The Malacca Strait(MS)is a vital conduit for the exchange of water and sediment between the Indian Ocean and the Pacific Ocean,serving as a critical‘gateway'for sediment transport.Here,we present the geochemical ...The Malacca Strait(MS)is a vital conduit for the exchange of water and sediment between the Indian Ocean and the Pacific Ocean,serving as a critical‘gateway'for sediment transport.Here,we present the geochemical characteristics of surface sediments in the MS to elucidate the relationship between terrestrial material inputs and modern oceanic dynamic transport processes in the strait.The results reveal that the MS can be divided into three distinct geochemical provinces.ProvinceⅠ,located in the central region of the strait,is characterized by residual deposits.The preservation of these residual deposits can be attributed to the restricted sediment supply and the relatively weaker modern sedimentary hydrodynamic conditions.ProvinceⅡ,situated to the north of ProvinceⅠ,exhibits provenance differences between its southern and northern regions.The northern region is primarily supplied by sediments originating from the eastern shelf of the Andaman Sea,whereas sediments derived from Sumatra and the Sunda Shelf are predominantly deposited in the southern part of ProvinceⅡ.ProvinceⅢextends along the western coast of the Malaysian Peninsula,with sediments primarily sourced from the Malaysian Peninsula and the Sunda Shelf,while contributions from Sumatra and the eastern shelf of the Andaman Sea are negligible.River sediments from the Malaysian Peninsula and Sumatra are transported northwestward along their respective coasts by prevailing currents,which also facilitate the transportation of Sunda Shelf sediments within the strait,while sediments from the eastern shelf of the Andaman Sea are delivered to the MS via southward coastal currents during the southwest monsoon period.The southward currents and well-developed eddies potentially impede the northward transport of sediments from the Sunda Shelf and restrict the distribution of Andaman Sea sediments within the strait.This study substantially enhances the understanding of source-to-sink processes in the Indo-Pacific region.展开更多
The impacts of the Luzon Strait transport on shallow meridional overturning circulation(SMOC)in the South China Sea(SCS)have been pointed out by previous studies,but the issue whether the Luzon Strait transport domina...The impacts of the Luzon Strait transport on shallow meridional overturning circulation(SMOC)in the South China Sea(SCS)have been pointed out by previous studies,but the issue whether the Luzon Strait transport dominates the SMOC formation still remains open.The Helmholtz decomposition is applied based on the ocean general circulation model for the earth simulator products to address this issue.Results show that the motion caused by the Luzon Strait transport is characterized as an obvious southward flow between 13°N and 20°N.After this motion being removed,the clockwise winter SMOC and the anticlockwise summer SMOC can still exist significantly.The SMOC existence and its seasonal variation are also reproduced in the numerical simulation with the Luzon Strait closed.Both results of the Helmholtz decomposition and numerical experiment suggest that the SMOC formation and its seasonal variation are not dominated by the Luzon Strait transport.The SCS monsoon is the primary driving factor for the SMOC,which is related to the physical processes within the SCS.展开更多
El Niño-Southern Oscillation(ENSO)affects the changes in ocean physical elements in Taiwan Strait(TWS)primarily by regulating the strength of the East Asian Winter Monsoon(EAWM)and the intrusion of the Kuroshio.A...El Niño-Southern Oscillation(ENSO)affects the changes in ocean physical elements in Taiwan Strait(TWS)primarily by regulating the strength of the East Asian Winter Monsoon(EAWM)and the intrusion of the Kuroshio.Additionally,the fluctuating impact between nutrient-poor seawater with high dissolved inorganic carbon(DIC)that infiltrates owing to the Kuroshio during El Niño phases and nutrient-rich seawater with low DIC from the South China Sea(SCS)carried by the EAWM during La Niña phases determines the nutrient content in TWS,thereby sculpting appropriate or unsuitable biochemical environment.In this study,based on high-resolution sea-surface partial pressure of carbon dioxide(pCO_(2))data,we investigate the relationship between pCO_(2)level of TWS and ENSO events in winter.The physical mechanisms affecting the anomalous distribution of pCO_(2)level during ENSO are also explored.Stepwise regression was employed to identify the optimal influencing factors for modeling pCO_(2).Results indicate a significant positive correlation between Niño3.4 index and pCO_(2),which is significantly influenced by factors such as sea-surface temperature(SST),chlorophyll-a(Chl a),and DIC.These are related to the anomalously strong Kuroshio intrusion and weaker EAWM during El Niño years.It brings a large amount of high SST water with low nutrient concentration and high DIC,which is detrimental to CO_(2)dissolution and phytoplankton growth over the TWS,leading to an increase in pCO_(2).Conversely,pCO_(2)level is significantly low under the influence of SCS seawater during La Niña years.Based on the characterization of the pCO_(2)level response to ENSO,the carbon balance at TWS can be explored.展开更多
The Indonesian Throughflow(ITF),mainly through the Makassar Strait,transports amounts of water and salt from the tropical Pacific Ocean to the Indian Ocean,playing a crucial role in modulating heat and energy budget b...The Indonesian Throughflow(ITF),mainly through the Makassar Strait,transports amounts of water and salt from the tropical Pacific Ocean to the Indian Ocean,playing a crucial role in modulating heat and energy budget between two oceans.The South China Sea Throughflow(SCSTF)significantly contributes to the net transport of the ITF via Karimata Strait and Mindoro-Sibutu Passage.However,the specific proportion and variability of South China Sea(SCS)water joining the ITF are still unclear.Based on high-resolution reanalysis data and a Lagrangian particle tracking method-Connectivity Modelling System(CMS),we quantified the proportion and variability of SCS water joining the ITF in the Makassar Strait.The results show that about 16.41%of the particles released in the Makassar Strait could be back-tracked from the SCS and 42.45%from the western Pacific Ocean.The particles through Mindoro Strait and Karimata Strait are about 10.55%and 3.39%,respectively.About 14.56%and 15.42%particles are trapped in the Sulu and Sulawesi seas.The proportion of SCS water shows significant interannual variability,which is highly related to El Niño-Southern Oscillation(ENSO)events.The correlation coefficient between interannual change of SCS water volume proportion and the Niño 3.4 index is 0.75,with an increase of about 24%during El Niño years and a decrease of about−22%during La Niña years.The proportion also varies with the depth of particles released,showing two peaks at surface and subsurface depths of 5 m and 110 m,respectively.展开更多
