In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand li...In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.展开更多
In this paper, the effect and mechanism of calcareous stone powder with size less than 0.074 mm are investigated in stone chippings concrete. The results show that the stone powder can participate in hydration reactio...In this paper, the effect and mechanism of calcareous stone powder with size less than 0.074 mm are investigated in stone chippings concrete. The results show that the stone powder can participate in hydration reaction and acts as crystal nucleus in hydration process, namely, it has hydration activity to an extent. The strength of stone chippings concrete is enhanced and the easy-mixing capacity of the concrete mortar is modified when stone chippings contain a proper amount of stone powder. The stone powder has little effect on the wearability of the concrete.展开更多
Traditional metal conductive fillers are expensive and prone to oxidation. Thus, the development of new conductive powders as fillers is urgently needed. A novel gaseous penetration technology was adopted to prepare L...Traditional metal conductive fillers are expensive and prone to oxidation. Thus, the development of new conductive powders as fillers is urgently needed. A novel gaseous penetration technology was adopted to prepare La-doped medical stone powders(La-MSPs), which are inexpensive mesoporous materials, as a new kind of conductive filler material. The prepared La-MSPs attained a resistivity of 450 ?·m and were used as a filler to prepare conductive coatings with epoxy resin as the resin matrix. The influence of the La-MSPs dosage on the resistance and hardness of the coatings was also determined. The resistance and the hardness both decreased with increasing filler dosage. Finally, the optimum recipe of the conductive coatings with the most suitable fillers dosage(55 wt%) was obtained. The hardness and resistance of the coatings with 55 wt% La-MSPs were HV 4 and 5.5 × 10~7 ?, respectively.展开更多
Most of the materials used in engineered cementitious composite are fine in size to achieve ductile nature.Stone slurry powder(SSP)is an inert material obtained from stone industries as by-product which may cause haza...Most of the materials used in engineered cementitious composite are fine in size to achieve ductile nature.Stone slurry powder(SSP)is an inert material obtained from stone industries as by-product which may cause hazardous impact on environment.In this research work,partial replacement of silica sand(SS)and fine sand(FS)by SSP with different contents(25%and 50%each)for making engineered cementitious composite has been explored.The performance was evaluated on the basis of strength,tensile strain,mid span deflection capacity,ultra-sonic pulse velocity and microstructure.Mechanical strength was found to be increased at 25%SSP in both replacements;whereas,strength decreased slightly at 50%replacement.Tensile strain,mid span deflection and quality of concrete were enhanced with increase in SSP content.Using SSP formed denser cementitious composite can help to save the natural resources and contribute in making green cementitious composite.展开更多
Most of the construction materials research now concerns on investigation of construction materials that is locally produced at a rate and cost compatible with the pace of construction. The present paper is concerned ...Most of the construction materials research now concerns on investigation of construction materials that is locally produced at a rate and cost compatible with the pace of construction. The present paper is concerned with investigation of fresh and hardened properties of self-compacting concrete (SCC) produced from local available materials in JORDAN. The produced SCC contains the local stone cut waste powder which is called Al-KHAMKHA in JORDAN with different replacement of (0%, 10%, and 25%) of fine silica aggregate;?the study also investigatesthe effects of SP33 super?plasticizer which is used by different doses (1%, 1.5% and 2%) for cement. The slump flow and the compressive strength of SCC were studied and the experimental results indicate the possibility of using Al-KHAMKHA in the production of SCC as the results showed that the compressive strength of the SCC with 10 % replacement by al-khamkha together with 1% SP33?super plasticizer was higher compared to pure SCC without al-khamkha;?the results also showed that as al-khamkha content increased the slump flow decreased.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.U1934206,52108260)China Academy of Railway Sciences Fund(No.2021YJ078)+1 种基金Railway Engineering Construction Standard Project(No.2023-BZWW-006)New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘In order to achieve the large-scale application of manufactured sand in railway high-strength concrete structure,a series of high-strength manufactured sand concrete(HMC)are prepared by taking the manufactured sand lithology(tuff,limestone,basalt,granite),stone powder content(0,5%,10%,15%)and concrete strength grade(C60,C80,C100)as variables.The evolution of mechanical properties of HMC and the correlation between cubic compressive strength and other mechanical properties are studied.Compared to river sand,manufactured sand enhances the cubic compressive strength,axial compressive strength and elastic modulus of concrete,while its potential microcracks weaken the flexural strength and splitting tensile strength of concrete.Stone powder content displays both positive and negative effects on mechanical properties of HMC,and the stone powder content is suggested to be less than 10%.The empirical formulas between cubic compressive strength and other mechanical properties are proposed.
