期刊文献+
共找到6,187篇文章
< 1 2 250 >
每页显示 20 50 100
Call for Papers from Agricultural Products Processing and Storage
1
《肉类研究》 北大核心 2026年第1期I0017-I0017,共1页
Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim ... Agricultural Products Processing and Storage(ISSN 3059-4510,Owner:Hunan Academy of Agricultural Sciences,China.Production and hosting:Springer Nature)is an international,peer-reviewed open access journal with the aim to offer a platform for the rapid dissemination of signifi cant,novel,and high-impact research in the fi elds of agricultural product processing science,technology,engineering,and nutrition.Additionally,supplemental issues are curated and published to facilitate in-depth discussions on special topics. 展开更多
关键词 NUTRITION SCIENCE open access journal agricultural products processing storage technology ENGINEERING agricultural product
在线阅读 下载PDF
Nanosized Anatase TiO_(2) with Exposed(001)Facet for High-Capacity Mg^(2+)Ion Storage in Magnesium Ion Batteries
2
作者 Rong Li Liuyan Xia +6 位作者 Jili Yue Junhan Wu Xuxi Teng Jun Chen Guangsheng Huang Jingfeng Wang Fusheng Pan 《Nano-Micro Letters》 2026年第1期438-457,共20页
Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosize... Micro-sized anatase TiO_(2) displays inferior capacity as cathode material for magnesium ion batteries because of the higher diffusion energy barrier of Mg^(2+)in anatase TiO_(2) lattice.Herein,we report that nanosized anatase TiO_(2) exposed(001)facet doubles the capacity compared to the micro-sized sample ascribed to the interfacial Mg^(2+)ion storage.First-principles calculations reveal that the diffusion energy barrier of Mg^(2+)on the(001)facet is significantly lower than those in the bulk phase and on(100)facet,and the adsorption energy of Mg^(2+)on the(001)facet is also considerably lower than that on(100)facet,which guarantees superior interfacial Mg^(2+)storage of(001)facet.Moreover,anatase TiO_(2) exposed(001)facet displays a significantly higher capacity of 312.9 mAh g^(−1) in Mg-Li dual-salt electrolyte compared to 234.3 mAh g^(−1) in Li salt electrolyte.The adsorption energies of Mg^(2+)on(001)facet are much lower than the adsorption energies of Li+on(001)facet,implying that the Mg^(2+)ion interfacial storage is more favorable.These results highlight that controlling the crystal facet of the nanocrystals effectively enhances the interfacial storage of multivalent ions.This work offers valuable guidance for the rational design of high-capacity storage systems. 展开更多
关键词 Magnesium ion batteries High capacity Nanosized anatase TiO_(2) Crystal facet Interfacial ion storage
在线阅读 下载PDF
Evaluation of the Suitability of China's Offshore Basins for CO_(2) Geological Storage
3
作者 YUAN Yong LI Qing +6 位作者 CHEN Jianwen CAO Ke WANG Jianqiang ZHAO Hualin LAN Tianyu ZHANG Penghui LUO Di 《Journal of Ocean University of China》 2025年第6期1545-1560,共16页
Offshore carbon dioxide(CO_(2))geological storage is a promising strategy for reducing carbon emissions and supporting sustainable development in coastal regions within a carbon neutrality framework.However,only a few... Offshore carbon dioxide(CO_(2))geological storage is a promising strategy for reducing carbon emissions and supporting sustainable development in coastal regions within a carbon neutrality framework.However,only a few works have focused on offshore basins in China.To address this gap,this study established a dual indicator system that comprises necessary and critical indices and is integrated with the analytic hierarchy process.A coupled analysis was then performed to evaluate the suitability of 10 offshore sedimentary basins in China for CO_(2)geological storage.The necessary indicator system focuses on storage potential,geological conditions,and engineering feasibility.Meanwhile,the critical indicator system emphasizes the safety of storage projects and the viability of drilling operations.Evaluation results revealed that China's offshore basins have undergone two geological evolution stages,namely,the rifting and post-rifting phases,leading to the formation of a dual-layer structure characterized by faulted lower layers and sagged upper layers.These basins have thick and widespread Cenozoic strata,generally low seismic activity,and medium-to-low geothermal gradients.They form five reservoir-caprock systems with favorable geological conditions for CO_(2)storage.The Pearl River Mouth,East China Sea Shelf,and Bohai Basins emerged as primary candidates that offer substantial storage potential to support carbon neutrality goals in the Bohai Rim Economic Zone,Yangtze River Delta Economic Zone,and Guangdong-Hong Kong-Macao Greater Bay Area.The Beibu Gulf and South Yellow Sea Basins were identified as secondary candidates,and the Qiongdongnan and Yinggehai Basins were considered potential alternatives. 展开更多
关键词 offshore saline aquifer storage CO_(2)storage geological conditions offshore geological CO_(2) storage suitability offshore basins in China
在线阅读 下载PDF
Forecast uncertainties real-time data-driven compensation scheme for optimal storage control
4
作者 Arbel Yaniv Yuval Beck 《Data Science and Management》 2025年第1期59-71,共13页
This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on... This study introduces a real-time data-driven battery management scheme designed to address uncertainties in load and generation forecasts,which are integral to an optimal energy storage control system.By expanding on an existing algorithm,this study resolves issues discovered during implementation and addresses previously overlooked concerns,resulting in significant enhancements in both performance and reliability.The refined real-time control scheme is integrated with a day-ahead optimization engine and forecast model,which is utilized for illustrative simulations to highlight its potential efficacy on a real site.Furthermore,a comprehensive comparison with the original formulation was conducted to cover all possible scenarios.This analysis validated the operational effectiveness of the scheme and provided a detailed evaluation of the improvements and expected behavior of the control system.Incorrect or improper adjustments to mitigate forecast uncertainties can result in suboptimal energy management,significant financial losses and penalties,and potential contract violations.The revised algorithm optimizes the operation of the battery system in real time and safeguards its state of health by limiting the charging/discharging cycles and enforcing adherence to contractual agreements.These advancements yield a reliable and efficient real-time correction algorithm for optimal site management,designed as an independent white box that can be integrated with any day-ahead optimization control system. 展开更多
关键词 storage optimal scheduling Real-time storage control PV-plus-storage management Forecast uncertainty compensation
在线阅读 下载PDF
V–Ti‑Based Solid Solution Alloys for Solid‑State Hydrogen Storage 被引量:2
5
作者 Shaoyang Shen Yongan Li +3 位作者 Liuzhang Ouyang Lan Zhang Min Zhu Zongwen Liu 《Nano-Micro Letters》 2025年第7期453-482,共30页
This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V... This review details the advancement in the development of V–Ti-based hydrogen storage materials for using in metal hydride(MH)tanks to supply hydrogen to fuel cells at relatively ambient temperatures and pressures.V–Tibased solid solution alloys are excellent hydrogen storage materials among many metal hydrides due to their high reversible hydrogen storage capacity which is over 2 wt%at ambient temperature.The preparation methods,structure characteristics,improvement methods of hydrogen storage performance,and attenuation mechanism are systematically summarized and discussed.The relationships between hydrogen storage properties and alloy compositions as well as phase structures are discussed emphatically.For large-scale applications on MH tanks,it is necessary to develop low-cost and high-performance V–Ti-based solid solution alloys with high reversible hydrogen storage capacity,good cyclic durability,and excellent activation performance. 展开更多
关键词 Hydrogen storage V-Ti-based solid solution alloys Metal hydride tank Hydrogen storage properties Cyclic stability
在线阅读 下载PDF
A CO_(2) storage potential evaluation method for saline aquifers in a petroliferous basin 被引量:5
6
作者 LI Yang WANG Rui +2 位作者 ZHAO Qingmin XUE Zhaojie ZHOU Yinbang 《Petroleum Exploration and Development》 SCIE 2023年第2期484-491,共8页
According to the requirements for large-scale project implementation, a four-scale and three-level CO_(2)storage potential evaluation method is proposed for saline aquifers in a petroliferous basin in China, consideri... According to the requirements for large-scale project implementation, a four-scale and three-level CO_(2)storage potential evaluation method is proposed for saline aquifers in a petroliferous basin in China, considering geological,engineering and economic factors. The four scales include basin scale, depression scale, play scale and trap scale, and the three levels include theoretical storage capacity, engineering storage capacity, and economic storage capacity. The theoretical storage capacity can be divided into four trapping mechanisms, i.e. structural & stratigraphic trapping, residual trapping, solubility trapping and mineral trapping, depending upon the geological parameters, reservoir conditions and fluid properties in the basin. The engineering storage capacity is affected by the injectivity, storage security pressure, well number, and injection time.The economic storage capacity mainly considers the carbon pricing yield, drilling investment, and operation cost, based on the break-even principle. Application of the method for saline aquifer in the Gaoyou sag of the Subei Basin reveals that the structural & stratigraphic trapping occupies the largest proportion of the theoretical storage capacity, followed by the solubility trapping and the residual trapping, and the mineral trapping takes the lowest proportion. The engineering storage capacity and the economic storage capacity are significantly lower than the theoretical storage capacity when considering the constrains of injectivity, security and economy, respectively accounting for 21.0% and 17.6% of the latter. 展开更多
