Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB) and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important...Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB) and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important and practical aspect of unpredictability.It is crucial to take into account a stochastic co-infection HBV-TB epidemic model since different random elements have a substantial impact on the overall dynamics of these diseases.We provide a novel stochastic co-model for TB and HBV in this study,and we establish criteria on the uniqueness and existence of a nonnegative global solution.We also looked at the persistence of the infections as long its dynamics are governable by the proposed model.To verify the theoretical conclusions,numerical simulations are presented keeping in view the associated analytical results.The infections are found to finally die out and go extinct with certainty when Lévy intensities surpass the specified thresholds and the related stochastic thresholds fall below unity.The findings also demonstrate the impact of noise on the decline in the co-circulation of HBV and TB in a given population.Our results provide insights into effective intervention strategies,ultimately aiming to improve the management and control of TB and HBV co-infections.展开更多
This paper discusses the principles of geologic constraints on reservoir stochastic modeling. By using the system science theory, two kinds of uncertainties, including random uncertainty and fuzzy uncertainty, are rec...This paper discusses the principles of geologic constraints on reservoir stochastic modeling. By using the system science theory, two kinds of uncertainties, including random uncertainty and fuzzy uncertainty, are recognized. In order to improve the precision of stochastic modeling and reduce the uncertainty in realization, the fuzzy uncertainty should be stressed, and the "geological genesis-controlled modeling" is conducted under the guidance of a quantitative geological pattern. An example of the Pingqiao horizontal-well division of the Ansai Oilfield in the Ordos Basin is taken to expound the method of stochastic modeling.展开更多
A 3D stochastic modeling was carried out to simulate the dendritic grains during solidification of aluminum alloys, including time-dependent calculations for temperature field, solute redistribution in liquid, curvatu...A 3D stochastic modeling was carried out to simulate the dendritic grains during solidification of aluminum alloys, including time-dependent calculations for temperature field, solute redistribution in liquid, curvature of the dendritic tip, and growth anisotropy. The nucleation process was treated by continuous nucleation. A 3D simplified grain shape model was established to represent the equiaxed dendritic grain. Based on the Cellular Automaton method, a grain growth model was proposed to capture the neighbor cells of the nucleated cell. During growing, each grain continues to capture the nearest neighbor cells to form the final shape. When a neighbor cell was captured by other grains, the grain growth along this direction would be stopped. Three-dimensional calculations were performed to simulate the evolution of dendritic grain. In order to verify the modeling results, the predictions were compared with the observation on samples cast in the sand mold and the metal mold.展开更多
In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for nonstationary seismic ground motions was developed previously through employing a...In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for nonstationary seismic ground motions was developed previously through employing a wave-group propagation formulation with phase spectrum model built up on the frequency components’ starting-time of phase evolution. The present paper aims at extending the formulation to the simulation of non-stationary random seismic ground motions. The ground motion records associated with N–S component of Northridge Earthquake at the type-II site are investigated. The frequency components’ starting-time of phase evolution of is identified from the ground motion records, and is proved to admit the Gamma distribution through data fitting. Numerical results indicate that the simulated random ground motion features zeromean, non-stationary, and non-Gaussian behaviors, and the phase spectrum model with only a few starting-times of phase evolution could come up with a sound contribution to the simulation.展开更多
This paper describes relatively simple stochastic model of the total ground irradiance of horizontal surface. For this purpose clearness index is modeled as a stochastic signal. The parameters of clearness index stoch...This paper describes relatively simple stochastic model of the total ground irradiance of horizontal surface. For this purpose clearness index is modeled as a stochastic signal. The parameters of clearness index stochastic signal are chosen to fit values of daily mean insolation for each month for the location of Zagreb, Croatia. Complete model has been done in MATLAB. This model can be used for Monte Carlo simulations of technical solar systems such as photovoltaic systems or solar thermal energy systems.展开更多
