期刊文献+
共找到2,550篇文章
< 1 2 128 >
每页显示 20 50 100
Application of LC–MS/MS for quantitative analysis of glucocorticoids and stimulants in biological fuids
1
作者 Jamshed Haneef Mohammad Shaharyar +6 位作者 Asif Husain Mohd Rashid Ravinesh Mishra Shama Parveen Niyaz Ahmed Manoj Pal Deepak Kumar 《Journal of Pharmaceutical Analysis》 SCIE CAS 2013年第5期341-348,共8页
Liquid chromatography tandem mass chromatography (LC-MS/MS) is an important hyphenated technique for quantitative analysis of drugs in biological fluids. Because of high sensitivity and selectivity, LC-MS/MS has bee... Liquid chromatography tandem mass chromatography (LC-MS/MS) is an important hyphenated technique for quantitative analysis of drugs in biological fluids. Because of high sensitivity and selectivity, LC-MS/MS has been used for pharmacokinetic studies, metabolites identification in the plasma and urine. This manuscript gives comprehensive analytical review, focusing on chromatographic separation approaches (column packing materials, column length and mobile phase) as well as different acquisition modes (SIM, MRM) for quantitative analysis of glucocorticoids and stimulants. This review is not meant to be exhaustive but rather to provide a general overview for detection and confirmation of target drugs using LC-MS/MS and thus useful in the doping analysis, toxicological studies as well as in pharmaceutical analysis. 展开更多
关键词 LC–MS/MS Ionization techniques GLUCOCORTICOIDS stimulantS Hyphenated techniques Biological fuid
在线阅读 下载PDF
Effect of Plant Growth Stimulants on Alfalfa Response to Salt Stress
2
作者 Mahmoud El-Sharkawy Talaat El-Beshsbeshy +1 位作者 Rania Al-Shal Ali Missaoui 《Agricultural Sciences》 2017年第4期267-291,共25页
Salinity is a major impediment to crop production. This study was undertaken to compare the effect of seaweed extract, humic acid, and potassium sulfate nanoparticles in alleviating salt stress in Alfalfa (Medicago sa... Salinity is a major impediment to crop production. This study was undertaken to compare the effect of seaweed extract, humic acid, and potassium sulfate nanoparticles in alleviating salt stress in Alfalfa (Medicago sativa L.). Seeds of ten alfalfa genotypes were germinated in a growth chamber at five salt concentrations (0%, 0.5%, 1.0%, 1.5%, and 2.00%). Salt concentrations above 1% reduced seed germination by more than 70% in most genotypes. One salt tolerant genotype (Mesa-Sirsa) and one salt sensitive (Bulldog 505) were selected and planted in greenhouse pots containing 2 kg of sand and subjected to two salt levels (10 and 15 dS· m-1). Four treatments consisting of 1) control (Hoagland solution, no-salt), 2) seaweed extract at 4 Kg·ha-1, 3) humic acid at 28 L· ha-1, and 4) potassium sulfate at 300 Kg· ha-1. Plant biomass was reduced under both salt concentrations in both genotypes, with a greater magnitude in the salt sensitive genotype. Application of seaweed extract resulted in higher relative water content and proline under both salt concentrations (10 and 15 dS·m-1) in the salt sensitive genotype, and lower electrolyte leakage in both salt tolerant and salt sensitive genotypes, under both salt concentrations. Seaweed extract also resulted in higher catalase and SOD activities in both genotypes under 10 dS·m-1. Catalase and SOD activities were associated with significantly (p < 0.01) reduced electrolyte leakage and increased shoot dry weight. Overall, seaweed extract seemed to have a positive effect in alleviating salt stress in alfalfa. 展开更多
关键词 Biological Growth stimulantS HUMIC Acid Salt Stress SEAWEED Extract POTASSIUM Nanoparticles
暂未订购
IN VITRO ANTI-HEPATOMA EFFECTS OF MONOCYTES AND KUPFFER CELLS ISOLATED FROM HEPATOMA PATIENTS AFTER TREATMENT WITH BIOLOGICAL IMMUNE STIMULANTS
3
作者 成令忠 韩伟 +4 位作者 钟翠平 顾云娣 赵岗 林芷英 汤钊猷 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 1991年第2期37-40,共4页
Monocytes (MC), lymphocytes (LC) and Kupffer cells (KC) were isolated respectively from blood and surgical liver samples of patients suffering from he-patocellular carcinoma (HCC). 13 patients were given BCG, mixed ba... Monocytes (MC), lymphocytes (LC) and Kupffer cells (KC) were isolated respectively from blood and surgical liver samples of patients suffering from he-patocellular carcinoma (HCC). 13 patients were given BCG, mixed bacterium vaccine (MBV) and human white blood cell interferon (IFN), the other 3 patients were not treated with any biological immune stimulants (BIS) and served as controls. The cytosta-tic and cytotoxic effects of MC and KC on human hepatoma SMMC-7721 (TC) were assayed in vitro and the numbers of T total (Tt), T helper (Th) and T suppressor (Ts) cells were counted using CD monoclonal antibody immunofluorescence. The results were as follows: (1) On the 7th day after the first administration of BIS, the cytostatic and cytotoxic effects of MC on TC showed obvious increase over pre-administration. The activity of BIS was 1 ?5 times as high as that in the controls. (2) After 3 administrations, the cytostatic effect of MC on TC increased to the normal level (84%), while the controls remained as before (45%). (3) On the 7th day after first administration, cytostatic and cytotoxic effects of KC on TC were 0.5 and 1 times higher respectively than those of the controls. (4) The numbers of Tt and Th of patients given BIS increased continuously; on the contrary Ts decreased in number. These results indicate that combined use of BCG, MBV and IFN can actively enhance the immune anti-hepatoma function of patients suffering from HCC. 展开更多
关键词 BIS MC HCC IN VITRO ANTI-HEPATOMA EFFECTS OF MONOCYTES AND KUPFFER CELLS ISOLATED FROM HEPATOMA PATIENTS AFTER TREATMENT WITH BIOLOGICAL IMMUNE stimulantS
暂未订购
