In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr...In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.展开更多
Flexible underwater vehicles with high maneuverability,high efficiency,high speed,and low disturbance have shown great application potential and research significance in underwater engineering,ocean exploration,scient...Flexible underwater vehicles with high maneuverability,high efficiency,high speed,and low disturbance have shown great application potential and research significance in underwater engineering,ocean exploration,scientific investigation and other fields.The research and development of flexible stimulus-responsive actuators is key to the development of high-performance underwater vehicles.At present,the main drive methods for underwater devices include electric drive,magnetic drive,light drive,thermal drive,and chemical drive.In this work,the research progress of stimuli-responsive actuators in water environment is reviewed from the stimuli-responsive patterns,functional design,fabrication methods,and applications in water environment.Firstly,the actuation principles and characteristics of electro-responsive,magnetic-responsive,photo-responsive,thermo-responsive actuators,and chemically responsive actuators are reviewed.Subsequently,several design requirements for the desired flexible actuators are introduced.After that,the common fabrication methods are summarized.The typical application of the stimuli-responsive actuator in the water environment is further discussed in combination with the multi-stimuli-responsive characteristics.Finally,the challenges faced by the application of stimuli-responsive actuators in the water environment are analyzed,and the corresponding viewpoints are presented.This review offers guidance for designing and preparing stimulus-responsive actuators and outlines directions for further development in fields such as ocean energy exploration and surface reconnaissance.展开更多
Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable...Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.展开更多
As drug-resistant bacterial infections escalate and antimicrobial resources become insufficient,new alternative therapies are critical.The emergence of nano drug delivery system,in addition to giving drugs sustained,t...As drug-resistant bacterial infections escalate and antimicrobial resources become insufficient,new alternative therapies are critical.The emergence of nano drug delivery system,in addition to giving drugs sustained,targeted or longer half-life characteristics,also plays an important role in improving the therapeutic effect and reducing the toxic side effects of conventional drugs.Despite its potential benefits,the traditional nanomedical drug delivery system has some practical limitations,including incomplete and slow drug release,as well as insufficient accumulation at infection sites.Stimuli responsive nanoplatforms are hence developed to overcome the disadvantages of conventional nanoparticles,which can provide several advantages like:enhancing the pharmacokinetics and biodistribution of antimicrobial drugs,increasing their effective bioavailability,reducing their dosage frequency,and improving their antimicrobial efficacy against biofilm-related infections,while slowing down the development of antimicrobial resistance,which is expected to trigger a medical revolution in the field of human health,thus bringing huge clinical benefits.In this review,we provide an extensive review of the recent progress of endogenous and exogenous stimuli-responsive nanoplatforms in the antibacterial area.Using specific infectious microenvironments(pH,enzymes,reactive oxygen species and toxins),this review systematically presents the design principles of nano delivery systems and the mechanisms by which endogenous stimuli induce changes in the morphology or properties of delivery systems to achieve programmed drug release.Furthermore,exogenous stimuli such as light,heat,and magnetic fields can also control the release of drugs.Last but not least,we discussed the challenges and opportunities for future clinical translation of stimuli-responsive nanoplatforms in bacterial infections.展开更多
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense fo...Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.展开更多
A fluorescent supramolecular polymer network with an excellent triple-stimuli responsive property based on metal-ligand coordination and host-vip interactions has been constructed from a terpyridine-monofunctionaliz...A fluorescent supramolecular polymer network with an excellent triple-stimuli responsive property based on metal-ligand coordination and host-vip interactions has been constructed from a terpyridine-monofunctionalized leaning tower[6]arene,a tetraphenylethylene AIEgen,and a bridging coordination ion(Zn^2+).Addition of competitive binding agents,trifluoroacetic acid,and/or pillar[5]arene can break the metal coordination and/or host-vip inclusion complexation,and thermal heating can weaken the non-covalent interactions in the supramolecular polymer gel,all leading to the gel-to-sol transition.展开更多
Atherosclerosis(AS), mainly caused by the changed immune system functions and inflammation, is the central pathogenesis of cardiovascular disease, which is a leading cause of death in the world. In modern medicine, th...Atherosclerosis(AS), mainly caused by the changed immune system functions and inflammation, is the central pathogenesis of cardiovascular disease, which is a leading cause of death in the world. In modern medicine, the development of carriers precisely delivering the therapeutic agents to the target sites is the primary goal, which could minimize the potential adverse effects and be more effective in treating lesions. Due to the precise location, real-time monitoring, AS microenvironment response, and low toxicity, stimuli-responsive nano-based drug delivery systems(NDDSs) have been a promising approach in AS treatments. Herein, we will systematically summarize the recent advances in stimuli-responsive NDDSs for AS treatment, including internal stimuli(reactive oxygen species, enzyme, shear stress, and pH) and external stimuli(light, ultrasound, and magnetism) responsive NDDSs. Besides, we will also summarize in detail the classification of stimuli-responsive NDDSs for AS, such as organic NDDSs(e.g., lipid-based and polymer-based nanomaterials), inorganic NDDSs(e.g., metal-based nanoparticles and nonmetallic nanomaterials), and composite multifunctional NDDSs. Finally, the critical challenges and prospects of this field will also be proposed and discussed.展开更多