Stochastic models are derived to estimate the level of coliform count in terms of MPN index, one of the most important water quality characteristic in ground water based on a set of water source location and soil char...Stochastic models are derived to estimate the level of coliform count in terms of MPN index, one of the most important water quality characteristic in ground water based on a set of water source location and soil characteristics. The study is based on about twenty location and soil characteristics, majority of them are observed through laboratory analysis of soil and water samples collected from nearly thee hundred locations of drinking water sources, wells and bore wells selected at random from the district of Kasaragod. The water contamination in wells are found to be relatively more as compared to bore wells. The study reveals that only 7 % of the wells and 40 o~ of the bore wells of the district are within the permissible limit of WHO standard of drinking water quality. The level of contamination is very high in the hospital premises and is very low in the forest area. Two separate multiple ordinal logistic regression models are developed to predict the level of coliform count, one for well and the other for bore well. The significant feature of this study is that in addition to scientifically proving the dependence of the water quality on the distances from waste disposal area and septic tanks etc., it highlights the dependence of two other very significant soil characteristics, the soil organic carbon and soil porosity. The models enable to predict the quality of water in a location based on the set of soil and location characteristics. One of the important uses of the model is in fixing safe locations for waste dump area, septic tank, digging well etc. in town planning, designing residential layouts, industrial layouts, hospital/hostel construction etc. This is the first ever study to describe the ground water quality in terms of the location and soil characteristics.展开更多
As gravity field, magnetic field, electric field and seismic wave field are all physical fields, their object function, reverse function and compound function are certainly infinite continuously differentiable functio...As gravity field, magnetic field, electric field and seismic wave field are all physical fields, their object function, reverse function and compound function are certainly infinite continuously differentiable functions which can be expanded into Taylor (Fourier) series within domain of definition and be further reduced into solving stochastic distribution function of series and statistic inference of optimal approximation. This is the basis of combined gravity-magnetic-electric-seismic inversion of stochastic modeling. It is an uncertainty modeling technology of combining gravity-magnetic-electric-seismic inversion built on the basis of separation of field and source gravity-magnetic difference-value (D-value) trend surface, taking distribution-independent fault system as its unit, depths of seismic and electric interfaces of interests as its corresponding bivariate compound reverse function of gravity-magnetic anomalies and using high order polynomial (high order trigonometric function) approximating to its series distribution. The difference from current dominant inversion techniques is that, first, it does not respectively create gravity-seismic, magnetic-seismic deterministic inversion model from theoretical model, but combines gravity-magnetic-electric-seismic stochastic inversion model from stochastic model; second, after the concept of equivalent geological body being introduced, using feature of independent variable of gravity-magnetic field functions, taking density and susceptibility related to gravity-magnetic function as default parameters of model, the deterministic model is established owing to better solution to the contradiction of difficulty in identifying strata and less test analytical data for density and susceptibility in newly explored area; third, under assumption of independent parent distribution, a real modeling by strata, the problem of difficult plane closure arising in profile modeling is avoided. This technology has richer and more detailed fault and strata information than sparse pattern seismic data in newly explored area, successfully inverses and plots structural map of Indosinian discontinuity in Hefei basin with combined gravity-magnetic-electric-seismic inversion. With development of high precision gravity-magnetic and overall geophysical technology, it is certain for introducing new methods of stochastic modeling and computational intelligence and promoting the development of combined gravity-magnetic-electric-seismic inversion to open a new substantial path.展开更多
In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6...In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6%infection in Asia,and 22.1%and 14.7%infection rates in Europe and North America,respectively.To study the dynamics of Leukemia,the population of cells has been divided into three subpopulations of cells susceptible cells,infected cells,and immune cells.To investigate the memory effects and uncertainty in disease progression,leukemia modeling is developed using stochastic fractional delay differential equations(SFDDEs).The feasible properties of positivity,boundedness,and equilibria(i.e.,Leukemia Free Equilibrium(LFE)and Leukemia Present Equilibrium(LPE))of the model were studied rigorously.The local and global stabilities and sensitivity of the parameters around the equilibria under the assumption of reproduction numbers were investigated.To support the theoretical analysis of the model,the Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD)method was used to simulate the results of each subpopulation with memory effect.Also,the positivity and boundedness of the proposed method were studied.Our results show how different methods can help control the cell population and give useful advice to decision-makers on ways to lower leukemia rates in communities.展开更多
This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set a...This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.展开更多
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer...A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.展开更多
In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and co...In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and construct suitable functions to obtain sufficient conditions for disease extinction.Secondly,in order to effectively control the spread of the disease,appropriate control strategies are formulated by using optimal control theory.Finally,the results are verified by numerical simulation.展开更多
