To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control stra...To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit.展开更多
With the continuous emergence of new energy storage technology innovation in the field of electrochemical energy storage in China,different megawatt-grade lithium-ion battery energy storage projects have been implemen...With the continuous emergence of new energy storage technology innovation in the field of electrochemical energy storage in China,different megawatt-grade lithium-ion battery energy storage projects have been implemented,promoting the high-quality development of the energy storage industry.In the context of vigorously promoting the energy consumption revolution and enhancing the green transformation and development momentum,strengthening the safety construction of lithium-ion battery energy storage is of great importance to realize the transformation of energy structure and improve the utilization efficiency of renewable energy.However,in recent years,frequent safety accidents of lithium-ion battery energy storage power stations,such as fires,have aroused the public’s high attention to the construction of lithium-ion battery energy storage power stations,affecting the large-scale development of energy storage power stations.Based on this,this paper analyzes the safety risks of lithium-ion battery energy storage power stations and focuses on how to improve their safety performance.展开更多
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg...The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.展开更多
Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy s...Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system(BESS).However,the current modeling of grid-connected BESS is overly simplistic,typically only considering state of charge(SOC)and power constraints.Detailed lithium(Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions.Additionally,there is a lack of real-time batteries risk assessment frameworks.To address these issues,in this study,we establish a thermal-electric-performance(TEP)coupling model based on a multitime scale BESS model,incorporating the electrical and thermal characteristics of Li-ion batteries along with their performance degradation to achieve detailed simulation of grid-connected BESS.Additionally,considering the operating characteristics of energy storage batteries and electrical and thermal abuse factors,we developed a battery pack operational riskmodel,which takes into account SOCand charge-discharge rate(Cr),using amodified failure rate to represent the BESS risk.By integrating detailed simulation of energy storage with predictive failure risk analysis,we obtained a detailed model for BESS risk analysis.This model offers a multi-time scale integrated simulation that spans month-level energy storage simulation times,day-level performance degradation,minutescale failure rate,and second-level BESS characteristics.It offers a critical tool for the study of BESS.Finally,the performance and risk of energy storage batteries under three scenarios—microgrid energy storage,wind power smoothing,and power grid failure response—are simulated,achieving a real-time state-dependent operational risk analysis of the BESS.展开更多
MXenes,an innovative class of two-dimensional(2D)materials composed of transition-metal carbides and/or nitrides,have garnered significant interest for their potential in energy storage and conversion applications,whi...MXenes,an innovative class of two-dimensional(2D)materials composed of transition-metal carbides and/or nitrides,have garnered significant interest for their potential in energy storage and conversion applications,which is largely attributed to their modifiable surface terminations,exceptional conductivity,and favorable hydrophilic characteristics.MXenes show various ion transport behaviors in applications like electrochemical catalysis,supercapacitors,and batteries,encompassing processes like electrostatic adsorption of surface ions,redox reactions of ions,and interlayer ion shuttle.This review aims to present a summary of advancements in the comprehension of ion transport behaviors of Ti_(3)C_(2)T_(x)MXenes.First,the composition,properties,and synthesis techniques of MXenes are concisely summarized.Subsequently,the discussion delves into the mechanisms of ion transport in MXenes during CO_(2)reduction,water splitting,supercapacitor operation,and battery performance,elucidating the factors determining the electrochemical behaviors and efficacy.Furthermore,a compilation of strategies used to optimize ion transport behaviors in MXenes is presented.The article concludes by presenting the challenges and opportunities for these fields to facilitate the continued progress of MXenes in energy-related technologies.展开更多
On 16 January 2025,flames erupted,and smoke rose more than 300 m in Moss Landing,CA,USA,at what was until early 2024 the world’s largest battery energy storage system(BESS)[1].Prompted by the potential danger of expo...On 16 January 2025,flames erupted,and smoke rose more than 300 m in Moss Landing,CA,USA,at what was until early 2024 the world’s largest battery energy storage system(BESS)[1].Prompted by the potential danger of exposure to toxic gases from the blaze[2],local authorities closed schools and the coast’s iconic Highway 1,evacuated hundreds living close to the facility,and instructed residents of the nearby communities of Santa Cruz and Salinas to stay indoors and keep their doors and windows shut.The burning lithium-ion batteries(LIB)also raised concerns about contamina-tion of communities and farmland in the area.展开更多
As the service life of the electric bicycle' s storage battery is shortened due to the long-term floating charge, an automatic power- off circuit for the storage battery of electric bicycle is designed, and also the ...As the service life of the electric bicycle' s storage battery is shortened due to the long-term floating charge, an automatic power- off circuit for the storage battery of electric bicycle is designed, and also the composition and design of the circuit are specifically expounded. After a test, the circuit can achieve a desired effect. Therefore, it can prolong the service life of the electric bicycle' s storage battery and save electric energy in the actual applications.展开更多