Diurnal and semi-diurnal tides in the Taiwan Strait and its adjacent areas are calculated by using a two-dimensional finite-difference model. Compared with data of more than 20 observation stations around the Taiwan S...Diurnal and semi-diurnal tides in the Taiwan Strait and its adjacent areas are calculated by using a two-dimensional finite-difference model. Compared with data of more than 20 observation stations around the Taiwan Strait, the model-produced results agree quite well with those of previous researches using observational data from coastal tidal gauge stations. According to the results, the co-tidal and co-range charts are given. Furthermore, the characteristics of 8 major tidal constituents have been uminated respectively. The result shows that: (1) The tide motion can be attributed to the interaction between the degenerative rotary tidal system in the north and the progressive tidal system in the south. (2) The southward and northward tidal waves of semi-diurnal tide converge in the middle of the Taiwan Strait while the diurnal tidal waves propagate southwestward through the Taiwan Strait and the Luzon Strait. (3) The maximum amplitude of semi-diurnal tides exists at the area between the Meizhou Bay and Xinghua Bay, and that of diurnal tides appears in the region to the east of the Leizhou Peninsula, (4) The patterns of co-tidal and co-range charts of N2, K2 and P1, Q1 tidal constituents are similar to those of M2, S2 and K1 O1 tidat constituents, respectively展开更多
Based on 4 cruise surveys from July 2006 to October 2007 in the Taiwan Strait, the species composition, community structure and spatio-temporal distribution of dinoflagellate were studied. A total of 131 dinoflagellat...Based on 4 cruise surveys from July 2006 to October 2007 in the Taiwan Strait, the species composition, community structure and spatio-temporal distribution of dinoflagellate were studied. A total of 131 dinoflagellates belonging to 18 genera were identified. The population was dominated by hyperthermal and hyperhaline species accounting for 72.52% of the total species. Eurythermal and euryhaline species were the second most common one accounting for 25.19% of the total species. It was only 2.29% for neritic species. The maximum species number occurred in summer, while the maximum cell density appeared in spring. The average dinoflagellate cell density was 404.96x104 cells/m3. It showed that the dinof]agellate cell density increased from the nearshore waters to the open sea and from the north to the south. Compared with the results during 1984-1985, the horizontal distribution pattern and seaeonal variation of the dinofiagellate have not changed significantly, but the dinoflagellate cell density increased by 3.01 times. Further analysis of the dinoflagellate abundance variations both in the spatial and temporal aspects, indicated that the abundance of dinoflagellate increased more significantly in cold seasons, and there was a larger increase in the north of the Taiwan Strait. Besides, the dinoflagellate community structure changed notably. It showed that the diversity and evenness index were relatively high, and the proportion of dinoflageliate cell density to the total phytoplankton increased.展开更多
Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities...Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities in costal shallow Bohai Strait(BS) and oceanic deep Fram Strait(FS) were studied. The Shannon and Chao1 indices were both higher in BS than in FS. The relative abundances of the classes Deltaproteobacteria and Bacilli and the family Halieaceae were higher in BS than in FS, in contrast to the families OM1_clade and JTB255_marine_benthic_group, revealing typical characteristics of bacterial communities in coastal and oceanic regions. Cluster analysis based on the Bray-Curtis index showed that samples were clustered by depth layer in FS and BS, indicating that structures of bacterial communities would diff er with increasing water depth in straits. Additionally, the cluster relationships among samples in abundant and rare communities were both similar to those in entire communities. However, the dissimilarities among samples showed a descending order as rare communities, entire communities and abundant communities. Network analysis indicated that the BS network was obviously more complex than the FS network. Filamentous bacteria Desulfobulbaceae exhibited high degree values in BS but not in FS, indicating key roles of Desulfobulbaceae in the BS. Our study provides different and common evidences for understanding microbial ecology in coastal shallow and oceanic deep straits.展开更多
Due to the extremely complex geological conditions in the Bohai Strait, active faults is very developed and earthquake activity occurs frequently. It is of great importance to evaluate the regional crustal stability f...Due to the extremely complex geological conditions in the Bohai Strait, active faults is very developed and earthquake activity occurs frequently. It is of great importance to evaluate the regional crustal stability for the planning and construction of the Trans-straits Passage. In this study, the authors carry out the evaluation by means of buffer analysis, topology analysis and overlay analysis based on ArcGIS software. The evaluation mainly analyzed six assessment factors of Bohai Strait including neotectonic activity, active faults distribution, seismicity, tectonic stress fields, Bouguer gravity anomaly and geological disasters. In brief, the crustal stability of the eastern North Yellow Sea Basin is best, while that of the Bohai Basin and southwest Bohai Strait is poor. Meanwhile, small and frequent earthquakes in the southern Strait and geological disasters developed in the northern and central Strait such as tidal ridge and shallow gas which may adversely impact on the Trans-straits Passage construction.展开更多
An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration ...An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.展开更多
Besides the Indonesian throughflow(ITF), the South China Sea throughflow(SCSTF) also contributes to the water transport from the Pacific to the Indian Ocean. However, this South China Sea(SCS) branch at the Karimata S...Besides the Indonesian throughflow(ITF), the South China Sea throughflow(SCSTF) also contributes to the water transport from the Pacific to the Indian Ocean. However, this South China Sea(SCS) branch at the Karimata Strait is poorly observed until 2007, even though its importance has been suggested by numerical studies for decades. In this paper, we review the nearly 10-year field measurement in the Karimata Strait by the execution of the projects of "SCS-Indonesian Seas Transport/Exchange(SITE) and Impacts on Seasonal Fish Migration" and "The Transport, Internal Waves and Mixing in the Indonesian Throughflow regions(TIMIT) and Impacts on Marine Ecosystem", which extend the observations from the western Indonesian seas to the east to include the main channels of the ITF, is introduced. Some major achievements from these projects are summarized.展开更多