The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysi...The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.展开更多
In this paper, three existing source spectral models for stochastic finite-fault modeling of ground motion were reviewed. These three models were used to calculate the far-field received energy at a site from a vertic...In this paper, three existing source spectral models for stochastic finite-fault modeling of ground motion were reviewed. These three models were used to calculate the far-field received energy at a site from a vertical fault and the mean spectral ratio over 15 stations of the Northridge earthquake, and then compared. From the comparison, a necessary measure was observed to maintain the far-field received energy independent of subfault size and avoid overestimation of the long- period spectra/level. Two improvements were made to one of the three models (i.e., the model based on dynamic comer frequency) as follows: (i) a new method to compute the subfault comer frequency was proposed, where the subfault comer frequency is determined based on a basic value calculated from the total seismic moment of the entire fault and an increment depending on the seismic moment assigned to the subfault; and (ii) the difference of the radiation energy from each suhfault was considered into the scaling factor. The improved model was also compared with the unimproved model through the far-field received energy and the mean spectral ratio. The comparison proves that the improved model allows the received energy to be more independent of subfault size than the unimproved model, and decreases the overestimation degree of the long-period spectral amplitude.展开更多
Fines migration induced by injection of low-salinity water(LSW) into porous media can lead to severe pore plugging and consequent permeability reduction. The deepbed filtration(DBF) theory is used to model the aforeme...Fines migration induced by injection of low-salinity water(LSW) into porous media can lead to severe pore plugging and consequent permeability reduction. The deepbed filtration(DBF) theory is used to model the aforementioned phenomenon, which allows us to predict the effluent concentration history and the distribution profile of entrapped particles. However, the previous models fail to consider the movement of the waterflood front. In this study, we derive a stochastic model for fines migration during LSW flooding, in which the Rankine-Hugoniot condition is used to calculate the concentration of detached particles behind and ahead of the moving water front. A downscaling procedure is developed to determine the evolution of pore-size distribution from the exact solution of a large-scale equation system. To validate the proposed model,the obtained exact solutions are used to treat the laboratory data of LSW flooding in artificial soil-packed columns. The tuning results show that the proposed model yields a considerably higher value of the coefficient of determination, compared with the previous models, indicating that the new model can successfully capture the effect of the moving water front on fines migration and precisely match the effluent history of the detached particles.展开更多
Significant efforts have been made to identify modifiable risk factors of non-contact anterior cruciate ligament(ACL)injuries in male and female athletes.However,current literature on the risk factors for ACL injury a...Significant efforts have been made to identify modifiable risk factors of non-contact anterior cruciate ligament(ACL)injuries in male and female athletes.However,current literature on the risk factors for ACL injury are purely descriptive.An understanding of biomechanical relationship between risk and risk factors of the non-contact ACL injury is necessary to develop effective prevention programs.Purpose:To compare lower extremity kinematics and kinetics between trials with and without non-contact ACL injuries and to determine if any difference exists between male and female trials with non-contact ACL injuries regarding the lower extremity motion patterns.Methods:In this computer simulation study,a stochastic biomechanical model was used to estimate the ACL loading at the time of peak posterior ground reaction force(GRF)during landing of the stop-jump task.Monte Carlo simulations were performed to simulate the ACL injuries with repeated random samples of independent variables.The distributions of independent variables were determined from in vivo laboratory data of 40 male and 40 female recreational athletes.Results:In the simulated injured trials,both male and female athletes had significantly smaller knee flexion angles,greater normalized peak posterior and vertical GRF,greater knee valgus moment,greater patella tendon force,greater quadriceps force,greater knee extension moment,and greater proximal tibia anterior shear force in comparison to the simulated uninjured trials.No significant difference was found between genders in any of the selected biomechanical variables in the trials with simulated non-contact ACL injuries.Conclusion:Small knee flexion angle,large posterior GRF,and large knee valgus moment are risk factors of non-contact ACL injury determined by a stochastic biomechanical model with a cause-and-effect relationship.Copyright(c)2012,Shanghai University of Sport.Production and hosting by Elsevier B.V.All rights reserved.展开更多
Object-oriented Petri nets (OPNs) is extended into stochastic object-oriented Petri nets (SOPNs) by associating the OPN of an object with stochastic transitions and introducing stochastic places. The stochastic transi...Object-oriented Petri nets (OPNs) is extended into stochastic object-oriented Petri nets (SOPNs) by associating the OPN of an object with stochastic transitions and introducing stochastic places. The stochastic transition of the SOPNs of a production resources can be used to model its reliability, while the SOPN of a production resource can describe its performance with reliability considered. The SOPN model of a case production system is built to illustrate the relationship between the system's performances and the failures of individual production resources.展开更多
Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic ...Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.展开更多
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl...Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.展开更多
An effort to model the dynamic optimal advertising was made with the uncertainty of sales responses in consideration. The problem of dynamic advertising was depicted as a Markov decision process with two state variabl...An effort to model the dynamic optimal advertising was made with the uncertainty of sales responses in consideration. The problem of dynamic advertising was depicted as a Markov decision process with two state variables. When a firm launches an advertising campaign, it may predict the probability that the campaign will obtain the sales réponse. This probability was chosen as one state variable. Cumulative sales volume was chosen as another state variable which varies randomly with advertising. The only decision variable was advertising expenditure. With these variables, a multi-stage Markov decision process model was formulat ed. On the basis of some propositions the model was analyzed. Some analytical results about the optimal strategy have been derived, and their practical implications have been explained.展开更多
A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epi...A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.展开更多
文摘Several mathematical models have been developed to investigate the dynamics of tuberculosis(TB) and hepatitis B virus(HBV).Numerous current models for TB,HBV,and their co-dynamics fall short in capturing the important and practical aspect of unpredictability.It is crucial to take into account a stochastic co-infection HBV-TB epidemic model since different random elements have a substantial impact on the overall dynamics of these diseases.We provide a novel stochastic co-model for TB and HBV in this study,and we establish criteria on the uniqueness and existence of a nonnegative global solution.We also looked at the persistence of the infections as long its dynamics are governable by the proposed model.To verify the theoretical conclusions,numerical simulations are presented keeping in view the associated analytical results.The infections are found to finally die out and go extinct with certainty when Lévy intensities surpass the specified thresholds and the related stochastic thresholds fall below unity.The findings also demonstrate the impact of noise on the decline in the co-circulation of HBV and TB in a given population.Our results provide insights into effective intervention strategies,ultimately aiming to improve the management and control of TB and HBV co-infections.
文摘This paper discusses the principles of geologic constraints on reservoir stochastic modeling. By using the system science theory, two kinds of uncertainties, including random uncertainty and fuzzy uncertainty, are recognized. In order to improve the precision of stochastic modeling and reduce the uncertainty in realization, the fuzzy uncertainty should be stressed, and the "geological genesis-controlled modeling" is conducted under the guidance of a quantitative geological pattern. An example of the Pingqiao horizontal-well division of the Ansai Oilfield in the Ordos Basin is taken to expound the method of stochastic modeling.
文摘A 3D stochastic modeling was carried out to simulate the dendritic grains during solidification of aluminum alloys, including time-dependent calculations for temperature field, solute redistribution in liquid, curvature of the dendritic tip, and growth anisotropy. The nucleation process was treated by continuous nucleation. A 3D simplified grain shape model was established to represent the equiaxed dendritic grain. Based on the Cellular Automaton method, a grain growth model was proposed to capture the neighbor cells of the nucleated cell. During growing, each grain continues to capture the nearest neighbor cells to form the final shape. When a neighbor cell was captured by other grains, the grain growth along this direction would be stopped. Three-dimensional calculations were performed to simulate the evolution of dendritic grain. In order to verify the modeling results, the predictions were compared with the observation on samples cast in the sand mold and the metal mold.
文摘In response to the challenge inherent in classical high-dimensional models of random ground motions, a family of simulation methods for nonstationary seismic ground motions was developed previously through employing a wave-group propagation formulation with phase spectrum model built up on the frequency components’ starting-time of phase evolution. The present paper aims at extending the formulation to the simulation of non-stationary random seismic ground motions. The ground motion records associated with N–S component of Northridge Earthquake at the type-II site are investigated. The frequency components’ starting-time of phase evolution of is identified from the ground motion records, and is proved to admit the Gamma distribution through data fitting. Numerical results indicate that the simulated random ground motion features zeromean, non-stationary, and non-Gaussian behaviors, and the phase spectrum model with only a few starting-times of phase evolution could come up with a sound contribution to the simulation.
文摘This paper describes relatively simple stochastic model of the total ground irradiance of horizontal surface. For this purpose clearness index is modeled as a stochastic signal. The parameters of clearness index stochastic signal are chosen to fit values of daily mean insolation for each month for the location of Zagreb, Croatia. Complete model has been done in MATLAB. This model can be used for Monte Carlo simulations of technical solar systems such as photovoltaic systems or solar thermal energy systems.