This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emerg...This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.展开更多
With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role ...With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.展开更多
This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are establi...This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively.展开更多
The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem....The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.展开更多
For the impact of intermittent resources' high penetration on the economic dispatch of islanded microgrid, a new economic dispatch method is presented to minimize the overall generating cost for islanded microgrid, c...For the impact of intermittent resources' high penetration on the economic dispatch of islanded microgrid, a new economic dispatch method is presented to minimize the overall generating cost for islanded microgrid, considering a cooperative strategy between diesel generator (hereinafter referred to as DE) and battery energy storage system (BESS). The optimum economic operation range of DE and the optimal set-point between DE and BESS are presented in the cooperative dispatch strategy, in which BESS is used fully to enable DE in a lower cost and higher efficient way. The results are analyzed under various operation conditions and also prove the validity of the DrODosed method.展开更多
Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribu...Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribution network’s challenges,which affect network performance,are:(i)Load disconnection or technical constraints violation,which may happen during reconfiguration after fault,(ii)Unpredictable power generation change due to Photovoltaic(PV)penetration,(iii)Undesirable PV reverse power,and(iv)Low Load Factor(LF)which may affect electricity price.In this paper,the BESS is used to support distribution networks in reconfiguration after a fault,increasing Photovoltaic(PV)penetration,cutting peak load,and loading valley filling.The paper presents a methodology for BESS optimal locations and sizing considering technical constraints during reconfiguration after a fault and PV power generation changes.For determining themaximumpower generation change due to PV,actual power registration of connected PV plants in South Cairo Electricity Distribution Company(SCEDC)was considered for a year.In addition,the paper provides a procedure for distribution network operator to employ the proposed BESS to perform multi functions such as:the ability to absorb PV power surplus,cut peak load and fill load valley for improving network’s performances.The methodology is applied to a modified IEEE 37-node and a real network part consisting of 158 nodes in SCEDC zone.The simulation studies are performed using the DIgSILENT PowerFactory software andDPL programming language.The Mixed Integer Linear Programming optimization technique(MILP)in MATLAB is employed to choose the best locations and sizing of BESS.展开更多
Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which mak...Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which make microgird become a strong coupling system in the time domain. Hence, the traditional methods of static dispatch are no longer suitable for microgrids. This paper proposes a dynamic economic dispatch method for microgrids. Considering microgrid as a discrete time system, the dynamic economic dispatch is to find the optimal control strategy for the system in finite time period. Based on this idea, the dynamic economic dispatch model for microgrids is established, and then the corresponding dynamic programming algorithm is designed. Finally, an example of microgrid is given, and the dynamic economic dispatch results are compared with that of the static dispatch. The comparison confirms the effectiveness of the proposed dynamic dispatch method.展开更多
Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different e...Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.展开更多
This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comp...This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comparative study in terms of the dynamic response,battery state of charge(SOC),and oscillations around the Maximum Power Point(MPP)of the PV-BSS to variations in climate conditions,these techniques are simulated in Matlab/Simulink.The introduced methodologies are classified into two types;the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb&Observe and Incremental Conductance techniques.The second type is a novel proposed methodology is based on using solar irradiance and cell temperature measurements with pre-build Adaptive Neuro-Fuzzy Inference System(ANFIS)model to predict DC–DC converter optimum duty cycle to track MPP.Then evaluation study is introduced for conventional and proposed On-Line MPPT techniques.This comparative study can be useful in specifying the appropriateness of the MPPT techniques for PV-BSS.Also the introduced model can be used as a valued reference model for future research related to Soft Computing(SC)MPPT techniques.A significant improvement of SOC is achieved by the proposed model and methodology with high accuracy and lower oscillations.展开更多
