Denial of Service Distributed Denial of Service (DOS) attack, especially (DDoS) attack, is one of the greatest threats to Internet. Much research has been done for it by now, however, it is always concentrated in ...Denial of Service Distributed Denial of Service (DOS) attack, especially (DDoS) attack, is one of the greatest threats to Internet. Much research has been done for it by now, however, it is always concentrated in the behaviors of the network and can not deal with the problem exactly. In this paper, we start from the security of the protocol, then we propose a novel theory for security protocol analysis of Denial of Service in order to deal with the DoS attack. We first introduce the conception of weighted graph to extend the strand space model, then we extend the penetrator model and define the goal of anti-DoS attack through the conception of the DoS-stop protocol, finally we propose two kinds of DoS test model and erect the novel formal theory for security protocol analysis of Denial of Service. Our new formal theory is applied in two example protocols. It is proved that the Internet key exchange (IKE) easily suffers from the DoS attacks, and the efficient DoS- resistant secure key exchange protocol (JFK) is resistant against DoS attack for the server, respectively.展开更多
Specification language is used to provide enough information for the model of the cryptographic protocol. This paper first extends strand space model to dynamic strand model, and then a formal specification language f...Specification language is used to provide enough information for the model of the cryptographic protocol. This paper first extends strand space model to dynamic strand model, and then a formal specification language for this model is defined by using BNF grammar. Compared with those in literatures, it is simpler because of only concerning the algebraic properties of cryptographic protocols.展开更多
In this paper, we show how to use the novel extended strand space method to verify Kerberos V. First, we formally model novel semantical features in Kerberos V such as timestamps and protocol mixture in this new frame...In this paper, we show how to use the novel extended strand space method to verify Kerberos V. First, we formally model novel semantical features in Kerberos V such as timestamps and protocol mixture in this new framework. Second, we apply unsolicited authentication test to prove its secrecy and authentication goals of Kerberos V. Our formalization and proof in this case study have been mechanized using Isabelle/HOL.展开更多
In this paper, we present two extensions of the strand space method to model Kerberos V. First, we include time and timestamps to model security protocols with timestamps: we relate a key to a crack time and combine i...In this paper, we present two extensions of the strand space method to model Kerberos V. First, we include time and timestamps to model security protocols with timestamps: we relate a key to a crack time and combine it with timestamps in order to define a notion of recency. Therefore, we can check replay attacks in this new framework. Second, we extend the classic strand space theory to model protocol mixture. The main idea is to introduce a new relation to model the causal relation between one primary protocol session and one of its following secondary protocol session. Accordingly, we also extend the definition of unsolicited authentication test.展开更多
Based on the authentication tests and the strand space model, the robust email protocol with perfect forward secrecy is formally analyzed, and the security shortcomings of the protocol is pointed out. Meanwhile, the m...Based on the authentication tests and the strand space model, the robust email protocol with perfect forward secrecy is formally analyzed, and the security shortcomings of the protocol is pointed out. Meanwhile, the man-in-the-middle attack to the protocol is given, where the attacker forges the messages in the receiving phase to cheat the two communication parties and makes them share the wrong session keys with him. Therefore, the protocol is not ensured to provide perfect forward secrecy. In order to overcome the above security shortcomings, an advanced email protocol is proposed, where the corresponding signatures in the receiving phase of the protocol are added to overcome the man-in-the-middle attack and ensure to provide perfect forward secrecy. Finally, the proposed advanced email protocol is formally analyzed with the authentication tests and the strand space model, and it is proved to be secure in authentication of the email sender, the recipient and the server. Therefore, the proposed advanced email protocol can really provide perfect forward secrecy.展开更多
基金This work is supported by National Natural Science Foundation of China under contract 60902008.
文摘Denial of Service Distributed Denial of Service (DOS) attack, especially (DDoS) attack, is one of the greatest threats to Internet. Much research has been done for it by now, however, it is always concentrated in the behaviors of the network and can not deal with the problem exactly. In this paper, we start from the security of the protocol, then we propose a novel theory for security protocol analysis of Denial of Service in order to deal with the DoS attack. We first introduce the conception of weighted graph to extend the strand space model, then we extend the penetrator model and define the goal of anti-DoS attack through the conception of the DoS-stop protocol, finally we propose two kinds of DoS test model and erect the novel formal theory for security protocol analysis of Denial of Service. Our new formal theory is applied in two example protocols. It is proved that the Internet key exchange (IKE) easily suffers from the DoS attacks, and the efficient DoS- resistant secure key exchange protocol (JFK) is resistant against DoS attack for the server, respectively.
文摘Specification language is used to provide enough information for the model of the cryptographic protocol. This paper first extends strand space model to dynamic strand model, and then a formal specification language for this model is defined by using BNF grammar. Compared with those in literatures, it is simpler because of only concerning the algebraic properties of cryptographic protocols.
文摘In this paper, we show how to use the novel extended strand space method to verify Kerberos V. First, we formally model novel semantical features in Kerberos V such as timestamps and protocol mixture in this new framework. Second, we apply unsolicited authentication test to prove its secrecy and authentication goals of Kerberos V. Our formalization and proof in this case study have been mechanized using Isabelle/HOL.
文摘In this paper, we present two extensions of the strand space method to model Kerberos V. First, we include time and timestamps to model security protocols with timestamps: we relate a key to a crack time and combine it with timestamps in order to define a notion of recency. Therefore, we can check replay attacks in this new framework. Second, we extend the classic strand space theory to model protocol mixture. The main idea is to introduce a new relation to model the causal relation between one primary protocol session and one of its following secondary protocol session. Accordingly, we also extend the definition of unsolicited authentication test.
基金The Natural Science Foundation of Jiangsu Province(No.BK2006108)
文摘Based on the authentication tests and the strand space model, the robust email protocol with perfect forward secrecy is formally analyzed, and the security shortcomings of the protocol is pointed out. Meanwhile, the man-in-the-middle attack to the protocol is given, where the attacker forges the messages in the receiving phase to cheat the two communication parties and makes them share the wrong session keys with him. Therefore, the protocol is not ensured to provide perfect forward secrecy. In order to overcome the above security shortcomings, an advanced email protocol is proposed, where the corresponding signatures in the receiving phase of the protocol are added to overcome the man-in-the-middle attack and ensure to provide perfect forward secrecy. Finally, the proposed advanced email protocol is formally analyzed with the authentication tests and the strand space model, and it is proved to be secure in authentication of the email sender, the recipient and the server. Therefore, the proposed advanced email protocol can really provide perfect forward secrecy.