Based on a comparison of synchronized temperature and salinity data collected in the eastern Qiongzhou Strait and at coastal marine stations, this study finds that, in summer, the variation in salinity near the Weizho...Based on a comparison of synchronized temperature and salinity data collected in the eastern Qiongzhou Strait and at coastal marine stations, this study finds that, in summer, the variation in salinity near the Weizhou Island in Guangxi is similar to that in the eastern and central portions of the Qiongzhou Strait. Additionally, the Beihai Station in Guangxi exhibits a small salinity variation, whereas the Longmen and Bailongwei Stations, both of which are located far from the Qiongzhou Strait, mainly exhibit continental hydrological characteristics in summer. Moreover, a comparison of the multi-year ocean current data from the Qiongzhou Strait and ocean current observations from the Weizhou Island Station and recently installed current-measuring stations shows that the residual current in the Qiongzhou Strait flows westward in winter and summer. The numerical simulation results also indicate that water from the eastern Qiongzhou Strait enters the Beibu Gulf. The characteristics of the temperature and salinity distributions and analyses of the residual currents further confirm that the western Guangdong coastal current is the main source of the westward transport of water in the Qiongzhou Strait. The primary driver of the formation of the western Guangdong coastal current is the westward flow of freshwater from the Zhujiang (Pearl) River. This water enters the Beibu Gulf via the Qiongzhou Strait and enhances the formation of the cyclonic circulation in the northern Beibu Gulf. In summer, the strong influence of the southwesterly wind leads to the formation of a strong northward coastal current along the western coast of the Beibu Gulf. This process promotes the transport of low-salinity diluted water toward the open ocean and the formation of larger- scale cyclonic circulation around Weizhou Island in the eastern Beibu Gulf. The results of this study regarding the effects of the water inflow from the eastern Qiongzhou Strait to the Beibu Gulf on the Guangxi coastal circulation directly challenge conventional conclusions concerning the transport direction of water through the Qiongzhou Strait in winter and summer.展开更多
Four trawl-resistant bottom mounts, with acoustic Doppler current profilers(ADCPs) embedded, were deployed in the Karimata Strait from November 2008 to June 2015 as part of the South China Sea-Indonesian Seas Transpor...Four trawl-resistant bottom mounts, with acoustic Doppler current profilers(ADCPs) embedded, were deployed in the Karimata Strait from November 2008 to June 2015 as part of the South China Sea-Indonesian Seas Transport/Exchange and Impact on Seasonal Fish Migration(SITE) Program, to estimate the volume and property transport between the South China Sea and Indonesian seas via the strait. The observed current data reveal that the volume transport through the Karimata Strait exhibits significant seasonal variation. The winteraveraged(from December to February) transport is –1.99 Sv(1 Sv=1×10~6 m^3/s), while in the boreal summer(from June to August), the average transport is 0.69 Sv. Moreover, the average transport from January 2009 to December2014 is –0.74 Sv(the positive/negative value indicates northward/southward transport). May and September are the transition period. In May, the currents in the Karimata Strait turn northward, consistent with the local monsoon. In September, the southeasterly trade wind is still present over the strait, driving surface water northward, whereas the bottom flow reverses direction, possibly because of the pressure gradient across the strait from north to south.展开更多
The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared ...The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared in the research region: the intermediate Bering Sea water mass (IBWM), the Alaska coastal water (ACW), the Anadyr water (AW) and the Bering shelf water (BSW). The AW originates from the IBWM, but the upper layer water has been greatly altered. In the cruise on 28/29 July 2003, there were only the BSW and ACW in a section across the Bering Strait (BS section), but in the September 12/13 cruise, the AW, BSW and ACW flowed parallelly into the Bering Strait. The upper waters of these water masses were all altered due to ice melting, runoff, solar radiation, and wind mixing. The waters in the central and northern parts of Bering Strait stratified by two uniform layers,were expressed as the typical feature of the water masses originating from the pacific. A two-layer structure also dominated the vertical stratification in most part of the Chukchi Sea. An obvious subseasonal variation was observed in the BS section, which caused varying transportation of fresh water, heat, and substance, and produced a long-term and extensive impact on the Arctic Ocean.展开更多
In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawi-resistant bottom mounts, with ADCPs embedded, were deployed in ...In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawi-resistant bottom mounts, with ADCPs embedded, were deployed in the strait to measure the velocity profile as part of the South China Sea-Indonesian Seas trans- port/exchange (SITE) program. A pair of surface and bottom acoustic modems was employed to transfer the measured velocity without recovering the mooring. The advantage and problems of the instruments in this field work are reported and discussed. The field observations confirm the existence of the South Chi- na Sea branch of Indonesian throughflow via the Karimata Strait with a stronger southward flow in boreal winter and weaker southward bottom flow in boreal summer, beneath the upper layer northward (reversal) flow. The estimate of the averaged volume, heat and freshwater transports from December 2007 to March 2008 (winter) is (-2.7±1.1)×10^6 m^3/s, (-0.30±0.11) PW, 2008 (summer) is (1.2±0.6)×10^6 m^3/s, (0.14±0.03) PW, (-0.18±0.07) × 106 m3/s and from May to September (0.12±0.04)×10^6 m^3/s and for the entire record from December 2007 to October 2008 is (-0.5±1.9)×10^6 m^3/s, (-0.05±0.22) PW, (-0.01±0.15)×10^6 m^3/s (nega- tive/positive represents southward/northward transport), respectively. The existence of southward bottom flow in boreal summer implies that the downward sea surface slope from north to south as found by Fang et al. (2010) for winter is a year-round phenomenon.展开更多
A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East C...A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre circulation at the intermediate depth has been confirmed by the dynamic height calculation based on the Levitus hydrography data. The sandwich transports in the Luzon Strait are consistent with recent hydrographical observations.Model results suggest that the Kuroshio tends to form a loop current in the northeastern South China Sea. The simulated Kuroshio Loop Current is generated by the pressure head at the Pacific side of the Luzon Strait and is enhanced by the β-plane effects. The β - plane appears to be of paramount importance to the South China Sea circulation and to the Luzon Strait transports. Without the β-plane, theLuzon Strait transports would be greatly reduced and the South China Sea circulation would be complete-ly different.展开更多