Energy storage system is an important means to improve the flexibility and safety of traditional power system,but it has the problem of high cost and unclear value recovery path.In this paper,the typical application s...Energy storage system is an important means to improve the flexibility and safety of traditional power system,but it has the problem of high cost and unclear value recovery path.In this paper,the typical application scenarios of energy storage system are summarized and analyzed from the perspectives of user side,power grid side and power generation side.Based on the typical application scenarios,the economic benefit assessment framework of energy storage system including value,time and efficiency indicators is proposed.Typical battery energy storage projects are selected for economic benefit calculation according to different scenarios,and key factors are selected for sensitivity analysis.Finally,the key factors affecting economic benefit of the energy storage system are analyzed.展开更多
Firstly, the definition, structure and working principles of storage batteries in automatic meteorological observation stations were stated simply, and then the daily maintenance of the storage batteries were introduc...Firstly, the definition, structure and working principles of storage batteries in automatic meteorological observation stations were stated simply, and then the daily maintenance of the storage batteries were introduced according to previous practical experience, finally typical faults of storage batteries were analyzed. Practical evidence shows that timely external maintenance and enough supply of electrolyte can greatly extend the lifespan of storage batteries.展开更多
Accelerated development of battery technologies heightens an interest in co-locating battery energy storage systems (BESSs) with renewable power plants for stacking of multiple revenue streams such as frequency respon...Accelerated development of battery technologies heightens an interest in co-locating battery energy storage systems (BESSs) with renewable power plants for stacking of multiple revenue streams such as frequency response services to AC grids. Frequency response market reforms in the UK introduce new end-state services and require evaluating techno-economic feasibility of co-location projects in new circumstances. This paper develops a BESS optimisation method to optimize capacity and operating strategy of a co-located BESS for providing latest Dynamic Containment (DC) services based on the UK perspective. BESS optimisation method simulates BESS delivering DC responses and following operational baselines for state of energy (SoE) restoration, as well as, coordinating with its co-located power plant. Then net present value of BESS co-location project is estimated from power flows across the system and maximised to suggest optimal BESS capacity, target energy footroom and/or headroom levels for baseline estimation, and possible SoE ranges suitable for energy interchange with its co-located power plant. BESS optimisation method is tested based on a particular transmission-level wind farm in the UK and discussed alongside operation and profitability of a BESS co-location project under frequency response market reforms.展开更多
This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly redu...This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly reduces the large number of nodes in the conventional switching model of the converter,thereby shrinking the size of its admittance matrix.Secondly,it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking.Mathematical derivation of the model is carried out using differential equations of the converter.The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EMTDC simulator against conventional detailed switching models and measurements from a single-phase scaleddown laboratory setup.This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.展开更多
基金funded by the Gansu Provincial Science and Technology Information Disclosure System Project(21ZD8JA001)Tianyou Innovation Team of Lanzhou Jiaotong University(TY202009).
文摘To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the loadwhen a large number of newenergy sources are connected to the grid,a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM.Firstly,considering the coordination of FM units responding to automatic power generation control commands,a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to FM commands;secondly,based on the grid FM demand and battery FM capability,a double-layer fuzzy control strategy is proposed for FM units responding to automatic power generation control commands in a coordinated manner under dual-signal allocation mode to precisely allocate the power output depth of FM units,which can control the fluctuation of frequency deviation within a smaller range at a faster speed while maintaining the battery charge state;finally,the proposed Finally,the proposed control strategy is simulated and verified inMatlab/Simulink.The results show that the proposed control strategy can control the frequency deviation within a smaller range in a shorter time,better stabilize the fluctuation of the battery charge level,and improve the utilization of the FM unit.
基金This research was supported by the Science Foundation of Yantai Vocational College(No.2023XBYB008).
文摘With the continuous emergence of new energy storage technology innovation in the field of electrochemical energy storage in China,different megawatt-grade lithium-ion battery energy storage projects have been implemented,promoting the high-quality development of the energy storage industry.In the context of vigorously promoting the energy consumption revolution and enhancing the green transformation and development momentum,strengthening the safety construction of lithium-ion battery energy storage is of great importance to realize the transformation of energy structure and improve the utilization efficiency of renewable energy.However,in recent years,frequent safety accidents of lithium-ion battery energy storage power stations,such as fires,have aroused the public’s high attention to the construction of lithium-ion battery energy storage power stations,affecting the large-scale development of energy storage power stations.Based on this,this paper analyzes the safety risks of lithium-ion battery energy storage power stations and focuses on how to improve their safety performance.