文摘Stochastic models are derived to estimate the level of coliform count in terms of MPN index, one of the most important water quality characteristic in ground water based on a set of water source location and soil characteristics. The study is based on about twenty location and soil characteristics, majority of them are observed through laboratory analysis of soil and water samples collected from nearly thee hundred locations of drinking water sources, wells and bore wells selected at random from the district of Kasaragod. The water contamination in wells are found to be relatively more as compared to bore wells. The study reveals that only 7 % of the wells and 40 o~ of the bore wells of the district are within the permissible limit of WHO standard of drinking water quality. The level of contamination is very high in the hospital premises and is very low in the forest area. Two separate multiple ordinal logistic regression models are developed to predict the level of coliform count, one for well and the other for bore well. The significant feature of this study is that in addition to scientifically proving the dependence of the water quality on the distances from waste disposal area and septic tanks etc., it highlights the dependence of two other very significant soil characteristics, the soil organic carbon and soil porosity. The models enable to predict the quality of water in a location based on the set of soil and location characteristics. One of the important uses of the model is in fixing safe locations for waste dump area, septic tank, digging well etc. in town planning, designing residential layouts, industrial layouts, hospital/hostel construction etc. This is the first ever study to describe the ground water quality in terms of the location and soil characteristics.
文摘As gravity field, magnetic field, electric field and seismic wave field are all physical fields, their object function, reverse function and compound function are certainly infinite continuously differentiable functions which can be expanded into Taylor (Fourier) series within domain of definition and be further reduced into solving stochastic distribution function of series and statistic inference of optimal approximation. This is the basis of combined gravity-magnetic-electric-seismic inversion of stochastic modeling. It is an uncertainty modeling technology of combining gravity-magnetic-electric-seismic inversion built on the basis of separation of field and source gravity-magnetic difference-value (D-value) trend surface, taking distribution-independent fault system as its unit, depths of seismic and electric interfaces of interests as its corresponding bivariate compound reverse function of gravity-magnetic anomalies and using high order polynomial (high order trigonometric function) approximating to its series distribution. The difference from current dominant inversion techniques is that, first, it does not respectively create gravity-seismic, magnetic-seismic deterministic inversion model from theoretical model, but combines gravity-magnetic-electric-seismic stochastic inversion model from stochastic model; second, after the concept of equivalent geological body being introduced, using feature of independent variable of gravity-magnetic field functions, taking density and susceptibility related to gravity-magnetic function as default parameters of model, the deterministic model is established owing to better solution to the contradiction of difficulty in identifying strata and less test analytical data for density and susceptibility in newly explored area; third, under assumption of independent parent distribution, a real modeling by strata, the problem of difficult plane closure arising in profile modeling is avoided. This technology has richer and more detailed fault and strata information than sparse pattern seismic data in newly explored area, successfully inverses and plots structural map of Indosinian discontinuity in Hefei basin with combined gravity-magnetic-electric-seismic inversion. With development of high precision gravity-magnetic and overall geophysical technology, it is certain for introducing new methods of stochastic modeling and computational intelligence and promoting the development of combined gravity-magnetic-electric-seismic inversion to open a new substantial path.
基金supported by the Fundacao para a Ciencia e Tecnologia,FCT,under the project https://doi.org/10.54499/UIDB/04674/2020(accessed on 1 January 2025).
文摘In 2022,Leukemia is the 13th most common diagnosis of cancer globally as per the source of the International Agency for Research on Cancer(IARC).Leukemia is still a threat and challenge for all regions because of 46.6%infection in Asia,and 22.1%and 14.7%infection rates in Europe and North America,respectively.To study the dynamics of Leukemia,the population of cells has been divided into three subpopulations of cells susceptible cells,infected cells,and immune cells.To investigate the memory effects and uncertainty in disease progression,leukemia modeling is developed using stochastic fractional delay differential equations(SFDDEs).The feasible properties of positivity,boundedness,and equilibria(i.e.,Leukemia Free Equilibrium(LFE)and Leukemia Present Equilibrium(LPE))of the model were studied rigorously.The local and global stabilities and sensitivity of the parameters around the equilibria under the assumption of reproduction numbers were investigated.To support the theoretical analysis of the model,the Grunwald Letnikov Nonstandard Finite Difference(GL-NSFD)method was used to simulate the results of each subpopulation with memory effect.Also,the positivity and boundedness of the proposed method were studied.Our results show how different methods can help control the cell population and give useful advice to decision-makers on ways to lower leukemia rates in communities.