Marine free-living nematodes were investigated at 13 sampling stations divided into three transects in the northern Taiwan Strait in February 1998. One hundred species of marine nematodes belonging to 91 Genera 28 Fa...Marine free-living nematodes were investigated at 13 sampling stations divided into three transects in the northern Taiwan Strait in February 1998. One hundred species of marine nematodes belonging to 91 Genera 28 Families 3 Orders were identified and were first recorded in the northern Taiwan Strait. The dominant species were Vasostoma sp., Sabatieria sp. 1, Linhystera sp. 1, Spilophorella sp., Daptonema sp., Halalaimus sp. and Dorylaimopsis variabilis. Their main densities were all over 4 950 ind./m2. According to mean density at transects, marine nematode density decreased from coastal Weitou to off Minjiang Estuary, which was similar to polychaete distribution in northern Taiwan Strait. The selective deposit feeder (1A) was the dominant food type of marine nematodes in the northern Taiwan Strait, but non-selective deposit feeders (1B) and epigrowth feeders (2A) occupied high proportion, indicating diverse feeding types of marine nematodes in the northern Taiwan Strait. Some environmental factors such as currents are discussed.展开更多
Using the hydrographic data obtained from two sectional observations crossing the Luzon strait in the summer of 1994 and in the winter of 1998, the volume transport through this strait is calculated. It is found that...Using the hydrographic data obtained from two sectional observations crossing the Luzon strait in the summer of 1994 and in the winter of 1998, the volume transport through this strait is calculated. It is found that in winter the volume transport (4.45×106 m3/s) is far larger than that in the summer (2.0 ×106 m3/s), respectively being about equal to 15.0% and 6.9% of the Kuroshio.And the paths of water in and out of the section of the strait vary distinctly with the season. In summer, the water flows in and out of the South China Sea (SCS) three times: that is, the inlet passages almost appear on the southern sides of the three deep troughs,the outlet passages are all located on the northern sides of the troughs,and the in-out volume transports through the channel are not lower than 4.0×106 m3/s. The highest velocity (>80 cm/s) and the largest entering water capacity (6.6×106 m3/s) all occur in the Balintang Channel. Except for the north outlet passage in the section, all the higher velocities over 10 cm/s are mainly distributed on the layer above 500 m. In winter,the water flows in and out of the strait two times:the southern sides of the second and third deep troughs are the main passages of the Kuroshio water running into the SCS,while the whole section of the first deep trough and the bottom section of the second deep trough are the outlet passages.The higher velocities over 10 cm/s are almost distributed on the layer above 300 m. Numerical calculation shows that the northern side of the third trough may be the outlet passage.展开更多
A double index (DI), which is made up of two sub-indices, is proposed to describe the spatial patterns of the Kuroshio intrusion and mesoscale eddies west to the Luzon Strait, based on satellite altimeter data. The ...A double index (DI), which is made up of two sub-indices, is proposed to describe the spatial patterns of the Kuroshio intrusion and mesoscale eddies west to the Luzon Strait, based on satellite altimeter data. The area-integrated negative and positive geostrophic vorticities are defined as the Kuroshio warm eddy index (KWI) and the Kuroshio cold eddy index (KCI), respectively. Three typical spatial patterns are identified by the DI: the Kuroshio warm eddy path (KWEP), the Kuroshio cold eddy path (KCEP), and the leaking path. The primary features of the DI and three patterns are further investigated and compared with previous indices. The effects of the integrated area and the algorithm of the integration are investigated in detail. In general, the DI can overcome the problem of previously used indices in which the positive and negative geostrophic vorticities cancel each other out. Thus, the proportions of missing and misjudged events are greatly reduced using the DI. The DI, as compared with previously used indices, can better distinguish the paths of the Kuroshio intrusion and can be used for further research.展开更多
The characteristics of current in the Bering Strait and the Chukchi Sea areanalyzed based on the two current data on the mooring stations during the Second National ArcticResearch Expedition of China in 2003. The tida...The characteristics of current in the Bering Strait and the Chukchi Sea areanalyzed based on the two current data on the mooring stations during the Second National ArcticResearch Expedition of China in 2003. The tidal currents of the principal diurnal and semidiurnalellipses rotate clockwise in the upper layer, except for N_2, S_2, and Q_1 at Sta. ST. In the BeringStrait (Sta. ST), the major semi-axis of tidal current constituent M_2 is 2.9 cm/s in the upperlayer, which is much smaller than that of semi-monthly oscillation (11.8 cm/s); and the mean currentflows northwestward at the amplitude of about 20 cm/s and varies a little with depth. During thecruise, the current has significant semi-monthly oscillation at the two mooring stations. Thespectra analyses of the air pressure gradient and the wind stress show that there are thesemi-monthly oscillations in these two data series. The near-inertial current, approximately 4 cm/s,presents almost the same magnitude of the principal tidal currents in the Bering Strait.展开更多
基金the National Natural Science Foundation of China(Nos.42206076,42476078)the National Program on Global Change and Air-Sea Interaction(No.GASI-02-SCSCJB01)the China-Malaysia Cooperation Project‘Effect on variability of seasonal monsoon on sedimentary process in Peninsular Malaysia waters’。
文摘The Malacca Strait(MS)is a vital conduit for the exchange of water and sediment between the Indian Ocean and the Pacific Ocean,serving as a critical‘gateway'for sediment transport.Here,we present the geochemical characteristics of surface sediments in the MS to elucidate the relationship between terrestrial material inputs and modern oceanic dynamic transport processes in the strait.The results reveal that the MS can be divided into three distinct geochemical provinces.ProvinceⅠ,located in the central region of the strait,is characterized by residual deposits.The preservation of these residual deposits can be attributed to the restricted sediment supply and the relatively weaker modern sedimentary hydrodynamic conditions.ProvinceⅡ,situated to the north of ProvinceⅠ,exhibits provenance differences between its southern and northern regions.The northern region is primarily supplied by sediments originating from the eastern shelf of the Andaman Sea,whereas sediments derived from Sumatra and the Sunda Shelf are predominantly deposited in the southern part of ProvinceⅡ.ProvinceⅢextends along the western coast of the Malaysian Peninsula,with sediments primarily sourced from the Malaysian Peninsula and the Sunda Shelf,while contributions from Sumatra and the eastern shelf of the Andaman Sea are negligible.River sediments from the Malaysian Peninsula and Sumatra are transported northwestward along their respective coasts by prevailing currents,which also facilitate the transportation of Sunda Shelf sediments within the strait,while sediments from the eastern shelf of the Andaman Sea are delivered to the MS via southward coastal currents during the southwest monsoon period.The southward currents and well-developed eddies potentially impede the northward transport of sediments from the Sunda Shelf and restrict the distribution of Andaman Sea sediments within the strait.This study substantially enhances the understanding of source-to-sink processes in the Indo-Pacific region.
基金The National Natural Science Foundation of China under contract No.42076003.