基金Financial support was provided by the State Grid Sichuan Electric Power Company Science and Technology Project“Key Research on Development Path Planning and Key Operation Technologies of New Rural Electrification Construction”under Grant No.52199623000G.
文摘The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.
基金Supported by Open Fund of National Key Laboratory of Power Grid Safety(No.XTB51202301386).
文摘Energy storage batteries can smooth the volatility of renewable energy sources.The operating conditions during power grid integration of renewable energy can affect the performance and failure risk of battery energy storage system(BESS).However,the current modeling of grid-connected BESS is overly simplistic,typically only considering state of charge(SOC)and power constraints.Detailed lithium(Li)-ion battery cell models are computationally intensive and impractical for real-time applications and may not be suitable for power grid operating conditions.Additionally,there is a lack of real-time batteries risk assessment frameworks.To address these issues,in this study,we establish a thermal-electric-performance(TEP)coupling model based on a multitime scale BESS model,incorporating the electrical and thermal characteristics of Li-ion batteries along with their performance degradation to achieve detailed simulation of grid-connected BESS.Additionally,considering the operating characteristics of energy storage batteries and electrical and thermal abuse factors,we developed a battery pack operational riskmodel,which takes into account SOCand charge-discharge rate(Cr),using amodified failure rate to represent the BESS risk.By integrating detailed simulation of energy storage with predictive failure risk analysis,we obtained a detailed model for BESS risk analysis.This model offers a multi-time scale integrated simulation that spans month-level energy storage simulation times,day-level performance degradation,minutescale failure rate,and second-level BESS characteristics.It offers a critical tool for the study of BESS.Finally,the performance and risk of energy storage batteries under three scenarios—microgrid energy storage,wind power smoothing,and power grid failure response—are simulated,achieving a real-time state-dependent operational risk analysis of the BESS.
基金Yongjiang Innovative Individual Introduction of ChinaNingbo Top-talent Team Program,Program for the National Natural Science Foundation of ChinaChina Postdoctoral Science Foundation,Grant/Award Numbers:2022M723253,2023M733597。
文摘MXenes,an innovative class of two-dimensional(2D)materials composed of transition-metal carbides and/or nitrides,have garnered significant interest for their potential in energy storage and conversion applications,which is largely attributed to their modifiable surface terminations,exceptional conductivity,and favorable hydrophilic characteristics.MXenes show various ion transport behaviors in applications like electrochemical catalysis,supercapacitors,and batteries,encompassing processes like electrostatic adsorption of surface ions,redox reactions of ions,and interlayer ion shuttle.This review aims to present a summary of advancements in the comprehension of ion transport behaviors of Ti_(3)C_(2)T_(x)MXenes.First,the composition,properties,and synthesis techniques of MXenes are concisely summarized.Subsequently,the discussion delves into the mechanisms of ion transport in MXenes during CO_(2)reduction,water splitting,supercapacitor operation,and battery performance,elucidating the factors determining the electrochemical behaviors and efficacy.Furthermore,a compilation of strategies used to optimize ion transport behaviors in MXenes is presented.The article concludes by presenting the challenges and opportunities for these fields to facilitate the continued progress of MXenes in energy-related technologies.
文摘On 16 January 2025,flames erupted,and smoke rose more than 300 m in Moss Landing,CA,USA,at what was until early 2024 the world’s largest battery energy storage system(BESS)[1].Prompted by the potential danger of exposure to toxic gases from the blaze[2],local authorities closed schools and the coast’s iconic Highway 1,evacuated hundreds living close to the facility,and instructed residents of the nearby communities of Santa Cruz and Salinas to stay indoors and keep their doors and windows shut.The burning lithium-ion batteries(LIB)also raised concerns about contamina-tion of communities and farmland in the area.
文摘As the service life of the electric bicycle' s storage battery is shortened due to the long-term floating charge, an automatic power- off circuit for the storage battery of electric bicycle is designed, and also the composition and design of the circuit are specifically expounded. After a test, the circuit can achieve a desired effect. Therefore, it can prolong the service life of the electric bicycle' s storage battery and save electric energy in the actual applications.
