The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the ...The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.展开更多
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d...The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.展开更多
This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise....This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness.展开更多
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge...A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.展开更多
This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the info...This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.展开更多
Inner stability and stabilization of Cohen-Grossberg generalized delay stochastic neural network with distributed parameter are discussed. The main method adopted is, combining inequality techniques, to apply Ito diff...Inner stability and stabilization of Cohen-Grossberg generalized delay stochastic neural network with distributed parameter are discussed. The main method adopted is, combining inequality techniques, to apply Ito differential formula to the constructed average function with respect to spatial variables along the system considered under the integral operator. Some sufficient conditions are given.展开更多
Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is pres...Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.展开更多
In this paper, we consider a class of impulsive stochas- tic recurrent neural networks with time-varying delays and Markovian jumping. Based on some impulsive delay differential inequalities, some easy-to-test conditi...In this paper, we consider a class of impulsive stochas- tic recurrent neural networks with time-varying delays and Markovian jumping. Based on some impulsive delay differential inequalities, some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay, are obtained. An example is also given to illustrate the effectiveness of our results.展开更多
Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors...Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.展开更多
The exponential stability problem is investigated for a class of stochastic recurrent neural networks with time delay and Markovian switching. By using Ito's differential formula and the Lyapunov stability theory, su...The exponential stability problem is investigated for a class of stochastic recurrent neural networks with time delay and Markovian switching. By using Ito's differential formula and the Lyapunov stability theory, sufficient condition for the solvability of this problem is derived in term of linear matrix inequalities, which can be easily checked by resorting to available software packages. A numerical example and the simulation are exploited to demonstrate the effectiveness of the proposed results.展开更多
In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linea...In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linearity of output functions of neurons of the cellular neural networks. Some algebraic criteria are obtained and easily verified. Some examples are given to illustrate the correctness of the results obtained.展开更多
The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy ...The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.展开更多
Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution...Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained, The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.展开更多
This paper considers the output tracking problem for more general classes of stochastic nonlinear systems with unknown control coefficients and driven by noise of unknown covariance. By utilizing the radial basis func...This paper considers the output tracking problem for more general classes of stochastic nonlinear systems with unknown control coefficients and driven by noise of unknown covariance. By utilizing the radial basis function neural network approximation method and backstepping technique, we successfully construct a controller to guarantee the solution process to be bounded in probability.The tracking error signal is 4th-moment semi-globally uniformly ultimately bounded(SGUUB) and can be regulated into a small neighborhood of the origin in probability. A simulation example is given to demonstrate the effectiveness of the control scheme.展开更多
In this paper, the stability in Lagrange sense of a class of stochastic static neural networks with mixed time delays is studied. Based on the Lyapunov stability theory and with the help of stochastic analysis techniq...In this paper, the stability in Lagrange sense of a class of stochastic static neural networks with mixed time delays is studied. Based on the Lyapunov stability theory and with the help of stochastic analysis technique, the criteria for the stability in Lagrange sense of stochastic static neural networks with mixed time delays is obtained. One example is given to verify the advantage and applicability of the proposed results.展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
基金supported by Department of Science and Technology,New Delhi,India(SR/S4/MS:485/07)
文摘The problem of passivity analysis is investigated for uncertain stochastic neural networks with discrete interval and distributed time-varying delays.The parameter uncertainties are assumed to be norm bounded and the delay is assumed to be time-varying and belongs to a given interval,which means that the lower and upper bounds of interval time-varying delays are available.By constructing proper Lyapunov-Krasovskii functional and employing a combination of the free-weighting matrix method and stochastic analysis technique,new delay-dependent passivity conditions are derived in terms of linear matrix inequalities(LMIs).Finally,numerical examples are given to show the less conservatism of the proposed conditions.
基金supported by the National Natural Science Foundation of China(60874114).
文摘The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006,60521003)the National High Technology Research and Development Program of China (863 Program) (Grant No 2006AA04Z183)+2 种基金the Natural Science Foundation of Liaoning Province of China (Grant No 20062018)973 Project (Grant No 2009CB320601)111 Project (Grant No B08015)
文摘This paper is concerned with the problem of robust stability for a class of Markovian jumping stochastic neural networks (MJSNNs) subject to mode-dependent time-varying interval delay and state-multiplicative noise. Based on the Lyapunov-Krasovskii functional and a stochastic analysis approach, some new delay-dependent sufficient conditions are obtained in the linear matrix inequality (LMI) format such that delayed MJSNNs are globally asymptotically stable in the mean-square sense for all admissible uncertainties. An important feature of the results is that the stability criteria are dependent on not only the lower bound and upper bound of delay for all modes but also the covariance matrix consisting of the correlation coefficient. Numerical examples are given to illustrate the effectiveness.