Responsive emulsions are the emulsions that can be reversibly switched on-demand between“stable”and“unstable”by environmental stimulus or trigger,which allows a simple and effective adjustment approach to achieve ...Responsive emulsions are the emulsions that can be reversibly switched on-demand between“stable”and“unstable”by environmental stimulus or trigger,which allows a simple and effective adjustment approach to achieve emulsification and demulsification.In recent years,stimuli-responsive emulsions acting as smart soft material are received considerable attention with the advantages of simple manipulation,good reversibility,low cost,easy treatment,and little effect on the system.In this paper,the recent research progress of emulsions that can respond to external stimuli,including pH,light,magnetic field,CO_(2)/N_(2) and dual responsive are reviewed.Also,the potential applications based on responsive emulsion are discussed,such as catalytic reactions,heavy oil recovery,polymer particles synthesis and optical sensor,aiming to summarize the latest achievements and put forward the possible development trends of responsive emulsions.展开更多
D-a-tocopherol polyethylene glycol 1000 succinate(TPGS)is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA.It's widely applied as a multifunctional drug carrier for nanomedicine.The advantages of...D-a-tocopherol polyethylene glycol 1000 succinate(TPGS)is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA.It's widely applied as a multifunctional drug carrier for nanomedicine.The advantages of TPGS include P-glycoprotein(P-gp)inhibition,penetration promotion,apoptosis induction via mitochondrial-associated apoptotic pathways,multidrug resistant(MDR)reversion,metastasis inhibition and so on.TPGS-based drug delivery systems which are responding to extermal stimulus can combine the inhibitory functions of TPGS towards P-gp with the environmentally responsive controlled release property and thus exerts a synergistic anti-cancer effect,through increased intracellular drug concentration in tumors cells and well-controlled drug release behavior.In this review,TPGS-based nano-sized delivery systems responsive to different stimuli were summarized and discussed,including pH-responsive,redox-responsive and multi-responsive systems in various formulations.The achievements,mechanisms and diffcrent characteristics of TPGS-bascd stimuli-responsive drug-delivery systems in tumor therapy were also outlined.展开更多
Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functiona...Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.展开更多
Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration duri...Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration during grafting polymerization. The results from pressure drop measurement of the mobile phase flowed cross the membrane demonstrate that an appropriate grafting ratio would be 8%-10%. Protein adsorption on the membrane through hydrophobic interaction could be promoted by increasing temperature and lyotropic salt concentration. The effect of grafted polymer structure on protein binding performance was studied. Filter paper grafted with NIPAM-based branched copolymer consisting of hydrophobic monomer moieties shows ten times higher protein binding capacity than that of the original filter paper. The separation of plasma proteins using the dual stimuli-responsive membrane was examined to demonstrate feasible application for hydrophobic interaction chromatographic separation of proteins.展开更多
As a basic functional unit,living cell with sophisticated structures play an indispensable role in life activities.Since the abnormality of important molecules inside cells is closely related to diseases,the dynamic a...As a basic functional unit,living cell with sophisticated structures play an indispensable role in life activities.Since the abnormality of important molecules inside cells is closely related to diseases,the dynamic analysis and spatio-temporal monitoring of specific molecules in living cells can provide precious information for the diagnosis and treatment of diseases.More recently,DNA has not only been recognized as the carrier of genetic information,but has also used as a robust building block for the assembly of multitudinous nanoscale structures due to the intrinsic advantages of high programmability of classic Watson–Crick base-pairing rule.Intensive study promotes the rapid progress of nanotechnology in various fields,such as bioimaging,diagnosis,and therapeutics.Among numerous well-defined DNA nanomaterials,DNA nanomachines have been widely exploited in cell imaging owing to their desirable ability to achieve high-resolution temporal and spatial images in response to endogenous or exogenous stimuli.In brief,elaborate DNA nanomachines can undergo structural changes upon the stimuli of target analytes or environmental factors,resulting in rapid increase or reduction of output signals and thereby indirectly reflecting the expression level of targets.DNA nanomachines with high sensitivity and specificity contribute to the recognition of diseased tissues.In this review,we introduce the basic assembly modules of DNA nanomachines and summarize the recent advances in dynamic DNA nanomachines for diseased-cell imaging.Finally,the current challenges and future directions of DNA nanomachines for bioimaging are discussed.展开更多
A stimuli-responsive supramolecular polymer network(G-(CN)_(2)⊂BXDSP5)with aggregation-induced emission(AIE)properties has been efficiently constructed by host-vip interactions between pillar[5]arene derivative BXDS...A stimuli-responsive supramolecular polymer network(G-(CN)_(2)⊂BXDSP5)with aggregation-induced emission(AIE)properties has been efficiently constructed by host-vip interactions between pillar[5]arene derivative BXDSP5 and a homoditopic vip G-(CN)_(2),which shows not only excellent fluorescence properties due to the AIE effect but also desirable ion-sensing abilities in both solution and solid states,holding great potential in the applicable fluorescence detection for Fe^(3+).The resultant G-(CN)_(2)⊂BXDSP5 can be transformed into supramolecular polymer gel at high concentration via multiple noncovalent interactions,showing multi-stimuli-responsiveness in response to temperature change,mechanical force,and competitive agent.Meanwhile,the xerogel of supramolecular polymer material has been successfully used to remove Fe^(3+)from water with high adsorption efficiency.In addition,an ionresponsive film based on supramolecular polymer has also been developed,which can serve as a practical and convenient fluorescence test kit for detecting Fe^(3+).展开更多
