期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Deep Learning Network for Energy Storage Scheduling in Power Market Environment Short-Term Load Forecasting Model
1
作者 Yunlei Zhang RuifengCao +3 位作者 Danhuang Dong Sha Peng RuoyunDu Xiaomin Xu 《Energy Engineering》 EI 2022年第5期1829-1841,共13页
In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits... In the electricity market,fluctuations in real-time prices are unstable,and changes in short-term load are determined by many factors.By studying the timing of charging and discharging,as well as the economic benefits of energy storage in the process of participating in the power market,this paper takes energy storage scheduling as merely one factor affecting short-term power load,which affects short-term load time series along with time-of-use price,holidays,and temperature.A deep learning network is used to predict the short-term load,a convolutional neural network(CNN)is used to extract the features,and a long short-term memory(LSTM)network is used to learn the temporal characteristics of the load value,which can effectively improve prediction accuracy.Taking the load data of a certain region as an example,the CNN-LSTM prediction model is compared with the single LSTM prediction model.The experimental results show that the CNN-LSTM deep learning network with the participation of energy storage in dispatching can have high prediction accuracy for short-term power load forecasting. 展开更多
关键词 Energy storage scheduling short-term load forecasting deep learning network convolutional neural network CNN long and short term memory network LTSM
在线阅读 下载PDF
Forecast uncertainties real-time data-driven compensation scheme for optimal storage control
2
作者 Arbel Yaniv Yuval Beck 《Data Science and Management》 2025年第1期59-71,共13页
This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on... This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on an existing algorithm,this study resolves issues discovered during implementation and addresses previously overlooked concerns,resulting in significant enhancements in both performance and reliability.The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model,which is utilized for illustrative simulations to highlight its potential efficacy on a real site.Furthermore,a comprehensive comparison with the original formulation was conducted to cover all possible scenarios.This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system.Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management,significant financial losses and penalties,and potential contract violations.The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements.These advancements yield a reliable and efficient real-time correction algorithm for optimal site management,designed as an independent white box that can be integrated with any day-ahead optimization control system. 展开更多
关键词 storage optimal scheduling Real-time storage control PV-plus-storage management Forecast uncertainty compensation
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部