In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering ...In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.展开更多
We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We ...We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic approximation algorithms were studied mainly for optimization problems.展开更多
文章主要研究了安徽省某气象台站年平均气温、月平均气温的结构性变化情况。该文在对气温数据进行正态性检验的基础上,运用ASAMC(annealing stochastic approximation Monte Carlo)算法对气温数据进行统计分析,估计出平均气温结构性变...文章主要研究了安徽省某气象台站年平均气温、月平均气温的结构性变化情况。该文在对气温数据进行正态性检验的基础上,运用ASAMC(annealing stochastic approximation Monte Carlo)算法对气温数据进行统计分析,估计出平均气温结构性变化的位置,并探索发生结构性变化的气象因素和非气象因素。展开更多
Stochastic optimization has established itself as a major method to handle uncertainty in various optimization problems by modeling the uncertainty by a probability distribution over possible realizations.Traditional...Stochastic optimization has established itself as a major method to handle uncertainty in various optimization problems by modeling the uncertainty by a probability distribution over possible realizations.Traditionally,the main focus in stochastic optimization has been various stochastic mathematical programming(such as linear programming,convex programming).In recent years,there has been a surge of interest in stochastic combinatorial optimization problems from the theoretical computer science community.In this article,we survey some of the recent results on various stochastic versions of classical combinatorial optimization problems.Since most problems in this domain are NP-hard(or#P-hard,or even PSPACE-hard),we focus on the results which provide polynomial time approximation algorithms with provable approximation guarantees.Our discussions are centered around a few representative problems,such as stochastic knapsack,stochastic matching,multi-armed bandit etc.We use these examples to introduce several popular stochastic models,such as the fixed-set model,2-stage stochastic optimization model,stochastic adaptive probing model etc,as well as some useful techniques for designing approximation algorithms for stochastic combinatorial optimization problems,including the linear programming relaxation approach,boosted sampling,content resolution schemes,Poisson approximation etc.We also provide some open research questions along the way.Our purpose is to provide readers a quick glimpse to the models,problems,and techniques in this area,and hopefully inspire new contributions.展开更多
In this paper,a distributed stochastic approximation algorithm is proposed to track the dynamic root of a sum of time-varying regression functions over a network.Each agent updates its estimate by using the local obse...In this paper,a distributed stochastic approximation algorithm is proposed to track the dynamic root of a sum of time-varying regression functions over a network.Each agent updates its estimate by using the local observation,the dynamic information of the global root,and information received from its neighbors.Compared with similar works in optimization area,we allow the observation to be noise-corrupted,and the noise condition is much weaker.Furthermore,instead of the upper bound of the estimate error,we present the asymptotic convergence result of the algorithm.The consensus and convergence of the estimates are established.Finally,the algorithm is applied to a distributed target tracking problem and the numerical example is presented to demonstrate the performance of the algorithm.展开更多
This paper is a continuation of the research carried out in [1]-[2], where the robustnessanalysis for stochastic approximation algorithms is given for two cases: 1. The regression functionand the Liapunov function are...This paper is a continuation of the research carried out in [1]-[2], where the robustnessanalysis for stochastic approximation algorithms is given for two cases: 1. The regression functionand the Liapunov function are not zero at the sought-for x^0, 2. lim supnot zero, here {ξ_i} are the measurement errors and {a_n} are the weighting coefficients in thealgorithm. Allowing these deviations from zero to occur simultaneously but to remain small, thispaper shows that the estimation error is still small even for a class fo measurement errors moregeneral than that considered in [2].展开更多
无线监测网络中多电台监测节点通过捕捉和分析无线用户的通信数据,可以达到监测网络行为、诊断网络故障和管理网络资源的目的,而为多电台监测节点优化选择工作信道、最大化捕获数据量、获得最佳网络监测质量(quality of monitoring,QoM...无线监测网络中多电台监测节点通过捕捉和分析无线用户的通信数据,可以达到监测网络行为、诊断网络故障和管理网络资源的目的,而为多电台监测节点优化选择工作信道、最大化捕获数据量、获得最佳网络监测质量(quality of monitoring,QoM)是一个关键问题。文章研究了一种基于同步微扰随机近似(SPSA)的信道选择算法。该算法在迭代过程中以随机扰动策略得到目标函数的近似梯度,引导搜索过程逐步逼近最优解;适合于复杂的多维优化问题求解,收敛速度快、复杂度低。实验结果表明,该算法可以实现无线监测网络中多电台监测节点的信道优化选择,并且性能优良。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.50379046)the Doctoral Fund of the Ministry of Education of China(Grant No.A50221)
文摘In order to address the complex uncertainties caused by interfacing between the fuzziness and randomness of the safety problem for embankment engineering projects, and to evaluate the safety of embankment engineering projects more scientifically and reasonably, this study presents the fuzzy logic modeling of the stochastic finite element method (SFEM) based on the harmonious finite element (HFE) technique using a first-order approximation theorem. Fuzzy mathematical models of safety repertories were introduced into the SFEM to analyze the stability of embankments and foundations in order to describe the fuzzy failure procedure for the random safety performance function. The fuzzy models were developed with membership functions with half depressed gamma distribution, half depressed normal distribution, and half depressed echelon distribution. The fuzzy stochastic mathematical algorithm was used to comprehensively study the local failure mechanism of the main embankment section near Jingnan in the Yangtze River in terms of numerical analysis for the probability integration of reliability on the random field affected by three fuzzy factors. The result shows that the middle region of the embankment is the principal zone of concentrated failure due to local fractures. There is also some local shear failure on the embankment crust. This study provides a referential method for solving complex multi-uncertainty problems in engineering safety analysis.