Cancer has become a very serious challenge with aging of the human population.Advances in nanotechnology have provided new perspectives in the treatment of cancer.Through the combination of nanotechnology and therapeu...Cancer has become a very serious challenge with aging of the human population.Advances in nanotechnology have provided new perspectives in the treatment of cancer.Through the combination of nanotechnology and therapeutics,nanomedicine has been successfully used to treat cancer in recent years.In terms of nanomedicine,nanocarriers play a key role in delivering therapeutic agents,reducing severe side effects,simplifying the administration scheme,and improving therapeutic efficacies.Modulations of the structure and function of nanocarriers for improved therapeutic efficacy in cancer have attracted increasing attention in recent years.Stimuli-responsive nanocarriers penetrate deeply into tissues and respond to external or internal stimuli by releasing the therapeutic agent for cancer therapy.Notably,stimuli-responsive nanocarriers reduce the severe side effects of therapeutic agents,when compared with systemic chemotherapy,and achieve controlled drug release at tumor sites.Therefore,the development of stimuli-responsive nanocarriers plays a crucial role in drug delivery for cancer therapy.This article focuses on the development of nanomaterials with stimuli-responsive properties for use as nanocarriers,in the last few decades.These nanocarriers are more effective at delivering the therapeutic agent under the control of external or internal stimuli.Furthermore,nanocarriers with theranostic features have been designed and fabricated to confirm their great potential in achieving effective treatment of cancer,which will provide us with better choices for cancer therapy.展开更多
Smart coating for corrosion protection of metal materials(steel,magnesium,aluminum and their alloys)has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasi...Smart coating for corrosion protection of metal materials(steel,magnesium,aluminum and their alloys)has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasing functional molecules(healing agents or corrosion inhibitors)on demand from delivery vehicle,that is,micro/nanocontainer made up of a shell and core material or a coating layer,in a controllable manner.Herein,we summarize the recent achievements during the last 10 years in the field of the micro/nanocontainer with different types of stimuli-responsive properties,i.e.,pH,electrochemical potential,redox,aggressive corrosive ions,heat,light,magnetic field,and mechanical impact,for smart anticorrosion coating.The state-of-the-art design and fabrication of micro/nanocontainer are emphasized with detailed examples.展开更多
The world has been dealing with a novel severe acute respiratory syndrome(SARS-CoV-2)since the end of 2019,which threatens the lives of many peopleworldwide.COVID-19 causes respiratory infection with different symptom...The world has been dealing with a novel severe acute respiratory syndrome(SARS-CoV-2)since the end of 2019,which threatens the lives of many peopleworldwide.COVID-19 causes respiratory infection with different symptoms,from sneezing and coughing to pneumonia and sometimes gastric symptoms.Researchers worldwide are actively developing novel drug delivery systems(DDSs),such as stimuli-responsive DDSs.The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating“smart”DDS that can effectively control dosage,sustained release,individual variations,and targeted delivery.To conduct a comprehensive literature survey for this article,the terms“Stimuli-responsive”,“COVID-19”and“Drug delivery”were searched on databases/search engines like“Google Scholar”,“NCBI”,“PubMed”,and“Science Direct”.Many different types of DDSs have been proposed,including those responsive to various exogenous(light,heat,ultrasound andmagnetic field)or endogenous(microenvironmental changes in pH,ROS and enzymes)stimuli.Despite significant progress in DDS research,several challenging issues must be addressed to fill the gaps in the literature.Therefore,this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.展开更多
Organic chromic materials that respond to external stimuli, especially in the solid state, have sparked extensive interest owing to their potential use as smart materials. In particular, the availability of chromic ma...Organic chromic materials that respond to external stimuli, especially in the solid state, have sparked extensive interest owing to their potential use as smart materials. In particular, the availability of chromic materials, which emit fluorescence or phosphorescence in the deep penetrating, near-infrared(NIR)region, has led to great improvements in imaging. Various methods that were commonly applied to construct chromic materials, have been reformed to develop the novel type of compounds, and some have received rewards with excellent fingdings. Relevant research achievements of practical applications have showed their potential with the changes that locate in the NIR region, while further in-depth explorations about the inherent chromic chromism are underway. In this review, several representative studies, which have led the development of responsive organic chromic materials with near-infrared emission, will be discussed.展开更多
Amphiphilic polymers with self-assembling abilities and stimuliresponsive functionalities have drawn significant interest as nanotransport systems for biomedical applications.In this study,we have designed and develop...Amphiphilic polymers with self-assembling abilities and stimuliresponsive functionalities have drawn significant interest as nanotransport systems for biomedical applications.In this study,we have designed and developed dualstimuli-responsive multi-amphiphilic polymeric architectures using easily available biocompatible starting materials.We copolymerized poly(ethylene glycol)[bis-(carboxymethyl)ether]diethylester(PEG-diester)and 3,3′-((2-azidopropane-1,3-diyl)bis(oxy))bis(propane-1,2-diol)(azido-triglycerol)using a biocatalyst,and the copolymer so obtained was grafted with azobenzene and polyglycerol dendron moieties to generate multi-amphiphilic polymeric architectures.The self-assembly and cargo encapsulation behaviors of the synthesized polymers were studied by encapsulating Nile red,a model hydrophobic probe.The controlled release of encapsulated Nile red was investigated by irradiation with UV light or exposure to lipase.The studied nanocarrier exhibited a slow release of Nile red,up to 72%in 10 days in the presence of lipase;however,only an insignificant release was observed in the absence of enzyme.Though the light induced release was found to proceed to a lesser extent,it was faster compared to lipase mediated release.Experimental data established the excellent capabilities of these systems as drug delivery nanocarriers by being non-cytotoxic up to a concentration of 500μg/mL for 72 h.The cellular uptake study of the Nile red encapsulated polymers by confocal laser scanning microscopy suggested that such polymeric architectures may find potential applications as stimuli-responsive nanocarriers.展开更多