文摘This work presents a novel coordinated control strategy of a hybrid photovoltaic/battery energy storage(PV/BES) system. Different controller operation modes are simulated considering normal, high fluctuation and emergency conditions. When the system is grid-connected, BES regulates the fluctuated power output which ensures smooth net injected power from the PV/BES system. In islanded operation, BES system is transferred to single master operation during which the frequency and voltage of the islanded microgrid are regulated at the desired level. PSCAD/EMTDC simulation validates the proposed method and obtained favorable results on power set-point tracking strategies with very small deviations of net output power compared to the power set-point. The state-of-charge regulation scheme also very effective with SOC has been regulated between 32% and 79% range.
基金This work was supported by National Natural Science Foundation of China under Grant U1909201,Distributed active learning theory and method for operational situation awareness of active distribution network.
文摘With the high penetration of renewable energy,new challenges,such as power fluctuation suppression and inertial support capability,have arisen in the power sector.Battery energy storage systems play an essential role in renewable energy integration.In this paper,a distributed virtual synchronous generator(VSG)control method for a battery energy storage system(BESS)with a cascaded H-bridge converter in a grid-connected mode is proposed.The VSG is developed without communication dependence,and state-of-charge(SOC)balancing control is achieved using the distributed average algorithm.Owing to the low varying speed of SOC,the bandwidth of the distributed communication networks is extremely slow,which decreases the cost.Therefore,the proposed method can simultaneously provide inertial support and accurate SOC balancing.The stability is also proved using root locus analysis.Finally,simulations under different conditions are carried out to verify the effectiveness of the proposed method.
基金supported by the Natural Science Foundation of China(Grant No.52076079)Natural Science Foundation of Hebei Province,China(Grant No.E2020502013)the Fundamental Research Funds for the Central Universities(2021MS076,2021MS079).
文摘This paper studies the feasibility of a supply-side wind-coal integrated energy system.Based on grid-side data,the load regulation model of coal-fired power and the wind-coal integrated energy system model are established.According to the simulation results,the reasons why the wind-coal combined power supply is difficult to meet the grid-side demand are revealedthrough scenario analysis.Basedon thewind-coal combinedoperation,a wind-coalstorage integrated energy system was proposed by adding lithium-iron phosphate battery energy storage system(LIPBESS)to adjust the load of the system.According to the four load adjustment scenarios of grid-side instructions of the wind-coal system,the difficulty of load adjustment in each scenario is analyzed.Based on the priority degree of LIPBESS charge/discharge in four scenarios at different time periods,the operation mode of two charges and two discharges per day was developed.Based on the independent operation level of coal-fired power,after the addition of LIPBESS(5.5 MWh),the average qualified rate of multi-power operation in March and June reached the level of independent operation of coal-fired power,while the average qualified rate of the remaining months was only 5.4%different from that of independent operation of coal-fired power.Compared with the wind storage mode,the energy storage capacity and investment cost of wind-coal-storage integrated energy system are reduced by 54.2%and 53.7%,respectively.
文摘The wind energy generation,utilization and its grid penetration in electrical grid are increasing world-wide.The wind generated power is always fluctuating due to its time varying nature and causing stability problem.This weak interconnection of wind generating source in the electrical network affects the power quality and reliability.The localized energy storages shall compensate the fluctuating power and support to strengthen the wind generator in the power system.In this paper,it is proposed to control the voltage source inverter (VSI) in current control mode with energy storage,that is,batteries across the dc bus.The generated wind power can be extracted under varying wind speed and stored in the batteries.This energy storage maintains the stiff voltage across the dc bus of the voltage source inverter.The proposed scheme enhances the stability and reliability of the power system and maintains unity power factor.It can also be operated in stand-alone mode in the power system.The power exchange across the wind generation and the load under dynamic situation is feasible while maintaining the power quality norms at the common point of coupling.It strengthens the weak grid in the power system.This control strategy is evaluated on the test system under dynamic condition by using simulation.The results are verified by comparing the performance of controllers.