文摘The impacts of the Luzon Strait transport on shallow meridional overturning circulation(SMOC)in the South China Sea(SCS)have been pointed out by previous studies,but the issue whether the Luzon Strait transport dominates the SMOC formation still remains open.The Helmholtz decomposition is applied based on the ocean general circulation model for the earth simulator products to address this issue.Results show that the motion caused by the Luzon Strait transport is characterized as an obvious southward flow between 13°N and 20°N.After this motion being removed,the clockwise winter SMOC and the anticlockwise summer SMOC can still exist significantly.The SMOC existence and its seasonal variation are also reproduced in the numerical simulation with the Luzon Strait closed.Both results of the Helmholtz decomposition and numerical experiment suggest that the SMOC formation and its seasonal variation are not dominated by the Luzon Strait transport.The SCS monsoon is the primary driving factor for the SMOC,which is related to the physical processes within the SCS.
基金The Key R&D Project of Zhejiang Province under contract No.2023C03120the General Scientific Research Project of Zhejiang Province under contract No.Y202353957the National Natural Science Foundation of China under contract No.42106017.
文摘El Niño-Southern Oscillation(ENSO)affects the changes in ocean physical elements in Taiwan Strait(TWS)primarily by regulating the strength of the East Asian Winter Monsoon(EAWM)and the intrusion of the Kuroshio.Additionally,the fluctuating impact between nutrient-poor seawater with high dissolved inorganic carbon(DIC)that infiltrates owing to the Kuroshio during El Niño phases and nutrient-rich seawater with low DIC from the South China Sea(SCS)carried by the EAWM during La Niña phases determines the nutrient content in TWS,thereby sculpting appropriate or unsuitable biochemical environment.In this study,based on high-resolution sea-surface partial pressure of carbon dioxide(pCO_(2))data,we investigate the relationship between pCO_(2)level of TWS and ENSO events in winter.The physical mechanisms affecting the anomalous distribution of pCO_(2)level during ENSO are also explored.Stepwise regression was employed to identify the optimal influencing factors for modeling pCO_(2).Results indicate a significant positive correlation between Niño3.4 index and pCO_(2),which is significantly influenced by factors such as sea-surface temperature(SST),chlorophyll-a(Chl a),and DIC.These are related to the anomalously strong Kuroshio intrusion and weaker EAWM during El Niño years.It brings a large amount of high SST water with low nutrient concentration and high DIC,which is detrimental to CO_(2)dissolution and phytoplankton growth over the TWS,leading to an increase in pCO_(2).Conversely,pCO_(2)level is significantly low under the influence of SCS seawater during La Niña years.Based on the characterization of the pCO_(2)level response to ENSO,the carbon balance at TWS can be explored.
基金The Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contact No.SML2021SP309the National Natural Science Foundation of China under contract Nos 42276005,42430402,and 92158204.
文摘The Indonesian Throughflow(ITF),mainly through the Makassar Strait,transports amounts of water and salt from the tropical Pacific Ocean to the Indian Ocean,playing a crucial role in modulating heat and energy budget between two oceans.The South China Sea Throughflow(SCSTF)significantly contributes to the net transport of the ITF via Karimata Strait and Mindoro-Sibutu Passage.However,the specific proportion and variability of South China Sea(SCS)water joining the ITF are still unclear.Based on high-resolution reanalysis data and a Lagrangian particle tracking method-Connectivity Modelling System(CMS),we quantified the proportion and variability of SCS water joining the ITF in the Makassar Strait.The results show that about 16.41%of the particles released in the Makassar Strait could be back-tracked from the SCS and 42.45%from the western Pacific Ocean.The particles through Mindoro Strait and Karimata Strait are about 10.55%and 3.39%,respectively.About 14.56%and 15.42%particles are trapped in the Sulu and Sulawesi seas.The proportion of SCS water shows significant interannual variability,which is highly related to El Niño-Southern Oscillation(ENSO)events.The correlation coefficient between interannual change of SCS water volume proportion and the Niño 3.4 index is 0.75,with an increase of about 24%during El Niño years and a decrease of about−22%during La Niña years.The proportion also varies with the depth of particles released,showing two peaks at surface and subsurface depths of 5 m and 110 m,respectively.
基金supported by the National Natural Science Foundation of China under contract Nos. 40576015, 40810069004 and 40821063by the key research project of Fujian Province under contract No. 2004N203by the Fujian demonstrating region of the "863" Project of the Ministry of Science and Technology of China
文摘Diurnal and semi-diurnal tides in the Taiwan Strait and its adjacent areas are calculated by using a two-dimensional finite-difference model. Compared with data of more than 20 observation stations around the Taiwan Strait, the model-produced results agree quite well with those of previous researches using observational data from coastal tidal gauge stations. According to the results, the co-tidal and co-range charts are given. Furthermore, the characteristics of 8 major tidal constituents have been uminated respectively. The result shows that: (1) The tide motion can be attributed to the interaction between the degenerative rotary tidal system in the north and the progressive tidal system in the south. (2) The southward and northward tidal waves of semi-diurnal tide converge in the middle of the Taiwan Strait while the diurnal tidal waves propagate southwestward through the Taiwan Strait and the Luzon Strait. (3) The maximum amplitude of semi-diurnal tides exists at the area between the Meizhou Bay and Xinghua Bay, and that of diurnal tides appears in the region to the east of the Leizhou Peninsula, (4) The patterns of co-tidal and co-range charts of N2, K2 and P1, Q1 tidal constituents are similar to those of M2, S2 and K1 O1 tidat constituents, respectively
基金supported by the Marine Biological Sample Collection of the Chinese Offshore Investigation and Assessment (No. 908-ZC-II-02)the Ministry of Science and Technology for Commonweal Project of China (No. 200905009-3)
文摘Based on 4 cruise surveys from July 2006 to October 2007 in the Taiwan Strait, the species composition, community structure and spatio-temporal distribution of dinoflagellate were studied. A total of 131 dinoflagellates belonging to 18 genera were identified. The population was dominated by hyperthermal and hyperhaline species accounting for 72.52% of the total species. Eurythermal and euryhaline species were the second most common one accounting for 25.19% of the total species. It was only 2.29% for neritic species. The maximum species number occurred in summer, while the maximum cell density appeared in spring. The average dinoflagellate cell density was 404.96x104 cells/m3. It showed that the dinof]agellate cell density increased from the nearshore waters to the open sea and from the north to the south. Compared with the results during 1984-1985, the horizontal distribution pattern and seaeonal variation of the dinofiagellate have not changed significantly, but the dinoflagellate cell density increased by 3.01 times. Further analysis of the dinoflagellate abundance variations both in the spatial and temporal aspects, indicated that the abundance of dinoflagellate increased more significantly in cold seasons, and there was a larger increase in the north of the Taiwan Strait. Besides, the dinoflagellate community structure changed notably. It showed that the diversity and evenness index were relatively high, and the proportion of dinoflageliate cell density to the total phytoplankton increased.