Numerous reports have demonstrated the construction of supramolecular nanodrugs(SNDs)via theπ-πstacking of drug molecules for antitumor applications because most drugs possess aromatic rings or other planar conjugat...Numerous reports have demonstrated the construction of supramolecular nanodrugs(SNDs)via theπ-πstacking of drug molecules for antitumor applications because most drugs possess aromatic rings or other planar conjugate units.However,the destruction ofπ-πstacking and the subsequent disassembly of SNDs under tumor microenvironment(TME),which is the precondition for drug release,have not been clearly described.In this work,based on a disassembly model ofπ-πstacked naphthoquinone SNDs,the influence of co-assembled drugs on disassembly is delineated.Both the experimental observation and computational simulation indicate that the disassembly of SNDs under simulated TME highly depends on the disassembly activation energy(ΔE_(dis))of neighboringπ-πstacked molecules.Owing to the highΔE_(dis),the disassembly of self-assembled naphthoquinone SNDs is greatly restricted.Meaningfully,theΔE_(dis)is the sum of a series of activation energy according to the specific stimuli of TME.Thus,a concept of stimuli-responsive drug-mates is proposed for boosting the disassembly ofπ-πstacked SNDs,namely the foremost co-assembly ofπ-conjugated drugs with additional drug molecules that possess relatively weakπ-πinteraction but high TME responsiveness.Further computational simulation reveals that the introduction of stimuli-responsive drug-mates significantly lowers theΔE_(dis),thus accelerating the disassembly of SNDs and the release of drug payloads.Holding the advantages ofπ-conjugated drug library,the concept of stimuli-responsive drug-mates gives an extensive design ofπ-πstacked SNDs toward heterogeneous nidus microenvironment responsiveness,which highlights the superiority of widely used drug co-assembly strategy in constructing multifunctional SNDs.展开更多
Currently,chemotherapy is the main clinical therapy of tumors.Depressingly,most chemotherapeutic drugs such as doxorubicin and paclitaxel(PTX)have poor water solubility,leading to low bioavailability and serious side ...Currently,chemotherapy is the main clinical therapy of tumors.Depressingly,most chemotherapeutic drugs such as doxorubicin and paclitaxel(PTX)have poor water solubility,leading to low bioavailability and serious side effects.Till now,although a variety of nanoparticulate drug delivery systems have been designed to ameliorate the above disadvantage of chemotherapy drugs,their application is still severely limited due to the complex preparation,poor stability,low drug loading,and premature drug release.Herein,a metal phenolic network-based drug delivery system with superior stability,satisfactory drug loading capacity,good biocompatibility,reduced undesired premature release,and excellent anti-tumor ability has been established for achieving step-by-step multiple stimuli-responsive drug delivery.Firstly,the redox-responsive dimeric paclitaxel(diPTX)prodrug was synthesized.Then diPTX@Fe&tannic acid(diPTX@Fe&TA)complex nanoparticles with satisfactory PTX loading capacity were obtained by deposition of Fe&TA network complex on the nanocore of diPTX rapidly with a simple method.The diPTX@Fe&TA nanoparticles have a hydrodynamic diameter of 152.6±1.2 nm,long-term colloidal stability,and high PTX loading content of 24.7%.Besides,diPTX@Fe&TA could expose to the acidic lysosomal environment and the reduction cytoplasmic environment continuously,resulting in the sequential release of diPTX and PTX when it was phagocytosed by tumor cells.Meanwhile,PTX showed almost no release under physiological condition(pH 7.4),which effectively inhibited the undesirable premature release of PTX.More importantly,diPTX@Fe&TA could suppress the growth of tumor effectively in vivo,along with negligible toxicity for organs.This work developed a simple and novel approach for the construction of a stepwise multiple stimuli-responsive drug delivery system with superior stability and satisfactory drug loading capacity to inhibit tumor growth effectively.展开更多
文摘In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.
基金supported by the National Key Research and Development Program of China(2022YFB4703401)the Ministry of Education Joint Fund(8091B032250)the Fundamental Research Funds for the Central Universities(B240205045)。
文摘Flexible underwater vehicles with high maneuverability,high efficiency,high speed,and low disturbance have shown great application potential and research significance in underwater engineering,ocean exploration,scientific investigation and other fields.The research and development of flexible stimulus-responsive actuators is key to the development of high-performance underwater vehicles.At present,the main drive methods for underwater devices include electric drive,magnetic drive,light drive,thermal drive,and chemical drive.In this work,the research progress of stimuli-responsive actuators in water environment is reviewed from the stimuli-responsive patterns,functional design,fabrication methods,and applications in water environment.Firstly,the actuation principles and characteristics of electro-responsive,magnetic-responsive,photo-responsive,thermo-responsive actuators,and chemically responsive actuators are reviewed.Subsequently,several design requirements for the desired flexible actuators are introduced.After that,the common fabrication methods are summarized.The typical application of the stimuli-responsive actuator in the water environment is further discussed in combination with the multi-stimuli-responsive characteristics.Finally,the challenges faced by the application of stimuli-responsive actuators in the water environment are analyzed,and the corresponding viewpoints are presented.This review offers guidance for designing and preparing stimulus-responsive actuators and outlines directions for further development in fields such as ocean energy exploration and surface reconnaissance.
基金supported by Hong Kong Research Grants Council(11307421,11301220,and 11304719)Health and Medical Research Fund(09203576 and 07181396)+2 种基金National Science Foundation of China(21574109 and 217780430)The Science and Technology Innovation Committee of Shenzhen Municipality(JCYJ20190812160203619)City University of Hong Kong 7005832 and 7006006.
文摘Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.
基金the Natural Science Foundation of Hubei Province,China(2021CFB468)Sci-tech Innovation Foundation of Huazhong Agriculture University(2662020LXPY007)National Key Research and Development Program of China(2021YFD1400800).
文摘As drug-resistant bacterial infections escalate and antimicrobial resources become insufficient,new alternative therapies are critical.The emergence of nano drug delivery system,in addition to giving drugs sustained,targeted or longer half-life characteristics,also plays an important role in improving the therapeutic effect and reducing the toxic side effects of conventional drugs.Despite its potential benefits,the traditional nanomedical drug delivery system has some practical limitations,including incomplete and slow drug release,as well as insufficient accumulation at infection sites.Stimuli responsive nanoplatforms are hence developed to overcome the disadvantages of conventional nanoparticles,which can provide several advantages like:enhancing the pharmacokinetics and biodistribution of antimicrobial drugs,increasing their effective bioavailability,reducing their dosage frequency,and improving their antimicrobial efficacy against biofilm-related infections,while slowing down the development of antimicrobial resistance,which is expected to trigger a medical revolution in the field of human health,thus bringing huge clinical benefits.In this review,we provide an extensive review of the recent progress of endogenous and exogenous stimuli-responsive nanoplatforms in the antibacterial area.Using specific infectious microenvironments(pH,enzymes,reactive oxygen species and toxins),this review systematically presents the design principles of nano delivery systems and the mechanisms by which endogenous stimuli induce changes in the morphology or properties of delivery systems to achieve programmed drug release.Furthermore,exogenous stimuli such as light,heat,and magnetic fields can also control the release of drugs.Last but not least,we discussed the challenges and opportunities for future clinical translation of stimuli-responsive nanoplatforms in bacterial infections.
基金the financial support from the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(52103196 and 52073060)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021B1515120054)the Shenzhen Fundamental Research Program(JCYJ20190813152616459 and JCYJ20210324133214038)。
文摘Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
基金the National Natural Science Foundation of China (No. 21871108) for financial support
文摘A fluorescent supramolecular polymer network with an excellent triple-stimuli responsive property based on metal-ligand coordination and host-vip interactions has been constructed from a terpyridine-monofunctionalized leaning tower[6]arene,a tetraphenylethylene AIEgen,and a bridging coordination ion(Zn^2+).Addition of competitive binding agents,trifluoroacetic acid,and/or pillar[5]arene can break the metal coordination and/or host-vip inclusion complexation,and thermal heating can weaken the non-covalent interactions in the supramolecular polymer gel,all leading to the gel-to-sol transition.
基金financial support from the Young Elite Scientists Sponsorship Program by Tianjin (No. 0701320001)Major Special Project of Tianjin (No. 0402080005)+1 种基金Program for Excellent Innovative Talents in Universities of Hebei Province (No. BJ2021019)Vietnam National University,Ho Chi Minh City (VNU-HCM,NCM2020-28-01)。
文摘Atherosclerosis(AS), mainly caused by the changed immune system functions and inflammation, is the central pathogenesis of cardiovascular disease, which is a leading cause of death in the world. In modern medicine, the development of carriers precisely delivering the therapeutic agents to the target sites is the primary goal, which could minimize the potential adverse effects and be more effective in treating lesions. Due to the precise location, real-time monitoring, AS microenvironment response, and low toxicity, stimuli-responsive nano-based drug delivery systems(NDDSs) have been a promising approach in AS treatments. Herein, we will systematically summarize the recent advances in stimuli-responsive NDDSs for AS treatment, including internal stimuli(reactive oxygen species, enzyme, shear stress, and pH) and external stimuli(light, ultrasound, and magnetism) responsive NDDSs. Besides, we will also summarize in detail the classification of stimuli-responsive NDDSs for AS, such as organic NDDSs(e.g., lipid-based and polymer-based nanomaterials), inorganic NDDSs(e.g., metal-based nanoparticles and nonmetallic nanomaterials), and composite multifunctional NDDSs. Finally, the critical challenges and prospects of this field will also be proposed and discussed.
基金supported by the National Natural Science Foun-dation of China(21908026)the Fujian Province science and tech-nology guidance project(2021Y0007)Key Program of Qingyuan Innovation Laboratory(00221004).
