immune cell elimination of HIV-infected cells.The emergence of novel immunotherapies has also enhanced the possibility ofHIV clearance.Here we review the activity and potential mechanisms of immunomodulatory agonists and immunotherapies.The possible combinational strategies to achieve HIV functional cure and the problems encountered using this approach are discussed.
基金supported by the Open Research Fund of Southeast University and Jiangsu Province Hospital(2024-M01)the National Natural Science Foundation of China(82372127)+1 种基金the Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor(GKE-KF202305)the Fundamental Research Funds for the Central Universities(2242023K5007)。
文摘Immunotherapy acts as an essential modality in modulating a broad variety of immune responses to cure diseases and has been regarded as a powerful therapeutic strategy in cancer treatment in the past decades.However,the application of immunotherapeutic agents is limited by their low tumor targeting capability,poor tumor penetration ability,and potential immune-related adverse events in physiological environments.Engineered liposomal nanoplatforms can help to reduce immune-related side effects,precisely deliver the drugs to the tumor site,and enhance the treatment power of immunotherapeutic agents by restricting them within the cavities of the liposomes and modifying the liposomes with targeting components and biocompatible materials to reduce their burst release,unwanted dispersion,and blood clearance.This review discusses the recent progress in the development of liposome-assisted immunotherapy for treating various cancers,including the design of liposomal nanoplatforms,the features of different immunotherapy modalities,and the strategies for activating immune responses.In addition,this review also introduces the strategies for strengthening liposome-based immunotherapy by optimizing liposomal design,exploring the pairing of different drugs,and combining with different therapeutic modalities.Finally,this review proposes some current limitations and future research directions for liposomal nanoplatform-assisted cancer immunotherapy.
文摘Cancer is a primary cause of mortality in humans.Conventional chemotherapy has hazardous side effects and numerous limitations,necessitating the urgent exploration of novel anti-cancer agents.Based on existing literature and data,this article reviews the anti-tumor mechanism,current application status,and future development of bee venom peptides.The research findings demonstrate that bee venom peptide,a natural cell lytic peptide,possesses many anti-tumor mechanisms,including the direct destruction of tumor cells,the induction of tumor cell apoptosis,and immunological modulation.It can disrupt the integrity of the cell membrane and lead to cell death.It can also activate apoptosis signaling pathways through endoplasmic reticulum,mitochondria,and death receptors,promoting apoptosis of tumor cells.Meanwhile,it can reshape the immune microenvironment and stimulate immune responses.The author also discussed issues such as poor stability,low bioavailability,lack of targeting,and potential safety of bee venom peptides.In the future,it is recommended to develop new derivatives of bee venom peptides and optimize combination therapy strategies.
基金supported by grants from the National Science Fund for Distinguished Young Scholars,China(82225029 to Chenhui Wang)the Key Program of National Natural Science of China(82430076 to Chenhui Wang)the Youth Fund of the National Natural Science Foundation of China(82301989 to Ruirui He,82302628 to Yanyun Du,82301987 to Bo Zeng and 82402704 to Yangyang Li).
文摘Invasive fungal infections(IFIs)have become prominent global health threats,escalating the burden on public health systems.The increasing occurrence of invasive fungal infections is due primarily to the extensive application of chemotherapy,immunosuppressive therapies,and broad-spectrum antifungal agents.At present,therapeutic practices utilize multiple categories of antifungal agents,such as azoles,polyenes,echinocandins,and pyrimidine analogs.Nevertheless,the clinical effectiveness of these treatments is progressively weakened by the emergence of drug resistance,thereby substantially restricting their therapeutic utility.Consequently,there is an imperative need to expedite the discovery of novel antifungal agents.This review seeks to present an exhaustive synthesis of novel antifungal drugs and candidate agents that are either under current clinical investigation or anticipated to progress into clinical evaluation.These emerging compounds exhibit unique benefits concerning their modes of action,antimicrobial spectra,and pharmacokinetic characteristics,potentially leading to improved therapeutic outcomes relative to conventional antifungal regimens.It is anticipated that these novel therapeutic agents will furnish innovative treatment modalities and enhance clinical outcomes in managing invasive fungal infections.
基金supported by The Science and Technology Development Fund,Macao SAR,China(File No.:0129/2019/A3)Internal Research Grant of the State Key Laboratory of Quality Research in Chinese Medicine,University of Macao(File No.:QRCM-IRG2022-016,China)+1 种基金the 2020 Guangdong Provincial Science and Technology Innovation Strategy Special Fund(Guangdong-Hong Kong-Macao Joint Lab,File No.:2020B1212030006,China)the National Natural Science Foundation of China(File No.:81973516)。
文摘Described as a“don't eat me”signal,CD47 becomes a vital immune checkpoint in cancer.Its interaction with signal regulatory protein alpha(SIRPa)prevents macrophage phagocytosis.In recent years,a growing body of evidences have unveiled that CD47-based combination therapy exhibits a superior anti-cancer effect.Latest clinical trials about CD47 have adopted the regimen of collaborating with other therapies or developing CD47-directed bispecific antibodies,indicating the combination strategy as a general trend of the future.In this review,clinical and preclinical cases about the current combination strategies targeting CD47 are collected,their underlying mechanisms of action are discussed,and ideas from future perspectives are shared.
基金supported by the National Natural Science Foundation of China(grant nos.22005210,21833005,and 22231009).
文摘Understanding the structure-property relationships in polycyclic conjugated hydrocarbons(PCHs)is crucial in controlling their electronic properties and developing new optically functional materials.Aromaticity is a fundamentally important and intriguing property of numerous organic chemical structures and has stimulated a myriad of experimental and theoretical investigations.Exploiting aromaticity rules for the rational design of optoelectronic materials with the desired photophysical characteristics is a challenging yet fascinating task.Herein we present an in-depth computational and spectroscopic study on the structure-property relationships of dinaphthopentalenes(DNPs).Results highlight that the different fusion patterns between 4nπand 4n+2πunits endow these PCHs with the tunable aromaticity in the ground state/excited state,which leads to the diverse electronic structures and consequently the distinctive excited state photophysics.Accordingly,we propose a combined aromaticity design strategy for rationally modulating and tailoring electronic and optical properties of PCH skeletons.These outcomes not only present a full picture of the excited state dynamics of the DNP system and afford a new class of efficient singlet fission-active materials but also provide some basic guidelines for exploiting aromaticity rules to design and develop new optical function materials.