基金supported by the National Nature Science Foundation of China(62073194)the Natural Science Foundation of Shandong Province of China(ZR2023MF028)the Taishan Scholars Program of Shandong Province(tsqn202312008)
文摘This paper proposes an event-triggered stochastic model predictive control for discrete-time linear time-invariant(LTI)systems under additive stochastic disturbances.It first constructs a probabilistic invariant set and a probabilistic reachable set based on the priori knowledge of system uncertainties.Assisted with enhanced robust tubes,the chance constraints are then formulated into a deterministic form.To alleviate the online computational burden,a novel event-triggered stochastic model predictive control is developed,where the triggering condition is designed based on the past and future optimal trajectory tracking errors in order to achieve a good trade-off between system resource utilization and control performance.Two triggering parametersσandγare used to adjust the frequency of solving the optimization problem.The probabilistic feasibility and stability of the system under the event-triggered mechanism are also examined.Finally,numerical studies on the control of a heating,ventilation,and air conditioning(HVAC)system confirm the efficacy of the proposed control.
基金Supported by the National Natural Science Foundation of China(No.U24B20156)the National Defense Basic Scientific Research Program of China(No.JCKY2021204B051)the National Laboratory of Space Intelligent Control of China(Nos.HTKJ2023KL502005 and HTKJ2024KL502007)。
文摘A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.
基金supported by the Fundamental Research Funds for the Central Universities(No.3122025090)。
文摘In this paper,based on the SVIQR model we develop a stochastic epidemic model with multiple vaccinations and time delay.Firstly,we prove the existence and uniqueness of the global positive solution of the model,and construct suitable functions to obtain sufficient conditions for disease extinction.Secondly,in order to effectively control the spread of the disease,appropriate control strategies are formulated by using optimal control theory.Finally,the results are verified by numerical simulation.
基金supported in part by Sichuan Science and Technology Program under Grant No.2025ZNSFSC151in part by the Strategic Priority Research Program of Chinese Academy of Sciences under Grant No.XDA27030201+1 种基金the Natural Science Foundation of China under Grant No.U21B6001in part by the Natural Science Foundation of Tianjin under Grant No.24JCQNJC01930.
文摘The work proposes a distributed Kalman filtering(KF)algorithm to track a time-varying unknown signal process for a stochastic regression model over network systems in a cooperative way.We provide the stability analysis of the proposed distributed KF algorithm without independent and stationary signal assumptions,which implies that the theoretical results are able to be applied to stochastic feedback systems.Note that the main difficulty of stability analysis lies in analyzing the properties of the product of non-independent and non-stationary random matrices involved in the error equation.We employ analysis techniques such as stochastic Lyapunov function,stability theory of stochastic systems,and algebraic graph theory to deal with the above issue.The stochastic spatio-temporal cooperative information condition shows the cooperative property of multiple sensors that even though any local sensor cannot track the time-varying unknown signal,the distributed KF algorithm can be utilized to finish the filtering task in a cooperative way.At last,we illustrate the property of the proposed distributed KF algorithm by a simulation example.
基金National Natural Science Foundation of China Under Grant No. 50778058 and 90715038National Key Technology R&D Program Under Contract No. 2006BAC13B02
文摘In this paper, three existing source spectral models for stochastic finite-fault modeling of ground motion were reviewed. These three models were used to calculate the far-field received energy at a site from a vertical fault and the mean spectral ratio over 15 stations of the Northridge earthquake, and then compared. From the comparison, a necessary measure was observed to maintain the far-field received energy independent of subfault size and avoid overestimation of the long- period spectra/level. Two improvements were made to one of the three models (i.e., the model based on dynamic comer frequency) as follows: (i) a new method to compute the subfault comer frequency was proposed, where the subfault comer frequency is determined based on a basic value calculated from the total seismic moment of the entire fault and an increment depending on the seismic moment assigned to the subfault; and (ii) the difference of the radiation energy from each suhfault was considered into the scaling factor. The improved model was also compared with the unimproved model through the far-field received energy and the mean spectral ratio. The comparison proves that the improved model allows the received energy to be more independent of subfault size than the unimproved model, and decreases the overestimation degree of the long-period spectral amplitude.