文摘In this paper, the effect and mechanism of calcareous stone powder with size less than 0.074 mm are investigated in stone chippings concrete. The results show that the stone powder can participate in hydration reaction and acts as crystal nucleus in hydration process, namely, it has hydration activity to an extent. The strength of stone chippings concrete is enhanced and the easy-mixing capacity of the concrete mortar is modified when stone chippings contain a proper amount of stone powder. The stone powder has little effect on the wearability of the concrete.
基金financially supported by the Projects of Application Technology and Development of Harbin (No. 2016RAXXJ024)
文摘Traditional metal conductive fillers are expensive and prone to oxidation. Thus, the development of new conductive powders as fillers is urgently needed. A novel gaseous penetration technology was adopted to prepare La-doped medical stone powders(La-MSPs), which are inexpensive mesoporous materials, as a new kind of conductive filler material. The prepared La-MSPs attained a resistivity of 450 ?·m and were used as a filler to prepare conductive coatings with epoxy resin as the resin matrix. The influence of the La-MSPs dosage on the resistance and hardness of the coatings was also determined. The resistance and the hardness both decreased with increasing filler dosage. Finally, the optimum recipe of the conductive coatings with the most suitable fillers dosage(55 wt%) was obtained. The hardness and resistance of the coatings with 55 wt% La-MSPs were HV 4 and 5.5 × 10~7 ?, respectively.
基金Project(F1-17.1/2017-18/MANF-2017-18-HAR-78129)supported by the University Grants Commission New Delhi,India。
文摘Most of the materials used in engineered cementitious composite are fine in size to achieve ductile nature.Stone slurry powder(SSP)is an inert material obtained from stone industries as by-product which may cause hazardous impact on environment.In this research work,partial replacement of silica sand(SS)and fine sand(FS)by SSP with different contents(25%and 50%each)for making engineered cementitious composite has been explored.The performance was evaluated on the basis of strength,tensile strain,mid span deflection capacity,ultra-sonic pulse velocity and microstructure.Mechanical strength was found to be increased at 25%SSP in both replacements;whereas,strength decreased slightly at 50%replacement.Tensile strain,mid span deflection and quality of concrete were enhanced with increase in SSP content.Using SSP formed denser cementitious composite can help to save the natural resources and contribute in making green cementitious composite.
文摘Most of the construction materials research now concerns on investigation of construction materials that is locally produced at a rate and cost compatible with the pace of construction. The present paper is concerned with investigation of fresh and hardened properties of self-compacting concrete (SCC) produced from local available materials in JORDAN. The produced SCC contains the local stone cut waste powder which is called Al-KHAMKHA in JORDAN with different replacement of (0%, 10%, and 25%) of fine silica aggregate;?the study also investigatesthe effects of SP33 super?plasticizer which is used by different doses (1%, 1.5% and 2%) for cement. The slump flow and the compressive strength of SCC were studied and the experimental results indicate the possibility of using Al-KHAMKHA in the production of SCC as the results showed that the compressive strength of the SCC with 10 % replacement by al-khamkha together with 1% SP33?super plasticizer was higher compared to pure SCC without al-khamkha;?the results also showed that as al-khamkha content increased the slump flow decreased.