基金the National Natural Science Foundation of China(No.61703068)the Scientific and Technological Research Program of Chongqing Municipal Education Commission(No.KJ1704097)+1 种基金the Chongqing Basic Science and Advanced Technology Research Project(No.cstc2016jcyjA1919)the Doctor Start-up Funding of Chongqing University of Posts and Telecommunications(No.A2016-05)
文摘For the impact of intermittent resources' high penetration on the economic dispatch of islanded microgrid, a new economic dispatch method is presented to minimize the overall generating cost for islanded microgrid, considering a cooperative strategy between diesel generator (hereinafter referred to as DE) and battery energy storage system (BESS). The optimum economic operation range of DE and the optimal set-point between DE and BESS are presented in the cooperative dispatch strategy, in which BESS is used fully to enable DE in a lower cost and higher efficient way. The results are analyzed under various operation conditions and also prove the validity of the DrODosed method.
文摘Battery Energy Storage System(BESS)is one of the potential solutions to increase energy system flexibility,as BESS is well suited to solve many challenges in transmission and distribution networks.Examples of distribution network’s challenges,which affect network performance,are:(i)Load disconnection or technical constraints violation,which may happen during reconfiguration after fault,(ii)Unpredictable power generation change due to Photovoltaic(PV)penetration,(iii)Undesirable PV reverse power,and(iv)Low Load Factor(LF)which may affect electricity price.In this paper,the BESS is used to support distribution networks in reconfiguration after a fault,increasing Photovoltaic(PV)penetration,cutting peak load,and loading valley filling.The paper presents a methodology for BESS optimal locations and sizing considering technical constraints during reconfiguration after a fault and PV power generation changes.For determining themaximumpower generation change due to PV,actual power registration of connected PV plants in South Cairo Electricity Distribution Company(SCEDC)was considered for a year.In addition,the paper provides a procedure for distribution network operator to employ the proposed BESS to perform multi functions such as:the ability to absorb PV power surplus,cut peak load and fill load valley for improving network’s performances.The methodology is applied to a modified IEEE 37-node and a real network part consisting of 158 nodes in SCEDC zone.The simulation studies are performed using the DIgSILENT PowerFactory software andDPL programming language.The Mixed Integer Linear Programming optimization technique(MILP)in MATLAB is employed to choose the best locations and sizing of BESS.
文摘Microgrids integrate distributed renewable energy resources, controllable loads and energy storage in a more economic and reliable fashion. Battery energy storage units are essential for microgrid operation, which make microgird become a strong coupling system in the time domain. Hence, the traditional methods of static dispatch are no longer suitable for microgrids. This paper proposes a dynamic economic dispatch method for microgrids. Considering microgrid as a discrete time system, the dynamic economic dispatch is to find the optimal control strategy for the system in finite time period. Based on this idea, the dynamic economic dispatch model for microgrids is established, and then the corresponding dynamic programming algorithm is designed. Finally, an example of microgrid is given, and the dynamic economic dispatch results are compared with that of the static dispatch. The comparison confirms the effectiveness of the proposed dynamic dispatch method.
基金Supported by the National Natural Science Foundation of China(No.51966013)Inner Mongolia Natural Science Foundation Jieqing Project(No.2023JQ04)+1 种基金the National Natural Science Foundation of China(No.51966018)the Natural Science Foundation of Inner Mongolia Autonomous Region(No.STZC202230).
文摘Power quality improvements help guide and solve the problems of inefficient energy production and unstable power output in wind power systems.The purpose of this paper is mainly to explore the influence of different energy storage batteries on various power quality indicators by adding different energy storage devices to the simulated wind power system,and to explore the correlation between systementropy generation and various indicators,so as to provide a theoretical basis for directly improving power quality by reducing loss.A steady-state experiment was performed by replacing the wind wheel with an electric motor,and the output power qualities of the wind power systemwith andwithout energy storagewere compared and analyzed.Moreover,the improvement effect of different energy storage devices on various indicatorswas obtained.Then,based on the entropy theory,the loss of the internal components of the wind power system generator is simulated and explored by Ansys software.Through the analysis of power quality evaluation indicators,such as current harmonic distortion rate,frequency deviation rate,and voltage fluctuation,the correlation between entropy production and each evaluation indicator was explored to investigate effective methods to improve power quality by reducing entropy production.The results showed that the current harmonic distortion rate,voltage fluctuation,voltage deviation,and system entropy production are positively correlated in the tests and that the power factor is negatively correlated with system entropy production.In the frequency range,the frequency deviationwas not significantly correlated with the systementropy production.
基金The Deanship of Scientific Research at Najran University has supported this work,under the General Research Funding program grant code(NU/-/SERC/10/650).