基金Supported by the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020403)the National Natural Science Foundation of China(Nos.41576165,41376138)
文摘Straits are ideal models to investigate the bacterial community assembly in complex hydrological environments. However, few studies have focused on bacterial communities in them. Here, comparable bacterial communities in costal shallow Bohai Strait(BS) and oceanic deep Fram Strait(FS) were studied. The Shannon and Chao1 indices were both higher in BS than in FS. The relative abundances of the classes Deltaproteobacteria and Bacilli and the family Halieaceae were higher in BS than in FS, in contrast to the families OM1_clade and JTB255_marine_benthic_group, revealing typical characteristics of bacterial communities in coastal and oceanic regions. Cluster analysis based on the Bray-Curtis index showed that samples were clustered by depth layer in FS and BS, indicating that structures of bacterial communities would diff er with increasing water depth in straits. Additionally, the cluster relationships among samples in abundant and rare communities were both similar to those in entire communities. However, the dissimilarities among samples showed a descending order as rare communities, entire communities and abundant communities. Network analysis indicated that the BS network was obviously more complex than the FS network. Filamentous bacteria Desulfobulbaceae exhibited high degree values in BS but not in FS, indicating key roles of Desulfobulbaceae in the BS. Our study provides different and common evidences for understanding microbial ecology in coastal shallow and oceanic deep straits.
基金This work was supported by the National Natural Science Foundation of China (41506119,41276060)the Geological Investigation Project of China Geological Survey (201200504,DD20191003). Thanks Prof. Xu Jie,Zhang Lifang and other anonymous reviewers for their comments and suggestions,which significantly improved the quality of the manuscript.
文摘Due to the extremely complex geological conditions in the Bohai Strait, active faults is very developed and earthquake activity occurs frequently. It is of great importance to evaluate the regional crustal stability for the planning and construction of the Trans-straits Passage. In this study, the authors carry out the evaluation by means of buffer analysis, topology analysis and overlay analysis based on ArcGIS software. The evaluation mainly analyzed six assessment factors of Bohai Strait including neotectonic activity, active faults distribution, seismicity, tectonic stress fields, Bouguer gravity anomaly and geological disasters. In brief, the crustal stability of the eastern North Yellow Sea Basin is best, while that of the Bohai Basin and southwest Bohai Strait is poor. Meanwhile, small and frequent earthquakes in the southern Strait and geological disasters developed in the northern and central Strait such as tidal ridge and shallow gas which may adversely impact on the Trans-straits Passage construction.
基金This research was funded by Frontier Research System for Global Change through its sponsorship of the International Pacific Research Center (IPRC) and by the U. S. National Science Foundation under contract Grant No. OCEOO - 95906.
文摘An analysis of historical oxygen data provides evidence on the water exchange between theSouth China Sea (SCS) and the Pacific Ocean (PO). In the vicinity of the Luzon Strait (LS) , the dissolved oxygen concentration of sea water is found to be lower on the Pacific side than on the SCS side at depths between 700 and 1500 m (intermediate layer) , while the situation is reversed above 700 m (upper layer) and below 1 500 m (deep layer). The evidence suggests that water exits the SCS in the intermediate layer but enters it from the Pacific in both the upper and the deep layers, supporting the earlier speculation that the Luzon Strait transport has a sandwiched structure in the vertical. Within the SCS basin, the oxygen distribution indicates widespread vertical movement, including the upwelling in the intermediate layer and the downwelling in the deep layer.
基金The National Key Research and Development Program of China under contract No.2016YFC1402604the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2015ASKJ01+4 种基金the SOA Program on Global Change and Air-Sea Interactions under contract Nos GASI-IPOVAI-03,GASI-IPOVAI-02 and GASI-IPOVAI-01-02the National Natural Science Foundation of China under contract Nos 40476025,41506036 and 41876027the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606405the Office of Naval Research of United States under contract No.N00014-08-01-0618the China-Indonesia Maritime Cooperation Fund
文摘Besides the Indonesian throughflow(ITF), the South China Sea throughflow(SCSTF) also contributes to the water transport from the Pacific to the Indian Ocean. However, this South China Sea(SCS) branch at the Karimata Strait is poorly observed until 2007, even though its importance has been suggested by numerical studies for decades. In this paper, we review the nearly 10-year field measurement in the Karimata Strait by the execution of the projects of "SCS-Indonesian Seas Transport/Exchange(SITE) and Impacts on Seasonal Fish Migration" and "The Transport, Internal Waves and Mixing in the Indonesian Throughflow regions(TIMIT) and Impacts on Marine Ecosystem", which extend the observations from the western Indonesian seas to the east to include the main channels of the ITF, is introduced. Some major achievements from these projects are summarized.
基金The National Natural Science Foundation of China under contract No.41576024the Key Research and Development Program of Guangxi under contract No.AB16380282+1 种基金the Guangxi Key Laboratory of Marine Environmental Science Program under contract No.GXKLHY15-01the Fundamental Research Fund of Guangxi Academy of Sciences under contract No.2018YBJ301
文摘Based on a comparison of synchronized temperature and salinity data collected in the eastern Qiongzhou Strait and at coastal marine stations, this study finds that, in summer, the variation in salinity near the Weizhou Island in Guangxi is similar to that in the eastern and central portions of the Qiongzhou Strait. Additionally, the Beihai Station in Guangxi exhibits a small salinity variation, whereas the Longmen and Bailongwei Stations, both of which are located far from the Qiongzhou Strait, mainly exhibit continental hydrological characteristics in summer. Moreover, a comparison of the multi-year ocean current data from the Qiongzhou Strait and ocean current observations from the Weizhou Island Station and recently installed current-measuring stations shows that the residual current in the Qiongzhou Strait flows westward in winter and summer. The numerical simulation results also indicate that water from the eastern Qiongzhou Strait enters the Beibu Gulf. The characteristics of the temperature and salinity distributions and analyses of the residual currents further confirm that the western Guangdong coastal current is the main source of the westward transport of water in the Qiongzhou Strait. The primary driver of the formation of the western Guangdong coastal current is the westward flow of freshwater from the Zhujiang (Pearl) River. This water enters the Beibu Gulf via the Qiongzhou Strait and enhances the formation of the cyclonic circulation in the northern Beibu Gulf. In summer, the strong influence of the southwesterly wind leads to the formation of a strong northward coastal current along the western coast of the Beibu Gulf. This process promotes the transport of low-salinity diluted water toward the open ocean and the formation of larger- scale cyclonic circulation around Weizhou Island in the eastern Beibu Gulf. The results of this study regarding the effects of the water inflow from the eastern Qiongzhou Strait to the Beibu Gulf on the Guangxi coastal circulation directly challenge conventional conclusions concerning the transport direction of water through the Qiongzhou Strait in winter and summer.