文摘Responsive emulsions are the emulsions that can be reversibly switched on-demand between“stable”and“unstable”by environmental stimulus or trigger,which allows a simple and effective adjustment approach to achieve emulsification and demulsification.In recent years,stimuli-responsive emulsions acting as smart soft material are received considerable attention with the advantages of simple manipulation,good reversibility,low cost,easy treatment,and little effect on the system.In this paper,the recent research progress of emulsions that can respond to external stimuli,including pH,light,magnetic field,CO_(2)/N_(2) and dual responsive are reviewed.Also,the potential applications based on responsive emulsion are discussed,such as catalytic reactions,heavy oil recovery,polymer particles synthesis and optical sensor,aiming to summarize the latest achievements and put forward the possible development trends of responsive emulsions.
基金This study was supported by the National Natural Science Foundation of China(No.81871473)and the Natural Science Foundation of Zhejiang Chinese Medical University(No.2018ZZ11).
文摘D-a-tocopherol polyethylene glycol 1000 succinate(TPGS)is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA.It's widely applied as a multifunctional drug carrier for nanomedicine.The advantages of TPGS include P-glycoprotein(P-gp)inhibition,penetration promotion,apoptosis induction via mitochondrial-associated apoptotic pathways,multidrug resistant(MDR)reversion,metastasis inhibition and so on.TPGS-based drug delivery systems which are responding to extermal stimulus can combine the inhibitory functions of TPGS towards P-gp with the environmentally responsive controlled release property and thus exerts a synergistic anti-cancer effect,through increased intracellular drug concentration in tumors cells and well-controlled drug release behavior.In this review,TPGS-based nano-sized delivery systems responsive to different stimuli were summarized and discussed,including pH-responsive,redox-responsive and multi-responsive systems in various formulations.The achievements,mechanisms and diffcrent characteristics of TPGS-bascd stimuli-responsive drug-delivery systems in tumor therapy were also outlined.
基金supported by the National Natural Science Foundation of China (No.51773190 and No.51973206)。
文摘Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.
基金financially supported by the China Scholarship Council and the National Natural Science Foundation of China(No.20874004)
文摘Thermal and salt dual stimuli-responsive filter-paper-based membranes were prepared by UV-induced grafting of NIPAM-based polymers on paper surface. The grafting ratio could be controlled by monomer concentration during grafting polymerization. The results from pressure drop measurement of the mobile phase flowed cross the membrane demonstrate that an appropriate grafting ratio would be 8%-10%. Protein adsorption on the membrane through hydrophobic interaction could be promoted by increasing temperature and lyotropic salt concentration. The effect of grafted polymer structure on protein binding performance was studied. Filter paper grafted with NIPAM-based branched copolymer consisting of hydrophobic monomer moieties shows ten times higher protein binding capacity than that of the original filter paper. The separation of plasma proteins using the dual stimuli-responsive membrane was examined to demonstrate feasible application for hydrophobic interaction chromatographic separation of proteins.
基金supported by National Natural Science Foundation of China(NSFC)(grant NO:22174020).
文摘As a basic functional unit,living cell with sophisticated structures play an indispensable role in life activities.Since the abnormality of important molecules inside cells is closely related to diseases,the dynamic analysis and spatio-temporal monitoring of specific molecules in living cells can provide precious information for the diagnosis and treatment of diseases.More recently,DNA has not only been recognized as the carrier of genetic information,but has also used as a robust building block for the assembly of multitudinous nanoscale structures due to the intrinsic advantages of high programmability of classic Watson–Crick base-pairing rule.Intensive study promotes the rapid progress of nanotechnology in various fields,such as bioimaging,diagnosis,and therapeutics.Among numerous well-defined DNA nanomaterials,DNA nanomachines have been widely exploited in cell imaging owing to their desirable ability to achieve high-resolution temporal and spatial images in response to endogenous or exogenous stimuli.In brief,elaborate DNA nanomachines can undergo structural changes upon the stimuli of target analytes or environmental factors,resulting in rapid increase or reduction of output signals and thereby indirectly reflecting the expression level of targets.DNA nanomachines with high sensitivity and specificity contribute to the recognition of diseased tissues.In this review,we introduce the basic assembly modules of DNA nanomachines and summarize the recent advances in dynamic DNA nanomachines for diseased-cell imaging.Finally,the current challenges and future directions of DNA nanomachines for bioimaging are discussed.
基金the Jilin Province University Cooperative Construction Project-Special Funds for New Materials(No.SXGJSF2017-3)for financial support。
文摘A stimuli-responsive supramolecular polymer network(G-(CN)_(2)⊂BXDSP5)with aggregation-induced emission(AIE)properties has been efficiently constructed by host-vip interactions between pillar[5]arene derivative BXDSP5 and a homoditopic vip G-(CN)_(2),which shows not only excellent fluorescence properties due to the AIE effect but also desirable ion-sensing abilities in both solution and solid states,holding great potential in the applicable fluorescence detection for Fe^(3+).The resultant G-(CN)_(2)⊂BXDSP5 can be transformed into supramolecular polymer gel at high concentration via multiple noncovalent interactions,showing multi-stimuli-responsiveness in response to temperature change,mechanical force,and competitive agent.Meanwhile,the xerogel of supramolecular polymer material has been successfully used to remove Fe^(3+)from water with high adsorption efficiency.In addition,an ionresponsive film based on supramolecular polymer has also been developed,which can serve as a practical and convenient fluorescence test kit for detecting Fe^(3+).