文摘We study iterative processes of stochastic approximation for finding fixed points of weakly contractive and nonexpansive operators in Hilbert spaces under the condition that operators are given with random errors. We prove mean square convergence and convergence almost sure (a.s.) of iterative approximations and establish both asymptotic and nonasymptotic estimates of the convergence rate in degenerate and non-degenerate cases. Previously the stochastic approximation algorithms were studied mainly for optimization problems.
文摘文章主要研究了安徽省某气象台站年平均气温、月平均气温的结构性变化情况。该文在对气温数据进行正态性检验的基础上,运用ASAMC(annealing stochastic approximation Monte Carlo)算法对气温数据进行统计分析,估计出平均气温结构性变化的位置,并探索发生结构性变化的气象因素和非气象因素。
基金the National Basic Research Program of China(Nos.2015CB358700,2011CBA00300 and 2011CBA00301)the National Natural Science Foundation of China(Nos.61202009,61033001 and 61361136003).
文摘Stochastic optimization has established itself as a major method to handle uncertainty in various optimization problems by modeling the uncertainty by a probability distribution over possible realizations.Traditionally,the main focus in stochastic optimization has been various stochastic mathematical programming(such as linear programming,convex programming).In recent years,there has been a surge of interest in stochastic combinatorial optimization problems from the theoretical computer science community.In this article,we survey some of the recent results on various stochastic versions of classical combinatorial optimization problems.Since most problems in this domain are NP-hard(or#P-hard,or even PSPACE-hard),we focus on the results which provide polynomial time approximation algorithms with provable approximation guarantees.Our discussions are centered around a few representative problems,such as stochastic knapsack,stochastic matching,multi-armed bandit etc.We use these examples to introduce several popular stochastic models,such as the fixed-set model,2-stage stochastic optimization model,stochastic adaptive probing model etc,as well as some useful techniques for designing approximation algorithms for stochastic combinatorial optimization problems,including the linear programming relaxation approach,boosted sampling,content resolution schemes,Poisson approximation etc.We also provide some open research questions along the way.Our purpose is to provide readers a quick glimpse to the models,problems,and techniques in this area,and hopefully inspire new contributions.
基金This work was supported by the National Key Research and Development Program of China under Grant 2018YFA0703800the National Natural Science Foundation of China under Grant 61822312This work was also supported(in part)by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDA27000000.
文摘In this paper,a distributed stochastic approximation algorithm is proposed to track the dynamic root of a sum of time-varying regression functions over a network.Each agent updates its estimate by using the local observation,the dynamic information of the global root,and information received from its neighbors.Compared with similar works in optimization area,we allow the observation to be noise-corrupted,and the noise condition is much weaker.Furthermore,instead of the upper bound of the estimate error,we present the asymptotic convergence result of the algorithm.The consensus and convergence of the estimates are established.Finally,the algorithm is applied to a distributed target tracking problem and the numerical example is presented to demonstrate the performance of the algorithm.
基金This project is supported by the National Natural Science Foundation of China
文摘This paper is a continuation of the research carried out in [1]-[2], where the robustnessanalysis for stochastic approximation algorithms is given for two cases: 1. The regression functionand the Liapunov function are not zero at the sought-for x^0, 2. lim supnot zero, here {ξ_i} are the measurement errors and {a_n} are the weighting coefficients in thealgorithm. Allowing these deviations from zero to occur simultaneously but to remain small, thispaper shows that the estimation error is still small even for a class fo measurement errors moregeneral than that considered in [2].
文摘无线监测网络中多电台监测节点通过捕捉和分析无线用户的通信数据,可以达到监测网络行为、诊断网络故障和管理网络资源的目的,而为多电台监测节点优化选择工作信道、最大化捕获数据量、获得最佳网络监测质量(quality of monitoring,QoM)是一个关键问题。文章研究了一种基于同步微扰随机近似(SPSA)的信道选择算法。该算法在迭代过程中以随机扰动策略得到目标函数的近似梯度,引导搜索过程逐步逼近最优解;适合于复杂的多维优化问题求解,收敛速度快、复杂度低。实验结果表明,该算法可以实现无线监测网络中多电台监测节点的信道优化选择,并且性能优良。