基金The National Key Research and Development Program of China under contract No.2016YFC1402604the Scientific and Technological Innovation Project financially supported by Qingdao National Laboratory for Marine Science and Technology under contract No.2015ASKJ01+4 种基金the SOA Program on Global Change and Air-Sea Interactions under contract Nos GASI-IPOVAI-03,GASI-IPOVAI-02 and GASI-IPOVAI-01-02the National Natural Science Foundation of China under contract Nos 40476025,41876027and 41506036the China-Indonesia Maritime Cooperation Fund under contract No.U1406405the National Science Foundation of the United States under contract No.OCE-07-25935the Office of Naval Research of United States under contract No.N00014-08-01-0618
文摘Four trawl-resistant bottom mounts, with acoustic Doppler current profilers(ADCPs) embedded, were deployed in the Karimata Strait from November 2008 to June 2015 as part of the South China Sea-Indonesian Seas Transport/Exchange and Impact on Seasonal Fish Migration(SITE) Program, to estimate the volume and property transport between the South China Sea and Indonesian seas via the strait. The observed current data reveal that the volume transport through the Karimata Strait exhibits significant seasonal variation. The winteraveraged(from December to February) transport is –1.99 Sv(1 Sv=1×10~6 m^3/s), while in the boreal summer(from June to August), the average transport is 0.69 Sv. Moreover, the average transport from January 2009 to December2014 is –0.74 Sv(the positive/negative value indicates northward/southward transport). May and September are the transition period. In May, the currents in the Karimata Strait turn northward, consistent with the local monsoon. In September, the southeasterly trade wind is still present over the strait, driving surface water northward, whereas the bottom flow reverses direction, possibly because of the pressure gradient across the strait from north to south.
基金supported by the National Natural Science Foundation of China under contract Nos 40376007 and 40306005.
文摘The temperature and salinity data obtained by the Chinese national arctic research expedition (CHINARE2003) are used to study the water structure in the Bering Strait and ambient regions. Four water masses appeared in the research region: the intermediate Bering Sea water mass (IBWM), the Alaska coastal water (ACW), the Anadyr water (AW) and the Bering shelf water (BSW). The AW originates from the IBWM, but the upper layer water has been greatly altered. In the cruise on 28/29 July 2003, there were only the BSW and ACW in a section across the Bering Strait (BS section), but in the September 12/13 cruise, the AW, BSW and ACW flowed parallelly into the Bering Strait. The upper waters of these water masses were all altered due to ice melting, runoff, solar radiation, and wind mixing. The waters in the central and northern parts of Bering Strait stratified by two uniform layers,were expressed as the typical feature of the water masses originating from the pacific. A two-layer structure also dominated the vertical stratification in most part of the Chukchi Sea. An obvious subseasonal variation was observed in the BS section, which caused varying transportation of fresh water, heat, and substance, and produced a long-term and extensive impact on the Arctic Ocean.
基金The National Science Foundation of the United States under contract No.OCE-07-25935the Office of Naval Research of the United States under contract No.N00014-08-1-0618 (for US LDEO)+4 种基金the National Basic Research Program under contract No.2011CB403502the International Cooperation Program of China under contract No.2010DFB23580the International Cooperation Program of State Oceanic Administration of China under contract No.QY0213022the First Institute of Oceanography,the State Oceanic Administration of China under contract No.2010G06 (for Chinese researchers)the Lamont-Doherty Earth Obseruatory contribution No.7626
文摘In order to quantitatively estimate the volume and property transports between the South China Sea and Indonesian Seas via the Karimata Strait, two trawi-resistant bottom mounts, with ADCPs embedded, were deployed in the strait to measure the velocity profile as part of the South China Sea-Indonesian Seas trans- port/exchange (SITE) program. A pair of surface and bottom acoustic modems was employed to transfer the measured velocity without recovering the mooring. The advantage and problems of the instruments in this field work are reported and discussed. The field observations confirm the existence of the South Chi- na Sea branch of Indonesian throughflow via the Karimata Strait with a stronger southward flow in boreal winter and weaker southward bottom flow in boreal summer, beneath the upper layer northward (reversal) flow. The estimate of the averaged volume, heat and freshwater transports from December 2007 to March 2008 (winter) is (-2.7±1.1)×10^6 m^3/s, (-0.30±0.11) PW, 2008 (summer) is (1.2±0.6)×10^6 m^3/s, (0.14±0.03) PW, (-0.18±0.07) × 106 m3/s and from May to September (0.12±0.04)×10^6 m^3/s and for the entire record from December 2007 to October 2008 is (-0.5±1.9)×10^6 m^3/s, (-0.05±0.22) PW, (-0.01±0.15)×10^6 m^3/s (nega- tive/positive represents southward/northward transport), respectively. The existence of southward bottom flow in boreal summer implies that the downward sea surface slope from north to south as found by Fang et al. (2010) for winter is a year-round phenomenon.