基金supported by China Postdoctoral Science Foundation(Grant No.2018M632795)the National Natural Science Foundation of China(Grant No.21704093)。
文摘Cancer has become a very serious challenge with aging of the human population.Advances in nanotechnology have provided new perspectives in the treatment of cancer.Through the combination of nanotechnology and therapeutics,nanomedicine has been successfully used to treat cancer in recent years.In terms of nanomedicine,nanocarriers play a key role in delivering therapeutic agents,reducing severe side effects,simplifying the administration scheme,and improving therapeutic efficacies.Modulations of the structure and function of nanocarriers for improved therapeutic efficacy in cancer have attracted increasing attention in recent years.Stimuli-responsive nanocarriers penetrate deeply into tissues and respond to external or internal stimuli by releasing the therapeutic agent for cancer therapy.Notably,stimuli-responsive nanocarriers reduce the severe side effects of therapeutic agents,when compared with systemic chemotherapy,and achieve controlled drug release at tumor sites.Therefore,the development of stimuli-responsive nanocarriers plays a crucial role in drug delivery for cancer therapy.This article focuses on the development of nanomaterials with stimuli-responsive properties for use as nanocarriers,in the last few decades.These nanocarriers are more effective at delivering the therapeutic agent under the control of external or internal stimuli.Furthermore,nanocarriers with theranostic features have been designed and fabricated to confirm their great potential in achieving effective treatment of cancer,which will provide us with better choices for cancer therapy.
基金the National Natural Science Foundation of China (Nos.41576079,41922040)the Qingdao National Laboratory for Marine Science and Technology (No.QNLM20160RP0413)the AoShan Talent Program Supported by Qingdao National Laboratory for Marine Science and Technology (No.2017ASTCP-ES02)
文摘Smart coating for corrosion protection of metal materials(steel,magnesium,aluminum and their alloys)has drawn great attention because of their capacity to prevent crack propagation in the protective coating by releasing functional molecules(healing agents or corrosion inhibitors)on demand from delivery vehicle,that is,micro/nanocontainer made up of a shell and core material or a coating layer,in a controllable manner.Herein,we summarize the recent achievements during the last 10 years in the field of the micro/nanocontainer with different types of stimuli-responsive properties,i.e.,pH,electrochemical potential,redox,aggressive corrosive ions,heat,light,magnetic field,and mechanical impact,for smart anticorrosion coating.The state-of-the-art design and fabrication of micro/nanocontainer are emphasized with detailed examples.
基金the financial support of Isfahan University of Medical Sciences by grant No.#199180.
文摘The world has been dealing with a novel severe acute respiratory syndrome(SARS-CoV-2)since the end of 2019,which threatens the lives of many peopleworldwide.COVID-19 causes respiratory infection with different symptoms,from sneezing and coughing to pneumonia and sometimes gastric symptoms.Researchers worldwide are actively developing novel drug delivery systems(DDSs),such as stimuli-responsive DDSs.The ability of these carriers to respond to external/internal and even multiple stimuli is essential in creating“smart”DDS that can effectively control dosage,sustained release,individual variations,and targeted delivery.To conduct a comprehensive literature survey for this article,the terms“Stimuli-responsive”,“COVID-19”and“Drug delivery”were searched on databases/search engines like“Google Scholar”,“NCBI”,“PubMed”,and“Science Direct”.Many different types of DDSs have been proposed,including those responsive to various exogenous(light,heat,ultrasound andmagnetic field)or endogenous(microenvironmental changes in pH,ROS and enzymes)stimuli.Despite significant progress in DDS research,several challenging issues must be addressed to fill the gaps in the literature.Therefore,this study reviews the drug release mechanisms and applications of endogenous/exogenous stimuli-responsive DDSs while also exploring their potential with respect to COVID-19.
基金the National Natural Science Foundation of China (Nos. 21676113, 21402057, 21772054, 21472059)Distinguished Young Scholar of Hubei Province (No. 2018CFA079)+5 种基金Youth Chen-Guang Project of Wuhan (No. 2016070204010098) for the financial supportsupported by the 111 Project (No. B17019)the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology (Shenzhen), the State Key Laboratory of Materials-Oriented Chemical Engineering (No. KL17-10)Open Project Fund of Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Yanbian University (No. NRFM201701)Ministry of Education, the foundation of Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University (No. JDSJ2017-07)self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (No. CCNU18TS012)
文摘Organic chromic materials that respond to external stimuli, especially in the solid state, have sparked extensive interest owing to their potential use as smart materials. In particular, the availability of chromic materials, which emit fluorescence or phosphorescence in the deep penetrating, near-infrared(NIR)region, has led to great improvements in imaging. Various methods that were commonly applied to construct chromic materials, have been reformed to develop the novel type of compounds, and some have received rewards with excellent fingdings. Relevant research achievements of practical applications have showed their potential with the changes that locate in the NIR region, while further in-depth explorations about the inherent chromic chromism are underway. In this review, several representative studies, which have led the development of responsive organic chromic materials with near-infrared emission, will be discussed.
基金Financial support from the Institute of Eminence(IoE/2024-25/12/FRP)University of Delhi,is gratefully acknowledged.