文摘This paper presents a novel Simulink models with an evaluation study of more widely used On-Line Maximum Power Point tracking(MPPT)techniques for Photo-Voltaic based Battery Storage Systems(PV-BSS).To have a full comparative study in terms of the dynamic response,battery state of charge(SOC),and oscillations around the Maximum Power Point(MPP)of the PV-BSS to variations in climate conditions,these techniques are simulated in Matlab/Simulink.The introduced methodologies are classified into two types;the first type is conventional hill-climbing techniques which are based on instantaneous PV data measurements such as Perturb&Observe and Incremental Conductance techniques.The second type is a novel proposed methodology is based on using solar irradiance and cell temperature measurements with pre-build Adaptive Neuro-Fuzzy Inference System(ANFIS)model to predict DC–DC converter optimum duty cycle to track MPP.Then evaluation study is introduced for conventional and proposed On-Line MPPT techniques.This comparative study can be useful in specifying the appropriateness of the MPPT techniques for PV-BSS.Also the introduced model can be used as a valued reference model for future research related to Soft Computing(SC)MPPT techniques.A significant improvement of SOC is achieved by the proposed model and methodology with high accuracy and lower oscillations.
基金supported by State Grid Zhejiang Electric Power Co.,Ltd.(Project of Research on interactive operation control technology and business model of 5G base station energy storage and power grid(B311JX210006)).
文摘Energy storage system is an important means to improve the flexibility and safety of traditional power system,but it has the problem of high cost and unclear value recovery path.In this paper,the typical application scenarios of energy storage system are summarized and analyzed from the perspectives of user side,power grid side and power generation side.Based on the typical application scenarios,the economic benefit assessment framework of energy storage system including value,time and efficiency indicators is proposed.Typical battery energy storage projects are selected for economic benefit calculation according to different scenarios,and key factors are selected for sensitivity analysis.Finally,the key factors affecting economic benefit of the energy storage system are analyzed.
文摘Firstly, the definition, structure and working principles of storage batteries in automatic meteorological observation stations were stated simply, and then the daily maintenance of the storage batteries were introduced according to previous practical experience, finally typical faults of storage batteries were analyzed. Practical evidence shows that timely external maintenance and enough supply of electrolyte can greatly extend the lifespan of storage batteries.
基金supported by the research programme of the Electrical Infrastructure Research Hub in collaboration with the Offshore Renewable Energy Catapult.
文摘Accelerated development of battery technologies heightens an interest in co-locating battery energy storage systems (BESSs) with renewable power plants for stacking of multiple revenue streams such as frequency response services to AC grids. Frequency response market reforms in the UK introduce new end-state services and require evaluating techno-economic feasibility of co-location projects in new circumstances. This paper develops a BESS optimisation method to optimize capacity and operating strategy of a co-located BESS for providing latest Dynamic Containment (DC) services based on the UK perspective. BESS optimisation method simulates BESS delivering DC responses and following operational baselines for state of energy (SoE) restoration, as well as, coordinating with its co-located power plant. Then net present value of BESS co-location project is estimated from power flows across the system and maximised to suggest optimal BESS capacity, target energy footroom and/or headroom levels for baseline estimation, and possible SoE ranges suitable for energy interchange with its co-located power plant. BESS optimisation method is tested based on a particular transmission-level wind farm in the UK and discussed alongside operation and profitability of a BESS co-location project under frequency response market reforms.
基金supported in part by the Natural Sciences and Engineering Research Council(NSERC)of Canada,MITACS Accelerate,Manitoba Hydro,and by the University of Manitoba。
文摘This paper develops a detailed equivalent model for modular multilevel converters with partially-integrated battery energy storage.The proposed model gains computational efficiency in two ways.Firstly,it markedly reduces the large number of nodes in the conventional switching model of the converter,thereby shrinking the size of its admittance matrix.Secondly,it avoids computationally expensive re-triangularization of the admittance matrix during the normal operation of the converter and restricts it only to the rare occasions of converter blocking.Mathematical derivation of the model is carried out using differential equations of the converter.The computational efficiency and accuracy of the proposed model are confirmed by comparison of the results from its implementation in the PSCAD/EMTDC simulator against conventional detailed switching models and measurements from a single-phase scaleddown laboratory setup.This paper also shows a case study wherein a converter with partially-integrated batteries is included in the CIGRE B4-5 benchmark system.