基金This study was supported by the Major State Basic Research Program under contract Grant No. 19990 43806'
文摘A fine-resolution MOM code is used to study the South China Sea basin-scale circulationand its relation to the mass transport through the Luzon Strait. The model domain includes the South China Sea, part of the East China Sea, and part of the Philippine Sea so that the currents in the vicinity of the Luzon Strait are free to evolve. In addition, all channels between the South China Sea and the Indonesian seas are closed so that the focus is on the Luzon Strait transport. The model is driven by specified Philippine Sea currents and by surface heat and salt flux conditions. For simplicity, no wind-stress is applied at the surface.The simulated Luzon Strait transport and the South China Sea circulation feature a sandwich vertical structure from the surface to the bottom. The Philippine Sea water is simulated to enter the South China Sea at the surface and in the deep ocean and is carried to the southern basin by western boundary currents. At the intermediate depth, the net Luzon Strait transport is out of the South China Sea and is fed by a western boundary current flowing to the north at the base of the thermocline. Corresponding to the western boundary currents, the basin circulation of the South China Sea is cyclonic gyres at the surface and in the abyss but an anti-cyclonic gyre at the intermediate depth. The vorticity balance of the gyre circulation is between the vortex stretching and the meridional change of the planetary vorticity. Based on these facts, it is hypothesized that the Luzon Strait transports are determined by the diapycnal mixing inside the entire South China Sea. The South China Sea plays the role of a 'mixing mill' that mixes the surface and deep waters to return them to the Luzon Strait at the intermediate depth. The gyre structures are consistent with the Stommel and Arons theory (1960), which suggests that the mixing-induced circulation inside the South China Sea should be cyclonic gyres at the surface and at the bottom but an anti-cyclonic gyre at the intermediate depth. The simulated gyre circulation at the intermediate depth has been confirmed by the dynamic height calculation based on the Levitus hydrography data. The sandwich transports in the Luzon Strait are consistent with recent hydrographical observations.Model results suggest that the Kuroshio tends to form a loop current in the northeastern South China Sea. The simulated Kuroshio Loop Current is generated by the pressure head at the Pacific side of the Luzon Strait and is enhanced by the β-plane effects. The β - plane appears to be of paramount importance to the South China Sea circulation and to the Luzon Strait transports. Without the β-plane, theLuzon Strait transports would be greatly reduced and the South China Sea circulation would be complete-ly different.
基金This study was supported by the National Natural Science Foundation of China(NSFC)Key Project"The response of phytoplankton to the interannual environmental variability in the upwelling region of Taiwan Strait"under contract No.40331004.
文摘Fhrough the examination of 377 samples of the Anthomedusae, eight new species and one new record are described.
基金the Key Item of National Natural Science Foundation of China under contract No.49636220.
文摘Marine free-living nematodes were investigated at 13 sampling stations divided into three transects in the northern Taiwan Strait in February 1998. One hundred species of marine nematodes belonging to 91 Genera 28 Families 3 Orders were identified and were first recorded in the northern Taiwan Strait. The dominant species were Vasostoma sp., Sabatieria sp. 1, Linhystera sp. 1, Spilophorella sp., Daptonema sp., Halalaimus sp. and Dorylaimopsis variabilis. Their main densities were all over 4 950 ind./m2. According to mean density at transects, marine nematode density decreased from coastal Weitou to off Minjiang Estuary, which was similar to polychaete distribution in northern Taiwan Strait. The selective deposit feeder (1A) was the dominant food type of marine nematodes in the northern Taiwan Strait, but non-selective deposit feeders (1B) and epigrowth feeders (2A) occupied high proportion, indicating diverse feeding types of marine nematodes in the northern Taiwan Strait. Some environmental factors such as currents are discussed.
文摘Using the hydrographic data obtained from two sectional observations crossing the Luzon strait in the summer of 1994 and in the winter of 1998, the volume transport through this strait is calculated. It is found that in winter the volume transport (4.45×106 m3/s) is far larger than that in the summer (2.0 ×106 m3/s), respectively being about equal to 15.0% and 6.9% of the Kuroshio.And the paths of water in and out of the section of the strait vary distinctly with the season. In summer, the water flows in and out of the South China Sea (SCS) three times: that is, the inlet passages almost appear on the southern sides of the three deep troughs,the outlet passages are all located on the northern sides of the troughs,and the in-out volume transports through the channel are not lower than 4.0×106 m3/s. The highest velocity (>80 cm/s) and the largest entering water capacity (6.6×106 m3/s) all occur in the Balintang Channel. Except for the north outlet passage in the section, all the higher velocities over 10 cm/s are mainly distributed on the layer above 500 m. In winter,the water flows in and out of the strait two times:the southern sides of the second and third deep troughs are the main passages of the Kuroshio water running into the SCS,while the whole section of the first deep trough and the bottom section of the second deep trough are the outlet passages.The higher velocities over 10 cm/s are almost distributed on the layer above 300 m. Numerical calculation shows that the northern side of the third trough may be the outlet passage.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB954004 and2013CB956204)the National Natural Science Foundation of China(Grant Nos.41276006U1405233 and 41023002)
文摘A double index (DI), which is made up of two sub-indices, is proposed to describe the spatial patterns of the Kuroshio intrusion and mesoscale eddies west to the Luzon Strait, based on satellite altimeter data. The area-integrated negative and positive geostrophic vorticities are defined as the Kuroshio warm eddy index (KWI) and the Kuroshio cold eddy index (KCI), respectively. Three typical spatial patterns are identified by the DI: the Kuroshio warm eddy path (KWEP), the Kuroshio cold eddy path (KCEP), and the leaking path. The primary features of the DI and three patterns are further investigated and compared with previous indices. The effects of the integrated area and the algorithm of the integration are investigated in detail. In general, the DI can overcome the problem of previously used indices in which the positive and negative geostrophic vorticities cancel each other out. Thus, the proportions of missing and misjudged events are greatly reduced using the DI. The DI, as compared with previously used indices, can better distinguish the paths of the Kuroshio intrusion and can be used for further research.
基金supported by the project of the National Nataral Science Foundation of China under contract Nos 40506006,40376007,40306005,40376005 and NCET-04-0646.
文摘The characteristics of current in the Bering Strait and the Chukchi Sea areanalyzed based on the two current data on the mooring stations during the Second National ArcticResearch Expedition of China in 2003. The tidal currents of the principal diurnal and semidiurnalellipses rotate clockwise in the upper layer, except for N_2, S_2, and Q_1 at Sta. ST. In the BeringStrait (Sta. ST), the major semi-axis of tidal current constituent M_2 is 2.9 cm/s in the upperlayer, which is much smaller than that of semi-monthly oscillation (11.8 cm/s); and the mean currentflows northwestward at the amplitude of about 20 cm/s and varies a little with depth. During thecruise, the current has significant semi-monthly oscillation at the two mooring stations. Thespectra analyses of the air pressure gradient and the wind stress show that there are thesemi-monthly oscillations in these two data series. The near-inertial current, approximately 4 cm/s,presents almost the same magnitude of the principal tidal currents in the Bering Strait.