基金the National Natural Science Foundation of China(Nos.51804316,51734010,and U1762211)the National Science and Technology Major Project of China(No.2017ZX05009)the Science Foundation of China University of Petroleum,Beijing(No.2462017YJRC037)。
文摘Fines migration induced by injection of low-salinity water(LSW) into porous media can lead to severe pore plugging and consequent permeability reduction. The deepbed filtration(DBF) theory is used to model the aforementioned phenomenon, which allows us to predict the effluent concentration history and the distribution profile of entrapped particles. However, the previous models fail to consider the movement of the waterflood front. In this study, we derive a stochastic model for fines migration during LSW flooding, in which the Rankine-Hugoniot condition is used to calculate the concentration of detached particles behind and ahead of the moving water front. A downscaling procedure is developed to determine the evolution of pore-size distribution from the exact solution of a large-scale equation system. To validate the proposed model,the obtained exact solutions are used to treat the laboratory data of LSW flooding in artificial soil-packed columns. The tuning results show that the proposed model yields a considerably higher value of the coefficient of determination, compared with the previous models, indicating that the new model can successfully capture the effect of the moving water front on fines migration and precisely match the effluent history of the detached particles.
文摘Significant efforts have been made to identify modifiable risk factors of non-contact anterior cruciate ligament(ACL)injuries in male and female athletes.However,current literature on the risk factors for ACL injury are purely descriptive.An understanding of biomechanical relationship between risk and risk factors of the non-contact ACL injury is necessary to develop effective prevention programs.Purpose:To compare lower extremity kinematics and kinetics between trials with and without non-contact ACL injuries and to determine if any difference exists between male and female trials with non-contact ACL injuries regarding the lower extremity motion patterns.Methods:In this computer simulation study,a stochastic biomechanical model was used to estimate the ACL loading at the time of peak posterior ground reaction force(GRF)during landing of the stop-jump task.Monte Carlo simulations were performed to simulate the ACL injuries with repeated random samples of independent variables.The distributions of independent variables were determined from in vivo laboratory data of 40 male and 40 female recreational athletes.Results:In the simulated injured trials,both male and female athletes had significantly smaller knee flexion angles,greater normalized peak posterior and vertical GRF,greater knee valgus moment,greater patella tendon force,greater quadriceps force,greater knee extension moment,and greater proximal tibia anterior shear force in comparison to the simulated uninjured trials.No significant difference was found between genders in any of the selected biomechanical variables in the trials with simulated non-contact ACL injuries.Conclusion:Small knee flexion angle,large posterior GRF,and large knee valgus moment are risk factors of non-contact ACL injury determined by a stochastic biomechanical model with a cause-and-effect relationship.Copyright(c)2012,Shanghai University of Sport.Production and hosting by Elsevier B.V.All rights reserved.
基金This project is supported by National Natural Science Foundation of China (No.50085003).
文摘Object-oriented Petri nets (OPNs) is extended into stochastic object-oriented Petri nets (SOPNs) by associating the OPN of an object with stochastic transitions and introducing stochastic places. The stochastic transition of the SOPNs of a production resources can be used to model its reliability, while the SOPN of a production resource can describe its performance with reliability considered. The SOPN model of a case production system is built to illustrate the relationship between the system's performances and the failures of individual production resources.
基金supported by the National Natural Science Foundation of China (Grant No.91338201)
文摘Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.
基金supported by National Natural Science Foundation of China,China(No.42004016)HuBei Natural Science Fund,China(No.2020CFB329)+1 种基金HuNan Natural Science Fund,China(No.2023JJ60559,2023JJ60560)the State Key Laboratory of Geodesy and Earth’s Dynamics self-deployment project,China(No.S21L6101)。
文摘Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods.
基金This work was supported by the National Natural Science Foundation(No.70271021).
文摘An effort to model the dynamic optimal advertising was made with the uncertainty of sales responses in consideration. The problem of dynamic advertising was depicted as a Markov decision process with two state variables. When a firm launches an advertising campaign, it may predict the probability that the campaign will obtain the sales réponse. This probability was chosen as one state variable. Cumulative sales volume was chosen as another state variable which varies randomly with advertising. The only decision variable was advertising expenditure. With these variables, a multi-stage Markov decision process model was formulat ed. On the basis of some propositions the model was analyzed. Some analytical results about the optimal strategy have been derived, and their practical implications have been explained.
文摘A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted.