In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water cr...In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.展开更多
Flexible underwater vehicles with high maneuverability,high efficiency,high speed,and low disturbance have shown great application potential and research significance in underwater engineering,ocean exploration,scient...Flexible underwater vehicles with high maneuverability,high efficiency,high speed,and low disturbance have shown great application potential and research significance in underwater engineering,ocean exploration,scientific investigation and other fields.The research and development of flexible stimulus-responsive actuators is key to the development of high-performance underwater vehicles.At present,the main drive methods for underwater devices include electric drive,magnetic drive,light drive,thermal drive,and chemical drive.In this work,the research progress of stimuli-responsive actuators in water environment is reviewed from the stimuli-responsive patterns,functional design,fabrication methods,and applications in water environment.Firstly,the actuation principles and characteristics of electro-responsive,magnetic-responsive,photo-responsive,thermo-responsive actuators,and chemically responsive actuators are reviewed.Subsequently,several design requirements for the desired flexible actuators are introduced.After that,the common fabrication methods are summarized.The typical application of the stimuli-responsive actuator in the water environment is further discussed in combination with the multi-stimuli-responsive characteristics.Finally,the challenges faced by the application of stimuli-responsive actuators in the water environment are analyzed,and the corresponding viewpoints are presented.This review offers guidance for designing and preparing stimulus-responsive actuators and outlines directions for further development in fields such as ocean energy exploration and surface reconnaissance.展开更多
A novel organic fluorophor with high solid state luminescent efficiency based on 1,4-bis(2,2-di(pyridin-2-yl)- vinyl)benzene (BDP2VB) was designed and synthesized. It emits faintly in solution, but becomes a str...A novel organic fluorophor with high solid state luminescent efficiency based on 1,4-bis(2,2-di(pyridin-2-yl)- vinyl)benzene (BDP2VB) was designed and synthesized. It emits faintly in solution, but becomes a strong emitter in the aggregate state, demonstrating its aggregation induced emission (AIE) property. According to the crystal struc- ture analysis, J-type aggregation was formed in the packing mode of the molecule, which was demonstrated to be beneficial to gain high fluorescent quantum efficiency in solid state. Additionally, the emission color of BDP2VB can change dramatically in solid state as well as in solution by the protonation stimuli.展开更多
Nanotechnology-enabled fertilizers and pesticides,especially those capable of releasing plant nutrients or pesticide active ingredients(AIs)in a controlled manner,can effectively enhance crop nutrition and protection ...Nanotechnology-enabled fertilizers and pesticides,especially those capable of releasing plant nutrients or pesticide active ingredients(AIs)in a controlled manner,can effectively enhance crop nutrition and protection while minimizing the environmental impacts of agricultural activities.Herein,we review the fundamentals and recent advances in nanofertilizers and nanopesticides with controlled-release properties,enabled by nanocarriers responsive to environmental and biological stimuli,including pH change,temperature,light,redox conditions,and the presence of enzymes.For pH-responsive nanocarriers,pH change can induce structural changes or degradation of the nanocarriers or cleave the bonding between nutrients/pesticide AIs and the nanocarriers.Similarly,temperature response typically involves structural changes in nanocarriers,and higher temperatures can accelerate the release by diffusion promoting or bond breaking.Photothermal materials enable responses to infrared light,and photolabile moieties(e.g.,o-nitrobenzyl and azobenzene)are required for achieving ultraviolet light responses.Redox-responsive nanocarriers contain disulfide bonds or ferric iron,whereas enzyme-responsive nanocarriers typically contain the enzyme’s substrate as a building block.For fabricating nanofertilizers,pHresponsive nanocarriers have been well explored,but only a few studies have reported temperature-and enzyme-responsive nanocarriers.In comparison,there have been more reports on nanopesticides,which are responsive to a range of stimuli,including many with dual-or triple-responsiveness.Nano-enabled controlledrelease fertilizers and pesticides show tremendous potential for enhancing the utilization efficiency of nutrients and pesticide AIs.However,to expand their practical applications,future research should focus on optimizing their performance under realistic conditions,lowering costs,and addressing regulatory and public concerns over environmental and safety risks.展开更多
Stimuli-responsive materials have important applications in chemistry and chemical engineering.Here,we synthesized five different polyetheramine-fatty acids(PEFA)ionic liquids(ILs),possessing the dual stimuli-responsi...Stimuli-responsive materials have important applications in chemistry and chemical engineering.Here,we synthesized five different polyetheramine-fatty acids(PEFA)ionic liquids(ILs),possessing the dual stimuli-responsive ability to temperature and CO_(2).These PEFA ILs have reversible lower critical solution temperature(LCST)phase behavior over a wide temperature range of 37-91℃,and reversible heterogeneous-homogeneous phase transition towards the addition and removal of CO_(2).Furthermore,the droplet size of the IL-water mixture system increased from 6.5 to 21.0 nm as the temperature increased from 25 to 56℃,and then recovered to 6.5 nm when the temperature decreased to 25℃.The addition and removal of CO_(2)also reversibly modulated the droplet size of the system.Results from nuclear magnetic resonance(NMR)and Fourier transform infrared(FTIR)spectra further showed that the temperature-dependent conformation of polyether amine chain in the cation dominates the temperature response,while the reversible formation of bicarbonate and fatty acids(FA)from CO_(2)and anion controls the CO_(2)-based reversible phase transition.Molecular simulations revealed a microscopic response mechanism of the IL-water system to temperature and CO_(2),and a synergistic effect between the dual stimuli of temperature and CO_(2).These findings may provide a basis for the rational design and understanding of ILs-based stimuli-responsive materials and nanoreactors.展开更多
Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable...Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.展开更多
High pressure can alter the properties of matter and modulate the excited-state relaxation behavior of materials without chemical intervention.In this study,high pressure was combined with steady-state absorption and ...High pressure can alter the properties of matter and modulate the excited-state relaxation behavior of materials without chemical intervention.In this study,high pressure was combined with steady-state absorption and fluorescence spectroscopy,as well as transient spectroscopy techniques,to investigate its effect on the optical properties of the stimuliresponsive material(2Z,20Z)-2,20-(1,4-phenylene)bis(3-(4-(9H-carbazol-9-yl)phenyl)acrylonitrile)(CzCNDSB).With increasing pressure,the steady-state absorption and fluorescence peaks of CzCNDSB crystals exhibit red shifts,which are fully reversible.At the same time,pressure causes the molecules to pack more closely,leading to an increase in both the number and energy of multiplet self-trapped state,while the energy of local excited state decreases.The steady-state and transient results provide information on electronic energy levels,excited-state dynamics,and other properties of CzCNDSB,which show strong pressure dependence.These findings highlight the potential of CzCNDSB for practical applications such as photodetectors and solar energy conversion.展开更多
Recently,stimuli-responsive nanocarriers capable of precision drug release have garnered significant attention in the field of drug delivery.Here,an in-situ dynamic covalent self-assembled(DCS)strategy was utilized to...Recently,stimuli-responsive nanocarriers capable of precision drug release have garnered significant attention in the field of drug delivery.Here,an in-situ dynamic covalent self-assembled(DCS)strategy was utilized to develop a co-delivery system.This assembly was based on a thiol-disulfide-exchange reaction,producing disulfide macrocycles in an oxidizing aerial environment.These macrocycles encapsulated the anti-cancer drug(paclitaxel,PTX)on the surface of gold nanoparticles,which served as photothermal therapy agents during the self-assembly.In the DCS process,the kinetic control over the concentration of each building unit within the reaction system led to the formation of a stable co-delivery nanosystem with optimal drug-loading efficiency.Notably,the high glutathione(GSH)concentrations in tumor cells caused the disulfide macrocycles in nanostructures to break,resulting in drug release.The stimuli-responsive performances of the prepared nanosystems were determined by observing the molecular structures and drug release.The results revealed that the self-assembled nanosystem exhibited GSH-triggered drug release and good photothermal conversion capability under near-infrared light.Moreover,the in vitro and in vivo results revealed that conjugating the targeting molecule of cRGD with co-delivery nanosystem enhanced its biocompatibility,chemo-photothermal anti-cancer effect.Overall,our findings indicated that in-situ DCS strategy enhanced the control over drug loading during the construction of the co-delivery system,paving a way for the development of more functional carriers in nanomedicine.展开更多
Organic chromic materials that respond to external stimuli, especially in the solid state, have sparked extensive interest owing to their potential use as smart materials. In particular, the availability of chromic ma...Organic chromic materials that respond to external stimuli, especially in the solid state, have sparked extensive interest owing to their potential use as smart materials. In particular, the availability of chromic materials, which emit fluorescence or phosphorescence in the deep penetrating, near-infrared(NIR)region, has led to great improvements in imaging. Various methods that were commonly applied to construct chromic materials, have been reformed to develop the novel type of compounds, and some have received rewards with excellent fingdings. Relevant research achievements of practical applications have showed their potential with the changes that locate in the NIR region, while further in-depth explorations about the inherent chromic chromism are underway. In this review, several representative studies, which have led the development of responsive organic chromic materials with near-infrared emission, will be discussed.展开更多
Nanomaterials provide an ideal platform for biomolecular display due to their dimensions approach the molecular scale,facilitating binding behavior akin to that observed in solution-based processes.DNA nanoprobes hold...Nanomaterials provide an ideal platform for biomolecular display due to their dimensions approach the molecular scale,facilitating binding behavior akin to that observed in solution-based processes.DNA nanoprobes hold great promise as miniature detectives capable of detecting mi RNAs within cells.However,current nanoprobes face a challenge in achieving the required precision for accurate miRNA detection,particularly within the intricate confines of the cellular microenvironment,due to interference with biological autofluorescence,off-target effects,and a lack of spatiotemporal control.Here,we have designed a dual-stimuli responsive DNA tracker,synergistically utilizing specific intracellular cues and external triggers,which enables spatiotemporal-controlled and precise detection and imaging of miRNAs"on demand".The tracker,which combines zeolitic imidazolate framework-67(ZIF-67)and unique hairpin DNA structures,effectively anchored onto the ZIF-67 through electrostatic interactions,remains in a dormant state until activated by abundant cellular ATP,resulting in the release of the hairpin structures that include a PC linker incorporated into the loop region.Subsequent irradiation triggers specific recognition of the target miRNA.The newly developed HP-PC-BT@ZIF-67 tracker demonstrates precise spatiotemporal mi RNA detection and exhibits excellent biocompatibility,enabling specific mi RNA recognition"on demand"within cancer cells.This research presents a reliable mi RNA imaging platform in the intricate cellular environment,opening up the possibilities for precise biomedical analysis and disease diagnosis.展开更多
Diabetic wounds represent a significant challenge in the medical field,significantly impacting patient quality of life and imposing a heavy burden on healthcare systems.Intelligent hydrogel dressings have attracted si...Diabetic wounds represent a significant challenge in the medical field,significantly impacting patient quality of life and imposing a heavy burden on healthcare systems.Intelligent hydrogel dressings have attracted significant attention in diabetic wound treatment due to their unique properties.This review systematically explores the three main categories of intelligent hydrogels(natural,synthetic,and composite),dissecting their composition,structure,and the mechanisms that enable their intelligent responses.The crucial roles of these dressings in maintaining a moist wound environment,efficiently absorbing exudate,and precisely delivering drugs are expounded.Moreover,their application advantages in combating bacteria and infections,regulating inflammation and immunity,promoting angiogenesis and tissue regeneration,as well as enabling real-time monitoring and personalized treatment,are explored in depth.Additionally,we discuss future research directions and the prospects for personalized precision medicine in diabetic wound care,aiming to inspire innovation and provide a comprehensive theoretical basis for the development of nextgeneration intelligent dressings.展开更多
Despite great progress in developing mode-selective light emission technologies based on self-emitting materials,few rewritable displays with modeselective multiple light emissions have been demonstrated.Herein,we pre...Despite great progress in developing mode-selective light emission technologies based on self-emitting materials,few rewritable displays with modeselective multiple light emissions have been demonstrated.Herein,we present a rewritable triple-mode light-emitting display enabled by stimuli-interactive fluorescence(FL),room-temperature phosphorescence(RTP),and electroluminescence(EL).The display comprises coplanar electrodes separated by a gap,a polymer composite with FL inorganic phosphors(EL/FL layer),and a polymer composite with solvent-responsive RTP additives(RTP layer).Upon 254 nm UV exposure,a dual-mode emission of RTP and FL occurs from the RTP and EL/FL layers,respectively.When a polar liquid,besides water,is applied on the display and an AC field is applied between the coplanar electrodes,EL from the EL/FL layer is triggered,and the display operates in a triple mode.Interestingly,when water is applied to the display,the RTP mode is deactivated,rendering the display to operate in a dual mode of FL and EL.By manipulating the evaporation of the applied polar liquids and water,the mode-selective light emission of FL,RTP,and EL is rewritable in the triple-mode display.Additionally,a high-security full-color information encryption display is demonstrated,wherein the information of digital numbers,letters,and Morse code encoded in one optical mode is only deciphered when properly matched with that encoded in the other two modes.Thus,this article outlines a strategy to fulfill the substantial demand for high-security personalized information based on room-temperature multi-light-emitting displays.展开更多
Highly programmable shape morphing of 4D-printed micro/nanostructures is urgently desired for applications in robotics and intelligent systems.However,due to the lack of autonomous holistic strategies throughout the t...Highly programmable shape morphing of 4D-printed micro/nanostructures is urgently desired for applications in robotics and intelligent systems.However,due to the lack of autonomous holistic strategies throughout the target shape input,optimal material distribution generation,and fabrication program output,4D nanoprinting that permits arbitrary shape morphing remains a challenging task for manual design.In this study,we report an autonomous inverse encoding strategy to decipher the genetic code for material property distributions that can guide the encoded modeling toward arbitrarily pre-programmed 4D shape morphing.By tuning the laser power of each voxel at the nanoscale,the genetic code can be spatially programmed and controllable shape morphing can be realized through the inverse encoding process.Using this strategy,the 4D-printed structures can be designed and accurately shift to the target morphing of arbitrarily hand-drawn lines under stimulation.Furthermore,as a proof-of-concept,a flexible fiber micromanipulator that can approach the target region through pre-programmed shape morphing is autonomously inversely encoded according to the localized spatial environment.This strategy may contribute to the modeling and arbitrary shape morphing of micro/nanostructures fabricated via 4D nanoprinting,leading to cutting-edge applications in microfluidics,micro-robotics,minimally invasive robotic surgery,and tissue engineering.展开更多
Herein,an alkyne-terminated acid/base responsive amphiphilic [2]rotaxane shuttle was synthesized,and then modified onto the glass surface through “click” reaction.The XPS N 1s spectrum and contactangle measurement w...Herein,an alkyne-terminated acid/base responsive amphiphilic [2]rotaxane shuttle was synthesized,and then modified onto the glass surface through “click” reaction.The XPS N 1s spectrum and contactangle measurement were performed to prove the successful immobilization.The amphiphilic [2]rotaxane functionalized surface presented controllable wettability responding to external acid-base stimuli.This bistable rotaxane modified material system promoted the practical application of molecular machines.展开更多
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense fo...Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.展开更多
A fluorescent supramolecular polymer network with an excellent triple-stimuli responsive property based on metal-ligand coordination and host-vip interactions has been constructed from a terpyridine-monofunctionaliz...A fluorescent supramolecular polymer network with an excellent triple-stimuli responsive property based on metal-ligand coordination and host-vip interactions has been constructed from a terpyridine-monofunctionalized leaning tower[6]arene,a tetraphenylethylene AIEgen,and a bridging coordination ion(Zn^2+).Addition of competitive binding agents,trifluoroacetic acid,and/or pillar[5]arene can break the metal coordination and/or host-vip inclusion complexation,and thermal heating can weaken the non-covalent interactions in the supramolecular polymer gel,all leading to the gel-to-sol transition.展开更多
Atherosclerosis(AS), mainly caused by the changed immune system functions and inflammation, is the central pathogenesis of cardiovascular disease, which is a leading cause of death in the world. In modern medicine, th...Atherosclerosis(AS), mainly caused by the changed immune system functions and inflammation, is the central pathogenesis of cardiovascular disease, which is a leading cause of death in the world. In modern medicine, the development of carriers precisely delivering the therapeutic agents to the target sites is the primary goal, which could minimize the potential adverse effects and be more effective in treating lesions. Due to the precise location, real-time monitoring, AS microenvironment response, and low toxicity, stimuli-responsive nano-based drug delivery systems(NDDSs) have been a promising approach in AS treatments. Herein, we will systematically summarize the recent advances in stimuli-responsive NDDSs for AS treatment, including internal stimuli(reactive oxygen species, enzyme, shear stress, and pH) and external stimuli(light, ultrasound, and magnetism) responsive NDDSs. Besides, we will also summarize in detail the classification of stimuli-responsive NDDSs for AS, such as organic NDDSs(e.g., lipid-based and polymer-based nanomaterials), inorganic NDDSs(e.g., metal-based nanoparticles and nonmetallic nanomaterials), and composite multifunctional NDDSs. Finally, the critical challenges and prospects of this field will also be proposed and discussed.展开更多
Responsive emulsions are the emulsions that can be reversibly switched on-demand between“stable”and“unstable”by environmental stimulus or trigger,which allows a simple and effective adjustment approach to achieve ...Responsive emulsions are the emulsions that can be reversibly switched on-demand between“stable”and“unstable”by environmental stimulus or trigger,which allows a simple and effective adjustment approach to achieve emulsification and demulsification.In recent years,stimuli-responsive emulsions acting as smart soft material are received considerable attention with the advantages of simple manipulation,good reversibility,low cost,easy treatment,and little effect on the system.In this paper,the recent research progress of emulsions that can respond to external stimuli,including pH,light,magnetic field,CO_(2)/N_(2) and dual responsive are reviewed.Also,the potential applications based on responsive emulsion are discussed,such as catalytic reactions,heavy oil recovery,polymer particles synthesis and optical sensor,aiming to summarize the latest achievements and put forward the possible development trends of responsive emulsions.展开更多
D-a-tocopherol polyethylene glycol 1000 succinate(TPGS)is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA.It's widely applied as a multifunctional drug carrier for nanomedicine.The advantages of...D-a-tocopherol polyethylene glycol 1000 succinate(TPGS)is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA.It's widely applied as a multifunctional drug carrier for nanomedicine.The advantages of TPGS include P-glycoprotein(P-gp)inhibition,penetration promotion,apoptosis induction via mitochondrial-associated apoptotic pathways,multidrug resistant(MDR)reversion,metastasis inhibition and so on.TPGS-based drug delivery systems which are responding to extermal stimulus can combine the inhibitory functions of TPGS towards P-gp with the environmentally responsive controlled release property and thus exerts a synergistic anti-cancer effect,through increased intracellular drug concentration in tumors cells and well-controlled drug release behavior.In this review,TPGS-based nano-sized delivery systems responsive to different stimuli were summarized and discussed,including pH-responsive,redox-responsive and multi-responsive systems in various formulations.The achievements,mechanisms and diffcrent characteristics of TPGS-bascd stimuli-responsive drug-delivery systems in tumor therapy were also outlined.展开更多
Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functiona...Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.展开更多
文摘In recent years,smart materials have emerged as a groundbreaking innovation in the field of water filtration,offering sustainable,efficient,and environmentally friendly solutions to address the growing global water crisis.This review explores the latest advancements in the application of smart materials—including biomaterials,nanocomposites,and stimuli-responsive polymers—specifically for water treatment.It examines their effectiveness in detecting and removing various types of pollutants,including organic contaminants,heavy metals,and microbial infections,while adapting to dynamic environmental conditions such as fluctuations in temperature,pH,and pressure.The review highlights the remarkable versatility of these materials,emphasizing their multifunctionality,which allows them to address a wide range of water quality issues with high efficiency and low environmental impact.Moreover,it explores the potential of smart materials to overcome significant challenges in water purification,such as the need for real-time pollutant detection and targeted removal processes.The research also discusses the scalability and future development of these materials,considering their cost-effectiveness and potential for large-scale application.By aligning with the principles of sustainable development,smart materials represent a promising direction for ensuring global water security,offering both innovative solutions for current water pollution issues and long-term benefits for the environment and public health.
基金supported by the National Key Research and Development Program of China(2022YFB4703401)the Ministry of Education Joint Fund(8091B032250)the Fundamental Research Funds for the Central Universities(B240205045)。
文摘Flexible underwater vehicles with high maneuverability,high efficiency,high speed,and low disturbance have shown great application potential and research significance in underwater engineering,ocean exploration,scientific investigation and other fields.The research and development of flexible stimulus-responsive actuators is key to the development of high-performance underwater vehicles.At present,the main drive methods for underwater devices include electric drive,magnetic drive,light drive,thermal drive,and chemical drive.In this work,the research progress of stimuli-responsive actuators in water environment is reviewed from the stimuli-responsive patterns,functional design,fabrication methods,and applications in water environment.Firstly,the actuation principles and characteristics of electro-responsive,magnetic-responsive,photo-responsive,thermo-responsive actuators,and chemically responsive actuators are reviewed.Subsequently,several design requirements for the desired flexible actuators are introduced.After that,the common fabrication methods are summarized.The typical application of the stimuli-responsive actuator in the water environment is further discussed in combination with the multi-stimuli-responsive characteristics.Finally,the challenges faced by the application of stimuli-responsive actuators in the water environment are analyzed,and the corresponding viewpoints are presented.This review offers guidance for designing and preparing stimulus-responsive actuators and outlines directions for further development in fields such as ocean energy exploration and surface reconnaissance.
基金973 Program,the National Natural Science Foundation of China,the Research Fund for the Doctoral Program of Higher Education of China,the Project of Jilin Province
文摘A novel organic fluorophor with high solid state luminescent efficiency based on 1,4-bis(2,2-di(pyridin-2-yl)- vinyl)benzene (BDP2VB) was designed and synthesized. It emits faintly in solution, but becomes a strong emitter in the aggregate state, demonstrating its aggregation induced emission (AIE) property. According to the crystal struc- ture analysis, J-type aggregation was formed in the packing mode of the molecule, which was demonstrated to be beneficial to gain high fluorescent quantum efficiency in solid state. Additionally, the emission color of BDP2VB can change dramatically in solid state as well as in solution by the protonation stimuli.
基金supported by the National Natural Science Foundation of China(22125603 and 22020102004)Tianjin Municipal Science and Technology Bureau(21JCZDJC00280,21JCJQJC00060)+1 种基金the Fundamental Research Funds for the Central Universities(63233056)the Ministry of Education of China(T2017002).
文摘Nanotechnology-enabled fertilizers and pesticides,especially those capable of releasing plant nutrients or pesticide active ingredients(AIs)in a controlled manner,can effectively enhance crop nutrition and protection while minimizing the environmental impacts of agricultural activities.Herein,we review the fundamentals and recent advances in nanofertilizers and nanopesticides with controlled-release properties,enabled by nanocarriers responsive to environmental and biological stimuli,including pH change,temperature,light,redox conditions,and the presence of enzymes.For pH-responsive nanocarriers,pH change can induce structural changes or degradation of the nanocarriers or cleave the bonding between nutrients/pesticide AIs and the nanocarriers.Similarly,temperature response typically involves structural changes in nanocarriers,and higher temperatures can accelerate the release by diffusion promoting or bond breaking.Photothermal materials enable responses to infrared light,and photolabile moieties(e.g.,o-nitrobenzyl and azobenzene)are required for achieving ultraviolet light responses.Redox-responsive nanocarriers contain disulfide bonds or ferric iron,whereas enzyme-responsive nanocarriers typically contain the enzyme’s substrate as a building block.For fabricating nanofertilizers,pHresponsive nanocarriers have been well explored,but only a few studies have reported temperature-and enzyme-responsive nanocarriers.In comparison,there have been more reports on nanopesticides,which are responsive to a range of stimuli,including many with dual-or triple-responsiveness.Nano-enabled controlledrelease fertilizers and pesticides show tremendous potential for enhancing the utilization efficiency of nutrients and pesticide AIs.However,to expand their practical applications,future research should focus on optimizing their performance under realistic conditions,lowering costs,and addressing regulatory and public concerns over environmental and safety risks.
基金funded by the National Key Research and Development Program of China(No.2021YFB3802600)the National Natural Science Foundation of China(Nos.21922813,22078322,21834006,and 22178344)+2 种基金the Youth Innovation Promotion Association of CAS(Nos.2017066 and 2021046)the Fund of State Key Laboratory of Multi-phase Complex Systems(Nos.MPCS-2021-A-7 and MPCS-2021-A-10)the Innovation Academy for Green Manufacture,Chinese Academy of Sciences(No.IAGM2020C16).
文摘Stimuli-responsive materials have important applications in chemistry and chemical engineering.Here,we synthesized five different polyetheramine-fatty acids(PEFA)ionic liquids(ILs),possessing the dual stimuli-responsive ability to temperature and CO_(2).These PEFA ILs have reversible lower critical solution temperature(LCST)phase behavior over a wide temperature range of 37-91℃,and reversible heterogeneous-homogeneous phase transition towards the addition and removal of CO_(2).Furthermore,the droplet size of the IL-water mixture system increased from 6.5 to 21.0 nm as the temperature increased from 25 to 56℃,and then recovered to 6.5 nm when the temperature decreased to 25℃.The addition and removal of CO_(2)also reversibly modulated the droplet size of the system.Results from nuclear magnetic resonance(NMR)and Fourier transform infrared(FTIR)spectra further showed that the temperature-dependent conformation of polyether amine chain in the cation dominates the temperature response,while the reversible formation of bicarbonate and fatty acids(FA)from CO_(2)and anion controls the CO_(2)-based reversible phase transition.Molecular simulations revealed a microscopic response mechanism of the IL-water system to temperature and CO_(2),and a synergistic effect between the dual stimuli of temperature and CO_(2).These findings may provide a basis for the rational design and understanding of ILs-based stimuli-responsive materials and nanoreactors.
基金supported by Hong Kong Research Grants Council(11307421,11301220,and 11304719)Health and Medical Research Fund(09203576 and 07181396)+2 种基金National Science Foundation of China(21574109 and 217780430)The Science and Technology Innovation Committee of Shenzhen Municipality(JCYJ20190812160203619)City University of Hong Kong 7005832 and 7006006.
文摘Stimuli-responsive DNA-based logic gates have emerged as a promising field at the intersection of synthetic biology and nanotechnology.These gates exploit the unique properties of DNA molecules to perform programmable computational operations in response to specific stimuli.This review provides a comprehensive overview of recent advancements in the design,working principles,and applications of stimuli-responsive DNA-based logic gates.The progress made in developing various types of logic gates triggered by metal ions,pH,oligonucleotides,small molecules,proteins,and light is highlighted.The applications of these logic gates in imaging and biosensing,drug delivery,synthetic biology and molecular computing are discussed.This review underscores the significant contributions and future prospects of stimuli-responsive DNA-based logic gates in advancing the field of nanotechnology.
基金supported by the National Key Research and Development Program of China(Grant Nos.2018YFA0305900 and 2017YFA0403704)the National Natural Science Foundation of China(Grant Nos.61575079,51632002,11804113,and 51720105007)the Natural Science Foundation of Jilin Province,China(Grant No.20180101230JC).
文摘High pressure can alter the properties of matter and modulate the excited-state relaxation behavior of materials without chemical intervention.In this study,high pressure was combined with steady-state absorption and fluorescence spectroscopy,as well as transient spectroscopy techniques,to investigate its effect on the optical properties of the stimuliresponsive material(2Z,20Z)-2,20-(1,4-phenylene)bis(3-(4-(9H-carbazol-9-yl)phenyl)acrylonitrile)(CzCNDSB).With increasing pressure,the steady-state absorption and fluorescence peaks of CzCNDSB crystals exhibit red shifts,which are fully reversible.At the same time,pressure causes the molecules to pack more closely,leading to an increase in both the number and energy of multiplet self-trapped state,while the energy of local excited state decreases.The steady-state and transient results provide information on electronic energy levels,excited-state dynamics,and other properties of CzCNDSB,which show strong pressure dependence.These findings highlight the potential of CzCNDSB for practical applications such as photodetectors and solar energy conversion.
基金supported by the National Natural Science Foundation of China(Nos.82202274,82072032,22161016,32025021,12374390,52002380 and 31971292),the National Science and Technology Major Project(No.2023ZD0500902)the Fellowship of China Postdoctoral Science Foundation(No.2023M743559)+2 种基金the Member of Youth Innovation Promotion Association Foundation of CAS,China(No.2023310)the Key Scientific and Technological Special Project of Ningbo City(No.2023Z209)the Natural Science Foundation of Zhejiang Province(No.LQ23H180003)。
文摘Recently,stimuli-responsive nanocarriers capable of precision drug release have garnered significant attention in the field of drug delivery.Here,an in-situ dynamic covalent self-assembled(DCS)strategy was utilized to develop a co-delivery system.This assembly was based on a thiol-disulfide-exchange reaction,producing disulfide macrocycles in an oxidizing aerial environment.These macrocycles encapsulated the anti-cancer drug(paclitaxel,PTX)on the surface of gold nanoparticles,which served as photothermal therapy agents during the self-assembly.In the DCS process,the kinetic control over the concentration of each building unit within the reaction system led to the formation of a stable co-delivery nanosystem with optimal drug-loading efficiency.Notably,the high glutathione(GSH)concentrations in tumor cells caused the disulfide macrocycles in nanostructures to break,resulting in drug release.The stimuli-responsive performances of the prepared nanosystems were determined by observing the molecular structures and drug release.The results revealed that the self-assembled nanosystem exhibited GSH-triggered drug release and good photothermal conversion capability under near-infrared light.Moreover,the in vitro and in vivo results revealed that conjugating the targeting molecule of cRGD with co-delivery nanosystem enhanced its biocompatibility,chemo-photothermal anti-cancer effect.Overall,our findings indicated that in-situ DCS strategy enhanced the control over drug loading during the construction of the co-delivery system,paving a way for the development of more functional carriers in nanomedicine.
基金the National Natural Science Foundation of China (Nos. 21676113, 21402057, 21772054, 21472059)Distinguished Young Scholar of Hubei Province (No. 2018CFA079)+5 种基金Youth Chen-Guang Project of Wuhan (No. 2016070204010098) for the financial supportsupported by the 111 Project (No. B17019)the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology (Shenzhen), the State Key Laboratory of Materials-Oriented Chemical Engineering (No. KL17-10)Open Project Fund of Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Yanbian University (No. NRFM201701)Ministry of Education, the foundation of Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University (No. JDSJ2017-07)self-determined research funds of CCNU from the colleges’ basic research and operation of MOE (No. CCNU18TS012)
文摘Organic chromic materials that respond to external stimuli, especially in the solid state, have sparked extensive interest owing to their potential use as smart materials. In particular, the availability of chromic materials, which emit fluorescence or phosphorescence in the deep penetrating, near-infrared(NIR)region, has led to great improvements in imaging. Various methods that were commonly applied to construct chromic materials, have been reformed to develop the novel type of compounds, and some have received rewards with excellent fingdings. Relevant research achievements of practical applications have showed their potential with the changes that locate in the NIR region, while further in-depth explorations about the inherent chromic chromism are underway. In this review, several representative studies, which have led the development of responsive organic chromic materials with near-infrared emission, will be discussed.
基金supported by the National Natural Science Foundation of China(Nos.21904095,22004089)Peiyang Talents Project of Tianjin University+1 种基金Young Thousand Talented ProgramProgram of Tianjin Science and Technology Major Project and Engineering(No.19ZXYXSY00090)。
文摘Nanomaterials provide an ideal platform for biomolecular display due to their dimensions approach the molecular scale,facilitating binding behavior akin to that observed in solution-based processes.DNA nanoprobes hold great promise as miniature detectives capable of detecting mi RNAs within cells.However,current nanoprobes face a challenge in achieving the required precision for accurate miRNA detection,particularly within the intricate confines of the cellular microenvironment,due to interference with biological autofluorescence,off-target effects,and a lack of spatiotemporal control.Here,we have designed a dual-stimuli responsive DNA tracker,synergistically utilizing specific intracellular cues and external triggers,which enables spatiotemporal-controlled and precise detection and imaging of miRNAs"on demand".The tracker,which combines zeolitic imidazolate framework-67(ZIF-67)and unique hairpin DNA structures,effectively anchored onto the ZIF-67 through electrostatic interactions,remains in a dormant state until activated by abundant cellular ATP,resulting in the release of the hairpin structures that include a PC linker incorporated into the loop region.Subsequent irradiation triggers specific recognition of the target miRNA.The newly developed HP-PC-BT@ZIF-67 tracker demonstrates precise spatiotemporal mi RNA detection and exhibits excellent biocompatibility,enabling specific mi RNA recognition"on demand"within cancer cells.This research presents a reliable mi RNA imaging platform in the intricate cellular environment,opening up the possibilities for precise biomedical analysis and disease diagnosis.
文摘Diabetic wounds represent a significant challenge in the medical field,significantly impacting patient quality of life and imposing a heavy burden on healthcare systems.Intelligent hydrogel dressings have attracted significant attention in diabetic wound treatment due to their unique properties.This review systematically explores the three main categories of intelligent hydrogels(natural,synthetic,and composite),dissecting their composition,structure,and the mechanisms that enable their intelligent responses.The crucial roles of these dressings in maintaining a moist wound environment,efficiently absorbing exudate,and precisely delivering drugs are expounded.Moreover,their application advantages in combating bacteria and infections,regulating inflammation and immunity,promoting angiogenesis and tissue regeneration,as well as enabling real-time monitoring and personalized treatment,are explored in depth.Additionally,we discuss future research directions and the prospects for personalized precision medicine in diabetic wound care,aiming to inspire innovation and provide a comprehensive theoretical basis for the development of nextgeneration intelligent dressings.
基金supported by the Creative Materials Discovery Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(MSIT)(2022M3C1A3081211)This study was also supported by a grant from the NRF funded by MSIT(RS-2023-00208577)+1 种基金This study was financially supported by the Nano&Material Technology Development Program through the NRF funded by MSIT(RS-2024-00451891 and RS-2024-00416938)by the Open Resource Research Program of the Korea Institute of Science and Technology(2E32961).
文摘Despite great progress in developing mode-selective light emission technologies based on self-emitting materials,few rewritable displays with modeselective multiple light emissions have been demonstrated.Herein,we present a rewritable triple-mode light-emitting display enabled by stimuli-interactive fluorescence(FL),room-temperature phosphorescence(RTP),and electroluminescence(EL).The display comprises coplanar electrodes separated by a gap,a polymer composite with FL inorganic phosphors(EL/FL layer),and a polymer composite with solvent-responsive RTP additives(RTP layer).Upon 254 nm UV exposure,a dual-mode emission of RTP and FL occurs from the RTP and EL/FL layers,respectively.When a polar liquid,besides water,is applied on the display and an AC field is applied between the coplanar electrodes,EL from the EL/FL layer is triggered,and the display operates in a triple mode.Interestingly,when water is applied to the display,the RTP mode is deactivated,rendering the display to operate in a dual mode of FL and EL.By manipulating the evaporation of the applied polar liquids and water,the mode-selective light emission of FL,RTP,and EL is rewritable in the triple-mode display.Additionally,a high-security full-color information encryption display is demonstrated,wherein the information of digital numbers,letters,and Morse code encoded in one optical mode is only deciphered when properly matched with that encoded in the other two modes.Thus,this article outlines a strategy to fulfill the substantial demand for high-security personalized information based on room-temperature multi-light-emitting displays.
基金supported by the National Key Research and Development Project(Grant No.2023YFB4705300)the National Natural Science Foundation of China(NSFC)(Grant Nos.62205200 and 62375168)the Natural Science Foundation of Shanghai(Grant No.22ZR1431600)。
文摘Highly programmable shape morphing of 4D-printed micro/nanostructures is urgently desired for applications in robotics and intelligent systems.However,due to the lack of autonomous holistic strategies throughout the target shape input,optimal material distribution generation,and fabrication program output,4D nanoprinting that permits arbitrary shape morphing remains a challenging task for manual design.In this study,we report an autonomous inverse encoding strategy to decipher the genetic code for material property distributions that can guide the encoded modeling toward arbitrarily pre-programmed 4D shape morphing.By tuning the laser power of each voxel at the nanoscale,the genetic code can be spatially programmed and controllable shape morphing can be realized through the inverse encoding process.Using this strategy,the 4D-printed structures can be designed and accurately shift to the target morphing of arbitrarily hand-drawn lines under stimulation.Furthermore,as a proof-of-concept,a flexible fiber micromanipulator that can approach the target region through pre-programmed shape morphing is autonomously inversely encoded according to the localized spatial environment.This strategy may contribute to the modeling and arbitrary shape morphing of micro/nanostructures fabricated via 4D nanoprinting,leading to cutting-edge applications in microfluidics,micro-robotics,minimally invasive robotic surgery,and tissue engineering.
基金supported by the National Natural Science Foundation of China(Nos.21901063,U20041101)Young Talents Personnel Fund of Henan Agricultural University(No.30500604)Key Science and Technology Foundation of Henan Province(Nos.242102230178,232102310379)。
文摘Herein,an alkyne-terminated acid/base responsive amphiphilic [2]rotaxane shuttle was synthesized,and then modified onto the glass surface through “click” reaction.The XPS N 1s spectrum and contactangle measurement were performed to prove the successful immobilization.The amphiphilic [2]rotaxane functionalized surface presented controllable wettability responding to external acid-base stimuli.This bistable rotaxane modified material system promoted the practical application of molecular machines.
基金the financial support from the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(52103196 and 52073060)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021B1515120054)the Shenzhen Fundamental Research Program(JCYJ20190813152616459 and JCYJ20210324133214038)。
文摘Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects.Currently,the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy.For this purpose,stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection,prolonged blood circulation,specific tumor accumulation,and controlled release profile of nucleic acid drugs.Besides,synergistic therapy could be achieved when combined with other therapeutic regimens.This review summarizes recent advances in various stimuliresponsive nanocarriers for gene delivery.Particularly,the nanocarriers responding to endogenous stimuli including pH,reactive oxygen species,glutathione,and enzyme,etc.,and exogenous stimuli including light,thermo,ultrasound,magnetic field,etc.,are introduced.Finally,the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed.The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
基金the National Natural Science Foundation of China (No. 21871108) for financial support
文摘A fluorescent supramolecular polymer network with an excellent triple-stimuli responsive property based on metal-ligand coordination and host-vip interactions has been constructed from a terpyridine-monofunctionalized leaning tower[6]arene,a tetraphenylethylene AIEgen,and a bridging coordination ion(Zn^2+).Addition of competitive binding agents,trifluoroacetic acid,and/or pillar[5]arene can break the metal coordination and/or host-vip inclusion complexation,and thermal heating can weaken the non-covalent interactions in the supramolecular polymer gel,all leading to the gel-to-sol transition.
基金financial support from the Young Elite Scientists Sponsorship Program by Tianjin (No. 0701320001)Major Special Project of Tianjin (No. 0402080005)+1 种基金Program for Excellent Innovative Talents in Universities of Hebei Province (No. BJ2021019)Vietnam National University,Ho Chi Minh City (VNU-HCM,NCM2020-28-01)。
文摘Atherosclerosis(AS), mainly caused by the changed immune system functions and inflammation, is the central pathogenesis of cardiovascular disease, which is a leading cause of death in the world. In modern medicine, the development of carriers precisely delivering the therapeutic agents to the target sites is the primary goal, which could minimize the potential adverse effects and be more effective in treating lesions. Due to the precise location, real-time monitoring, AS microenvironment response, and low toxicity, stimuli-responsive nano-based drug delivery systems(NDDSs) have been a promising approach in AS treatments. Herein, we will systematically summarize the recent advances in stimuli-responsive NDDSs for AS treatment, including internal stimuli(reactive oxygen species, enzyme, shear stress, and pH) and external stimuli(light, ultrasound, and magnetism) responsive NDDSs. Besides, we will also summarize in detail the classification of stimuli-responsive NDDSs for AS, such as organic NDDSs(e.g., lipid-based and polymer-based nanomaterials), inorganic NDDSs(e.g., metal-based nanoparticles and nonmetallic nanomaterials), and composite multifunctional NDDSs. Finally, the critical challenges and prospects of this field will also be proposed and discussed.
基金supported by the National Natural Science Foun-dation of China(21908026)the Fujian Province science and tech-nology guidance project(2021Y0007)Key Program of Qingyuan Innovation Laboratory(00221004).
文摘Responsive emulsions are the emulsions that can be reversibly switched on-demand between“stable”and“unstable”by environmental stimulus or trigger,which allows a simple and effective adjustment approach to achieve emulsification and demulsification.In recent years,stimuli-responsive emulsions acting as smart soft material are received considerable attention with the advantages of simple manipulation,good reversibility,low cost,easy treatment,and little effect on the system.In this paper,the recent research progress of emulsions that can respond to external stimuli,including pH,light,magnetic field,CO_(2)/N_(2) and dual responsive are reviewed.Also,the potential applications based on responsive emulsion are discussed,such as catalytic reactions,heavy oil recovery,polymer particles synthesis and optical sensor,aiming to summarize the latest achievements and put forward the possible development trends of responsive emulsions.
基金This study was supported by the National Natural Science Foundation of China(No.81871473)and the Natural Science Foundation of Zhejiang Chinese Medical University(No.2018ZZ11).
文摘D-a-tocopherol polyethylene glycol 1000 succinate(TPGS)is a pharmaceutical excipient approved by Chinese NMPA and FDA of USA.It's widely applied as a multifunctional drug carrier for nanomedicine.The advantages of TPGS include P-glycoprotein(P-gp)inhibition,penetration promotion,apoptosis induction via mitochondrial-associated apoptotic pathways,multidrug resistant(MDR)reversion,metastasis inhibition and so on.TPGS-based drug delivery systems which are responding to extermal stimulus can combine the inhibitory functions of TPGS towards P-gp with the environmentally responsive controlled release property and thus exerts a synergistic anti-cancer effect,through increased intracellular drug concentration in tumors cells and well-controlled drug release behavior.In this review,TPGS-based nano-sized delivery systems responsive to different stimuli were summarized and discussed,including pH-responsive,redox-responsive and multi-responsive systems in various formulations.The achievements,mechanisms and diffcrent characteristics of TPGS-bascd stimuli-responsive drug-delivery systems in tumor therapy were also outlined.
基金supported by the National Natural Science Foundation of China (No.51773190 and No.51973206)。
文摘Stimuli-responsive polymer gels have recently attracted great attention due to their heat/solvent resistance,dimensional stability,and unique sensitivity to external stimuli.In this work,we synthesized thiol-functionalized tetraphenylethylene(TPE)and constructed polymer gels through thiol-ene click reaction.The synthetic process of the polymer gels could be monitored by fluorescence emission of TPE moieties based on aggregation-induced emission mechanism.In addition,due to the dual redox-and acid responsiveness of the polymer gels,in the presence of dithiothreitol and trifluoroacetic acid,fluorescence quenching of the polymer gels can be observed.This stimuli-responsive characteristics endows the polymer gels with potential applications in fluorescent sensing and imaging,cancer diagnosis and selfhealing materials.