文摘A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness.
基金supported by the Science Foundation of the Department of Science and Technology,New Delhi,India (Grant No.SR/S4/MS:485/07)
文摘This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.
文摘Inner stability and stabilization of Cohen-Grossberg generalized delay stochastic neural network with distributed parameter are discussed. The main method adopted is, combining inequality techniques, to apply Ito differential formula to the constructed average function with respect to spatial variables along the system considered under the integral operator. Some sufficient conditions are given.
文摘Based on the fuzzy characteristic of the pulse state and syndromes differentiation thinking mode of TCM, an information fusing recognition method of pulse states based on SFNN (Stochastic Fuzzy Neural Network) is presented in this paper. With the learning ability in parameters and structure, SFNN fuses the measurement information of three pulse-state sensors distributed in Cun, Guan, and Chi location of body for the pulse state recognition. The experimental results show that the percentage of correct recognition with new method is higher than that by single-data recognition one, with fewer off-line train numbers.
文摘In this paper, we consider a class of impulsive stochas- tic recurrent neural networks with time-varying delays and Markovian jumping. Based on some impulsive delay differential inequalities, some easy-to-test conditions such that the dynamics of the neural network is stochastically exponentially stable in the mean square, independent of the time delay, are obtained. An example is also given to illustrate the effectiveness of our results.
文摘Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result.
文摘The exponential stability problem is investigated for a class of stochastic recurrent neural networks with time delay and Markovian switching. By using Ito's differential formula and the Lyapunov stability theory, sufficient condition for the solvability of this problem is derived in term of linear matrix inequalities, which can be easily checked by resorting to available software packages. A numerical example and the simulation are exploited to demonstrate the effectiveness of the proposed results.
基金the National Natural Science Foundation of China (No. 10571036)Tianjin Municipal Education Commission of China(No. 20070405)
文摘In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linearity of output functions of neurons of the cellular neural networks. Some algebraic criteria are obtained and easily verified. Some examples are given to illustrate the correctness of the results obtained.
文摘The aim of this paper is to broaden the application of Stochastic Configuration Network (SCN) in the semi-supervised domain by utilizing common unlabeled data in daily life. It can enhance the classification accuracy of decentralized SCN algorithms while effectively protecting user privacy. To this end, we propose a decentralized semi-supervised learning algorithm for SCN, called DMT-SCN, which introduces teacher and student models by combining the idea of consistency regularization to improve the response speed of model iterations. In order to reduce the possible negative impact of unsupervised data on the model, we purposely change the way of adding noise to the unlabeled data. Simulation results show that the algorithm can effectively utilize unlabeled data to improve the classification accuracy of SCN training and is robust under different ground simulation environments.
基金Project supported by the National Natural Science Foundation of China (Nos.60574025, 60074008)the Natural Science Foundation of Hubei Province of China (No.2004ABA055)
文摘Asymptotic characteristic of solution of the stochastic functional differential equation was discussed and sufficient condition was established by multiple Lyapunov functions for locating the limit set of the solution. Moreover, from them many effective criteria on stochastic asymptotic stability, which enable us to construct the Lyapunov functions much more easily in application, were obtained, The results show that the wellknown classical theorem on stochastic asymptotic stability is a special case of our more general results. In the end, application in stochastic Hopfield neural networks is given to verify our results.
基金supported by National Natural Science Foundation of China(Nos.61573172,61305149 and 61403174)333 High-level Talents Training Program in Jiangsu Province(No.BRA2015352)Program for Fundamental Research of Natural Sciences in Universities of Jiangsu Province(No.15KJB510011)
文摘This paper considers the output tracking problem for more general classes of stochastic nonlinear systems with unknown control coefficients and driven by noise of unknown covariance. By utilizing the radial basis function neural network approximation method and backstepping technique, we successfully construct a controller to guarantee the solution process to be bounded in probability.The tracking error signal is 4th-moment semi-globally uniformly ultimately bounded(SGUUB) and can be regulated into a small neighborhood of the origin in probability. A simulation example is given to demonstrate the effectiveness of the control scheme.
基金supported by the National Natural Science Foundation of China(11171374)Natural Science Foundation of Shandong Province(ZR2011AZ001)
文摘In this paper, the stability in Lagrange sense of a class of stochastic static neural networks with mixed time delays is studied. Based on the Lyapunov stability theory and with the help of stochastic analysis technique, the criteria for the stability in Lagrange sense of stochastic static neural networks with mixed time delays is obtained. One example is given to verify the advantage and applicability of the proposed results.
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.