文摘Amphiphilic polymers with self-assembling abilities and stimuliresponsive functionalities have drawn significant interest as nanotransport systems for biomedical applications.In this study,we have designed and developed dualstimuli-responsive multi-amphiphilic polymeric architectures using easily available biocompatible starting materials.We copolymerized poly(ethylene glycol)[bis-(carboxymethyl)ether]diethylester(PEG-diester)and 3,3′-((2-azidopropane-1,3-diyl)bis(oxy))bis(propane-1,2-diol)(azido-triglycerol)using a biocatalyst,and the copolymer so obtained was grafted with azobenzene and polyglycerol dendron moieties to generate multi-amphiphilic polymeric architectures.The self-assembly and cargo encapsulation behaviors of the synthesized polymers were studied by encapsulating Nile red,a model hydrophobic probe.The controlled release of encapsulated Nile red was investigated by irradiation with UV light or exposure to lipase.The studied nanocarrier exhibited a slow release of Nile red,up to 72%in 10 days in the presence of lipase;however,only an insignificant release was observed in the absence of enzyme.Though the light induced release was found to proceed to a lesser extent,it was faster compared to lipase mediated release.Experimental data established the excellent capabilities of these systems as drug delivery nanocarriers by being non-cytotoxic up to a concentration of 500μg/mL for 72 h.The cellular uptake study of the Nile red encapsulated polymers by confocal laser scanning microscopy suggested that such polymeric architectures may find potential applications as stimuli-responsive nanocarriers.
基金supported by the Science and Technology Development Program of Jilin Province(Grant Number***202302001)the Science and Technology Development Program of Changchun City(Grant Number 23***13),and the Special Project from MOST of China.
文摘Numerous reports have demonstrated the construction of supramolecular nanodrugs(SNDs)via theπ-πstacking of drug molecules for antitumor applications because most drugs possess aromatic rings or other planar conjugate units.However,the destruction ofπ-πstacking and the subsequent disassembly of SNDs under tumor microenvironment(TME),which is the precondition for drug release,have not been clearly described.In this work,based on a disassembly model ofπ-πstacked naphthoquinone SNDs,the influence of co-assembled drugs on disassembly is delineated.Both the experimental observation and computational simulation indicate that the disassembly of SNDs under simulated TME highly depends on the disassembly activation energy(ΔE_(dis))of neighboringπ-πstacked molecules.Owing to the highΔE_(dis),the disassembly of self-assembled naphthoquinone SNDs is greatly restricted.Meaningfully,theΔE_(dis)is the sum of a series of activation energy according to the specific stimuli of TME.Thus,a concept of stimuli-responsive drug-mates is proposed for boosting the disassembly ofπ-πstacked SNDs,namely the foremost co-assembly ofπ-conjugated drugs with additional drug molecules that possess relatively weakπ-πinteraction but high TME responsiveness.Further computational simulation reveals that the introduction of stimuli-responsive drug-mates significantly lowers theΔE_(dis),thus accelerating the disassembly of SNDs and the release of drug payloads.Holding the advantages ofπ-conjugated drug library,the concept of stimuli-responsive drug-mates gives an extensive design ofπ-πstacked SNDs toward heterogeneous nidus microenvironment responsiveness,which highlights the superiority of widely used drug co-assembly strategy in constructing multifunctional SNDs.
基金supported by the National Natural Science Foundation of China(Nos.82060599 and 52003006)the Open Project of Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases,Ministry of Education(No.XN201911)+3 种基金the Natural Science Foundation of Jiangxi Province(No.20202BABL213018)the Science and Technology Project of the Education Department of Jiangxi Province(Nos.GJJ190795 and GJJ190827)the Research Fund of Gannan Medical University(Nos.QD201903,QD201912,ZD201901,YQ202003,and QD201825)Undergraduate Science and Technology Innovation Project of Gannan Medical University(No.BKSZR201903).
文摘Currently,chemotherapy is the main clinical therapy of tumors.Depressingly,most chemotherapeutic drugs such as doxorubicin and paclitaxel(PTX)have poor water solubility,leading to low bioavailability and serious side effects.Till now,although a variety of nanoparticulate drug delivery systems have been designed to ameliorate the above disadvantage of chemotherapy drugs,their application is still severely limited due to the complex preparation,poor stability,low drug loading,and premature drug release.Herein,a metal phenolic network-based drug delivery system with superior stability,satisfactory drug loading capacity,good biocompatibility,reduced undesired premature release,and excellent anti-tumor ability has been established for achieving step-by-step multiple stimuli-responsive drug delivery.Firstly,the redox-responsive dimeric paclitaxel(diPTX)prodrug was synthesized.Then diPTX@Fe&tannic acid(diPTX@Fe&TA)complex nanoparticles with satisfactory PTX loading capacity were obtained by deposition of Fe&TA network complex on the nanocore of diPTX rapidly with a simple method.The diPTX@Fe&TA nanoparticles have a hydrodynamic diameter of 152.6±1.2 nm,long-term colloidal stability,and high PTX loading content of 24.7%.Besides,diPTX@Fe&TA could expose to the acidic lysosomal environment and the reduction cytoplasmic environment continuously,resulting in the sequential release of diPTX and PTX when it was phagocytosed by tumor cells.Meanwhile,PTX showed almost no release under physiological condition(pH 7.4),which effectively inhibited the undesirable premature release of PTX.More importantly,diPTX@Fe&TA could suppress the growth of tumor effectively in vivo,along with negligible toxicity for organs.This work developed a simple and novel approach for the construction of a stepwise multiple stimuli-responsive drug delivery system with superior stability and satisfactory drug loading capacity to inhibit tumor growth effectively.