关键词 petroliferous basin saline aquifer CO_(2)storage potential CO_(2)storage mechanism theoretical storage capacity engineering storage capacity economic storage capacity
在线阅读 下载PDF
Temperature Control Performance and Cooling Release Characteristics of PCM in Large Space:Case Study of Cold Storage 被引量:1
7
作者 Zhengrong Shi Hai Hong +1 位作者 Yanming Shen Jingyong Cai 《Energy Engineering》 2025年第3期885-903,共19页
Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was desi... Phase Change Material(PCM)-based cold energy storage system(CESS)can effectively utilize the peak and valley power resources to reduce the excessive dependence on the power grid.In this study,a PCM-based CESS was designed for cold storage applications.The optimal number of PCM plates was determined through numerical simulations to meet the required cold storage temperature and control time.Additionally,the air temperature field,flow field,and melting characteristics of the PCMplates during the cooling release process were analyzed.The effects of plate positioning and thickness on the cooling release performance were further investigated.The results indicated that when 64PCMplateswere used,the duration formaintaining temperatures below−18℃increased from0.6 h to approximately 16.94 h.During the cooling release process,the temperature field in the cold storage exhibited stratification,and the melting of the PCM plates was non-uniform.Placing the PCM plates at the top or within the interlayers without cargo above proved more effective,with their cooling release power being approximately twice that of the PCM plates placed in the interlayers with cargo above.Furthermore,reducing the thickness of the PCMplates from15 to 7.5mmresulted in a 3.6-h increase in the time below−18℃and a 4.5-h reduction in the time required to reach 80%liquid phase fraction. 展开更多
关键词 Cold storage cold energy storage system PCM plates cooling release characteristics
在线阅读 下载PDF
Drivers of Groundwater Storage Dynamics in China's Ordos Mining Region:Integrating Natural and Anthropogenic Influences 被引量:1
8
作者 LIU Zhiqiang ZHANG Shengwei +5 位作者 FAN Wenjie HUANG Lei ZHANG Xiaojing LUO Meng YANG Lin ZHANG Zhiqi 《Chinese Geographical Science》 2025年第4期693-706,I0001,I0002,共16页
Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base ... Clarifying the mechanisms through which coal mining affects groundwater storage(GWS)variations is crucial for water resource conservation and sustainable development.The Ordos Mining Region in China,a key energy base in China with significant strategic importance,has undergone intensive coal mining activities that have substantially disrupted regional groundwater circulation.This study integrated data from the Gravity Recovery and Climate Experiment Satellite(GRACE)and Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS)models,combined with weighted downscaling methodology and water balance principles,to reconstruct high-resolution(0.01°)terrestrial water storage(TWS)and GWS changes in the Ordos Mining Region,China from April 2002 to December 2021.The accuracy of GWS variations were validated through pumping test measurements.Subsequently,Geodetector analysis was implemented to quantify the contributions of natural and anthropogenic factors to groundwater storage dynamics.Key findings include:1)TWS in the study area showed a fluctuating but overall decreasing trend,with a total reduction of 8901.11 mm during study period.The most significant annual decrease occurred in 2021,reaching 1696.77 mm.2)GWS exhibited an accelerated decline,with an average annual change rate of 44.35 mm/yr,totaling a decrease of 887.05 mm.The lowest annual groundwater storage level was recorded in 2020,reaching 185.69 mm.3)Precipitation(PRE)contributed the most to GWS variation(q=0.52),followed by coal mining water consumption(MWS)(q=0.41).The interaction between PRE and MWS exhibited a nonlinear enhancement effect on GWS changes(0.54).The synergistic effect of natural hydrological factors has a great influence on the change of GWS,but coal mining water consumption will continue to reduce GWS.These findings provide critical references for the management and regulation of groundwater resource in mining regions. 展开更多
关键词 groundwater reserves groundwater storage(GWS) terrestrial water storage(TWS) Gravity Recovery and Climate Experiment Satellite(GRACE) Famine Early Warning Systems Network(FEWS NET)Land Data Assimilation System(FLDAS) Ordos Mining Region China
在线阅读 下载PDF
Can Batteries Meet the Looming Demand for Grid-Scale Storage?
9
作者 Chris Palmer 《Engineering》 2025年第8期8-11,共4页
On 16 January 2025,flames erupted,and smoke rose more than 300 m in Moss Landing,CA,USA,at what was until early 2024 the world’s largest battery energy storage system(BESS)[1].Prompted by the potential danger of expo... On 16 January 2025,flames erupted,and smoke rose more than 300 m in Moss Landing,CA,USA,at what was until early 2024 the world’s largest battery energy storage system(BESS)[1].Prompted by the potential danger of exposure to toxic gases from the blaze[2],local authorities closed schools and the coast’s iconic Highway 1,evacuated hundreds living close to the facility,and instructed residents of the nearby communities of Santa Cruz and Salinas to stay indoors and keep their doors and windows shut.The burning lithium-ion batteries(LIB)also raised concerns about contamina-tion of communities and farmland in the area. 展开更多
关键词 EVACUATION BATTERIES smoke grid scale storage toxic gases battery energy storage system bess prompted flames contamination
在线阅读 下载PDF
Editorial for special issue on high -entropy and multicomponent-doped materials for energy applications: Innovations in energy conversion and storage
10
作者 Konrad Świerczek Kun Zheng +2 位作者 Liuting Zhang Yihan Ling Mingjiong Zhou 《International Journal of Minerals,Metallurgy and Materials》 2025年第11期2593-2597,共5页
Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy... Foreword It is our great privilege,as vip Editors of the International Journal of Minerals,Metallurgy and Materials(IJMMM),to present this special issue on“High-Entropy and Multicomponent-Doped Materials for Energy Applications:Innovations in Energy Conversion and Storage.”This collection highlights the latest research developments in the preparation,optimizing properties,and exploring potential applications of high-entropy materials(HEMs)and other com-pounds with increased configurational entropy. 展开更多
关键词 energy applications innovations configurational entropy energy storage high entropy materials energy conversion energy conversion storage multicomponent doped materials
在线阅读 下载PDF
Chak-hao,Forbidden Rice of Manipur and Its Sustainable Protection from Post-Harvest Storage Pests Using Indigenous Botanical Plant Powders
11
作者 Arati NINGOMBAM Aruna BEEMROTE +9 位作者 Romila AKOIJAM Sushmita THOKCHOM C.H.BASUDHA C.H.SONIA C.H.PREMABATI N.Ajitkumar SINGH L.Langlentombi CHANU Y.Prabhabati DEVI H.Lembisana DEVI A.Gangarani DEVI 《Rice science》 2025年第3期298-302,I0031,I0032,共7页
Chak-hao,the Forbidden Rice from Manipur,India,is an aromatic,purplish-black rice variety that has been awarded a geographical indication tag to preserve and promote its traditional cultivation in Manipur,India.Althou... Chak-hao,the Forbidden Rice from Manipur,India,is an aromatic,purplish-black rice variety that has been awarded a geographical indication tag to preserve and promote its traditional cultivation in Manipur,India.Although Chak-hao is a hardy landrace with field tolerance to biotic stress,its grains are highly susceptible to storage pest infestations,particularly those caused by the rice weevil(Sitophilus oryzae).This severely compromises its commercial storage quality,as pest damage reduces both nutritional value and quantity. 展开更多
关键词 geographical indication tag chak hao PESTS rice weevil sitophilus oryzae forbidden rice sustainable protection post harvest storage storage pest infestationsparticularly
在线阅读 下载PDF
Advanced cellulose-based materials for flexible energy storage systems
12
作者 Zehong Chen Hongzhi Zheng +12 位作者 Jiwang Yi Tanglong Liu Haihong Lai Shuai Zhang Wei Huang Yunlong Yin Xiaofang Huang Yifan Tong Dianen Liang Runsen Li Linxin Zhong Chaoqun Zhang Huili Zhang 《Resources Chemicals and Materials》 2025年第3期116-145,共30页
The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletio... The rapid development of portable electronics,wearable technologies,and healthcare monitoring systems necessitates the innovation of flexible energy storage systems.Considering environmental pollution and the depletion of fossil resources,the utilization of renewable resources to engineer advanced flexible materials has become especially crucial.Cellulose,the most abundant natural polymer,has emerged as a promising precursor for advanced functional materials due to its unique structure and properties.Typically,the easy processability,tunable chemical structure,self-assembly behavior,mechanical strength,and reinforcing capability enable its utilization as binder,substrate,hybrid electrode,separator,and electrolyte reservoir for flexible energy storage devices.This review comprehensively summarizes the design,fabrication,and mechanical and electrochemical performances of cellulose-based materials.The structure and unique properties of cellulose are first briefly introduced.Then,the construction of cellulose-based materials in the forms of 1D fibers/filaments,2D films/membranes,3D hydrogels and aerogels is discussed,and the merits of cellulose in these materials are emphasized.After that,the various advanced applications in supercapacitors,lithium-ion batteries,lithium-sulfur batteries,sodium-ion batteries,metal-air batteries,and Zn-ion batteries are presented in detail.Finally,an outlook of the potential challenges and future perspectives in advanced cellulose-based materials for flexible energy storage systems is discussed. 展开更多
关键词 cellulose based materials portable electronicswearable natural polymerhas healthcare monitoring systems flexible energy storage systems flexible energy storage systemsconsidering advanced functional materials advanced flexible materials
在线阅读 下载PDF
Application of a Regional Data Set of the Housing Sector for Hydrogen Storage-Supported Energy System Planning
13
作者 Steffen Schedler Michael Bareev-Rudy +1 位作者 Stefanie Meilinger Tanja Clees 《Energy Engineering》 2025年第5期1755-1770,共16页
Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot ... Germany aims to achieve a national climate-neutral energy system by 2045.The residential sector still accounts for 29%of end energy consumption,with 74%attributed to the direct use of fossil fuels for heating and hot water.In order to reduce fossil energy use in the household sector,great efforts are being made to design new energy concepts that expand the use of renewable energies to supply electricity andheat.Onepossibility is toconvertparts of the natural gas grid to a hydrogen-based gas grid to deliver and store energy for urban quarters of buildings,especially with older building stock where electrification of heat via heat pumps is difficult due to technical,acoustical,and economic reasons.A comprehensive dataset was generated by a bottom-up analysis with open governmental and statistical data to determine regional building types regarding energy demand,solar potential,and existing grid infrastructure.The buildings’connections to the electricity,gas,and district heating networks are considered.From this,a representative sample dataset was chosen as input for a newly developed energy system model based on energy flow simulation.The model simulates the interaction of hydrogen generation(HG)(from excess solar energy by electrolysis),storage in a metal-hydride storage(MHS)tank,and hydrogen use in a connected fuel cell(FC),forming a local PVPtGtHP(Photovoltaic Power-to-Gas-to-Heat-and-Power)network.Next to the seasonal hydrogen storage path(HSP),a battery will complete the system to forma hybrid energy storage system(HESS).Paired with seasonal time series for PV power,electricity and heat demand,and a model for connection to grid infrastructure,the simulation of different hydrogen applications and MHS placements aims to analyze operating times and energy share of the systems’equipment and existing infrastructure.The method to obtain the data set together with the simulationmodel presented can be used by energy planners for cities,communities,and building developers to analyze the potentials of a quarter or region and plan a transition towards a more energy-efficient and sustainable energy system. 展开更多
关键词 Hydrogen storage hybrid energy storage system simulation housing sector energy share
在线阅读 下载PDF
IEC releases 3 technical documents for electrical energy storage
14
《China Standardization》 2025年第4期14-14,共1页
In the process of building a new power system dominated by new energy sources,power storage is a key supporting technology that ensures the safe and stable operation of the power grid,enables the flexible regulation o... In the process of building a new power system dominated by new energy sources,power storage is a key supporting technology that ensures the safe and stable operation of the power grid,enables the flexible regulation of the system,and raises the level of new energy consumption.It is also key to achieving carbon peak and neutrality as well as energy transformation. 展开更多
关键词 carbon peak neutrality new energy sourcespower storage raises level new energy consumptionit technical documents power gridenables flexible regulation systemand electrical energy storage building new power system
原文传递
Characteristics of pore seepage and seepage patterns of rock masses surrounding salt cavern oil storage under crude oil and brine erosion conditions
15
作者 Nan Zhang Jun Liu +4 位作者 Huicong Xu Hongling Ma Yuanxi Liu Yanlong Xu Tianlong Hu 《Earth Energy Science》 2025年第4期336-349,共14页
To ensure the airtightness of salt cavern oil storage in layered salt rock,this study investigates the porosity and permeability characteristics and seepage laws of the surrounding rock of the storage caverns under th... To ensure the airtightness of salt cavern oil storage in layered salt rock,this study investigates the porosity and permeability characteristics and seepage laws of the surrounding rock of the storage caverns under the erosion of crude oil and brine.Salt rock,interlayer,and cap rock samples from the Jintan salt cavern storage in Jiangsu,China,were used.The porosity and permeability changes of the samples were measured under different static water pressures,different erosion times,and different working conditions(crude oil erosion and brine erosion).Finally,based on the theory of single-phase liquid stable seepage,liquid seepage models for interlayer and cap rock were established.The results show that the porosity and permeability parameters of the surrounding rock are not affected by stress changes under different working conditions.The wetting of crude oil covers the pore structure inside the surrounding rock,enhancing its airtightness macroscopically and thus favoring the long-term airtightness of the salt cavern oil storage.In contrast,brine erosion destroys the pore structure inside the surrounding rock,severely deteriorating its airtightness macroscopically,which seriously affects the lifespan of the storage cavern and is detrimental to the long-term airtightness of the salt cavern oil storage.Based on the assumption of single-phase liquid stable seepage,the leakage of the storage cavern was calculated.The calcu-lations of gas and liquid leakage were corrected according to the airtightness standards of gas storage caverns and combined with existing simulation parameters,which to some extent proved the accuracy of the liquid seepage models for interlayer and cap rock. 展开更多
关键词 Salt cavern oil storage Stratified rock salt Seepage model Absolute permeability Hydrostatic pressure Underground energy storage caverns
在线阅读 下载PDF
Day-Ahead Nonlinear Optimization Scheduling for Industrial Park Energy Systems with Hybrid Energy Storage
16
作者 Jiacheng Guo Yimo Luo +1 位作者 Bin Zou Jinqing Peng 《Engineering》 2025年第3期331-347,共17页
Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.... Hybrid energy storage can enhance the economic performance and reliability of energy systems in industrial parks,while lowering the industrial parks’carbon emissions and accommodating diverse load demands from users.However,most optimization research on hybrid energy storage has adopted rulebased passive-control principles,failing to fully leverage the advantages of active energy storage.To address this gap in the literature,this study develops a detailed model for an industrial park energy system with hybrid energy storage(IPES-HES),taking into account the operational characteristics of energy devices such as lithium batteries and thermal storage tanks.An active operation strategy for hybrid energy storage is proposed that uses decision variables based on hourly power outputs from the energy storage of the subsequent day.An optimization configuration model for an IPES-HES is formulated with the goals of reducing costs and lowering carbon emissions and is solved using the non-dominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ).A method using the improved NSGA-Ⅱ is developed for day-ahead nonlinear scheduling,based on configuration optimization.The research findings indicate that the system energy bill and the peak power of the IPES-HES under the optimization-based operational strategy are reduced by 181.4 USD(5.5%)and 1600.3 kW(43.7%),respectively,compared with an operation strategy based on proportional electricity storage on a typical summer day.Overall,the day-ahead nonlinear optimal scheduling method developed in this study offers guidance to fully harness the advantages of active energy storage. 展开更多
关键词 Industrial park energy system Hybrid energy storage Active energy storage Configuration optimization Day-ahead optimal scheduling
在线阅读 下载PDF
Accelerating charging and elevating capacity of TiO_(2) by interface space charge storage
17
作者 Jia-Xiang Sun Shu-Hui Liu +9 位作者 Li-Yan Chen Ding-Ding Zhu Hai-Xia Yu Yi-Ze Niu Le-Qing Zhang Qing-Hao Li Yan He Guo-Xing Miao Gui-Huan Chen Qiang Li 《Rare Metals》 2025年第8期5404-5411,共8页
Titanium dioxide(TiO_(2))is an extremely promising anode material for lithium-ion batteries due to its low cost,minimal volume change,and extended cycle life.However,its electrochemical performance is severely hindere... Titanium dioxide(TiO_(2))is an extremely promising anode material for lithium-ion batteries due to its low cost,minimal volume change,and extended cycle life.However,its electrochemical performance is severely hindered by inherent issues such as poor ionic and electronic conductivity.Here,we design a dual-phase conductor Co@TiO_(2),which contributes a synergistic storage mode consisting of a Li-accepting and an electron-accepting phase.In situ magnetic characterization and experimental results reveal the space charge storage mechanism in addition to traditional insertion mechanisms.Based on these mechanisms,the specific capacity and rate performance of the Co@TiO_(2)electrode have been greatly enhanced.Under a current density of 200 mA·g^(-1),the specific capacity of Co@TiO_(2)reaches 397.2 mAh·g^(-1).Upon increasing the current density to 10 A·g^(-1),the electrode still maintains a capacity of 83.1 mAh·g^(-1)after 900 cycles.This result offers a fresh perspective on the structural design of new anode materials to achieve high energy density. 展开更多
关键词 Synergistic storage mechanisms Space charge storage In situ magnetic characterization Yolk-shell structure Thermodynamic simulations
原文传递
Study on Optimization of Two-Stage Phase Change Heat Storage Coupled Solar-Air Source Heat Pump Heating System in Severe Cold Region
18
作者 Xueli Wang Yan Jia Degong Zuo 《Energy Engineering》 2025年第4期1603-1627,共25页
The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-... The development of efficient and clean heating technologies is crucial for reducing carbon emissions in regions with severe cold regions.This research designs a novel two-stage phase change heat storage coupled solar-air source heat pump heating system structure that is specifically designed for such regions.The two-stage heat storage device in this heating system expands the storage temperature range of solar heat.The utilization of the two-stage heat storage device not onlymakes up for the instability of the solar heating system,but can also directlymeet the building heating temperature,and can reduce the influence of low-temperature outdoor environments in severe cold regions on the heating performance of the air source heat pump by using solar energy.Therefore,the two-stage phase change heat storage coupled to the solar energy-air source heat pump heating system effectively improves the utilization rate of solar energy.A numerical model of the system components and their integration was developed using TRNSYS software in this study,and various performance aspects of the system were simulated and analyzed.The simulation results demonstrated that the two-stage heat storage device can effectively store solar energy,enabling its hierarchical utilization.The low-temperature solar energy stored by the two-stage phase change heat storage device enhances the coefficient of performance of the air source heat pump by 11.1%in severe cold conditions.Using the Hooke-Jeeves optimization method,the annual cost and carbon emissions are taken as optimization objectives,with the optimized solar heat supply accounting for 52.5%.This study offers valuable insights into operational strategies and site selection for engineering applications,providing a solid theoretical foundation for the widespread implementation of this system in severe cold regions. 展开更多
关键词 Two-stage heat storage building heating Hooke-Jeeves optimization phase change heat storage device severe cold region
在线阅读 下载PDF
Multiphysics modeling of coupling compressed-air energy storage-thermal storage in salt caverns:An approach to insoluble sediment as heat reservoir feasibility analysis
19
作者 Tsunming Wong Yingjie Wei +2 位作者 Yuxin Jie Xiangyang Zhao Jiamin Zhang 《Deep Underground Science and Engineering》 2025年第4期777-791,共15页
A significant number of salt caverns have high proportions of insoluble sediments,but the thermal storage utilization potential of insoluble sediments remains understudied within current research.Therefore,this study ... A significant number of salt caverns have high proportions of insoluble sediments,but the thermal storage utilization potential of insoluble sediments remains understudied within current research.Therefore,this study aims to explore the feasibility of an integrated compressed-air energy storage(CAES)coupled with insoluble sediment as the thermal storage media for salt caverns.In order to fulfill this objective,this study presents two steps to analyze the insoluble sediment's thermo-mechanical behavior under ordinary CAES conditions and coupled thermal energy storage(TES)conditions separately.A multiphysics-coupled numerical model was developed to investigate the thermal behavior of insoluble sediments at different heights.Then,a dual-cavity model with a sediment-filled channel was constructed to study the heat storage process in long-and short-term modes.Results demonstrated that sediment effectively protected cavern walls from thermal shocks caused by compressed air,maintaining temperature differentials within 1 K.Dual-cavity simulations revealed the sediment's capability to mitigate the temperature fluctuation of compressed air in caverns,achieving a 66% temperature reduction in the outflow interface during operation.The findings confirmed the feasibility of utilizing insoluble sediments for long-term thermal storage applications involving thermal cycles with ΔT=150 K,attaining a heat storage density of 50 kW·h/m^(3).The results show that the heat capacity of the sediment contributes to the cavern wall's stability and provide references for developing integrated CAES-TES systems in sediment-filled salt caverns. 展开更多
关键词 compressed-air energy storage insoluble sediment salt cavern thermal storage
原文传递
Underground hydrogen storage in geological formations:A review
20
作者 Grant Charles Mwakipunda Allou Koffi Franck Kouassi +5 位作者 Edwin Twum Ayimadu Norga Alloyce Komba Mbula Ngoy Nadege Melckzedeck Michael Mgimba Mbega Ramadhani Ngata Long Yu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6704-6741,共38页
Surface hydrogen storage facilities are limited and costly,making subsurface hydrogen storage in geological formations a more viable alternative due to its substantial capacity,safety,and economic feasibility.This met... Surface hydrogen storage facilities are limited and costly,making subsurface hydrogen storage in geological formations a more viable alternative due to its substantial capacity,safety,and economic feasibility.This method is essential for large-scale hydrogen storage to support renewable energy integration,fuel cell technologies,and other applications aimed at mitigating global climate change.This review examines underground hydrogen storage(UHS)in geological formations,focusing on recent experiments,modeling and simulations,and field applications.Geological formations such as depleted oil reservoirs,salt caverns,and depleted natural gas reservoirs are identified as favorable candidates due to minimal interactions with hydrogen,leading to low hydrogen loss.Globally,80%of UHS projects utilize depleted natural gas and oil reservoirs,with over 50%focused on depleted natural gas and oil condensate reservoirs due to cost-effective existing infrastructure.Among storage options,salt caverns are the most advantageous,offering self-healing properties,low caprock permeability,large storage capacity,rapid injection and withdrawal rates,and low contamination risk.Additionally,hydrogen produced from coal is the cheapest option,costing 1.2e2 USD/kg,whereas hydrogen from renewable sources,such as water,is the most expensive at 3e13 USD/kg.Despite its higher cost,green hydrogen from water,characterized by low carbon emissions,requires further research to reduce production costs.This review highlights critical research gaps,challenges,and policy recommendations to advance UHS technologies,ensuring their role in combating climate change. 展开更多
关键词 Underground hydrogen storage(UHS) Geological formations Renewable energy storage capacity
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部