Basic Study Impact of stimulant medication on behaviour and executive functions in children with attention-deficit/hyperactivity disorder
4
作者 Tasmia Hai Hanna A Duffy +1 位作者 Julie Anne Lemay Jean François Lemay 《World Journal of Clinical Pediatrics》 2022年第1期48-60,共13页
BACKGROUND Children with attention-deficit/hyperactivity disorder(ADHD)often exhibit behaviour challenges and deficits in executive functions(EF).Psychostimulant medications[e.g.,methylphenidate(MPH)]are commonly pres... BACKGROUND Children with attention-deficit/hyperactivity disorder(ADHD)often exhibit behaviour challenges and deficits in executive functions(EF).Psychostimulant medications[e.g.,methylphenidate(MPH)]are commonly prescribed for children with ADHD and are considered effective in 70%of the cases.Furthermore,only a handful of studies have investigated the long-term impact of MPH medication on EF and behaviour.AIM To evaluate behaviour and EF challenges in children with ADHD who were involved in an MPH treatment trial across three-time points.METHODS Thirty-seven children with ADHD completed a stimulant medication trial to study the short-and long-term impact of medication.Children with ADHD completed three neuropsychological assessments[Continuous Performance Test(CPT)-II,Digit Span Backwards and Spatial Span Backwards].Parents of children with ADHD completed behaviour rating scales[Behaviour Rating Inventory of Executive Functioning(BRIEF)and Behaviour Assessment System for Children-Second Edition(BASC-2)].Participants were evaluated at:(1)Baseline(no medication);and(2)Best-dose(BD;following four-week MPH treatment).Additionally,18 participants returned for a long-term naturalistic follow up(FU;up to two years following BD).RESULTS Repeated measure analyses of variance found significant effects of time on two subscales of BRIEF and four subscales of BASC-2.Neuropsychological assessments showed some improvement,but not on all tasks following the medication trial.These improvements did not sustain at FU,with increases in EF and behaviour challenges,and a decline in performance on the CPT-II task being observed.CONCLUSION Parents of children with ADHD reported improvements in EF and behaviours during the MPH trial but were not sustained at FU.Combining screening tools and neuropsychological assessments may be useful for monitoring medication responses. 展开更多
关键词 Attention-deficit/hyperactive disorder BEHAVIOUR Executive functions stimulant medications
暂未订购
Comparative Study of Acid and Alkaline Stimulants with Granite in an Enhanced Geothermal System 被引量:5
5
作者 XU Jianan FENG Bo +3 位作者 CUI Zhenpeng LIU Xiyao KE Zunsong FENG Guanhong 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1926-1939,共14页
The Enhanced Geothermal System(EGS) is an artificial geothermal system that aims to economically extract heat from hot dry rock(HDR) through the creation of an artificial geothermal reservoir. Chemical stimulation is ... The Enhanced Geothermal System(EGS) is an artificial geothermal system that aims to economically extract heat from hot dry rock(HDR) through the creation of an artificial geothermal reservoir. Chemical stimulation is thought to be an effective method to create fracture networks and open existing fractures in hot dry rocks by injecting chemical agents into the reservoir to dissolve the minerals. Granite is a common type of hot dry rock. In this paper, a series of chemical stimulation experiments were implemented using acid and alkaline agents under high temperature and pressure conditions that mimic the environment of formation. Granite rock samples used in the experiments are collected from the potential EGS reservoir in the Matouying area, Hebei, China. Laboratory experimental results show that the corrosion ratio per unit area of rock is 3.2% in static acid chemical experiments and 0.51% in static alkaline chemical experiments. The permeability of the core is increased by 1.62 times in dynamic acid chemical experiments and 2.45 times in dynamic alkaline chemical experiments. A scanning electron microscope analysis of the core illustrates that secondary minerals, such as chlorite, spherical silica, and montmorillonite, were formed, due to acid-rock interaction with plagioclase being precipitated by alkaline-rock interactions. Masking agents in alkaline chemical agents can slightly reduce the degree of plagioclase formation. A chemical simulation model was built using TOUGHREACT, the mineral dissolution and associated ion concentration variation being reproduced by this reactive transport model. 展开更多
关键词 hot dry rock granite rock Enhanced Geothermal System chemical stimulation reactive transport model
在线阅读 下载PDF
Ethylene and jasmonate as stimulants of latex yield in rubber trees(Hevea brasiliensis):Molecular and physiological mechanisms.A systematic approximation review
6
作者 Nixon Florez-Velasco Vanessa Florez Ramos +1 位作者 Stanislav Magnitskiy Helber Balaguera-López 《Advanced Agrochem》 2024年第4期279-288,共10页
The rubber tree Hevea brasiliensis(Willd.Ex Adr.De Juss.)Müell Arg.]is an important source of latex for the production natural rubber.Natural rubber is an important biopolymer used in various industries,but aspec... The rubber tree Hevea brasiliensis(Willd.Ex Adr.De Juss.)Müell Arg.]is an important source of latex for the production natural rubber.Natural rubber is an important biopolymer used in various industries,but aspects related to hormonal regulation in biosynthesis are still unknown,which would allow optimizing its production.We review the molecular and physiological mechanisms of increases latex regeneration and flow by the stimulation of rubber trees with exogenous applications of ethylene and jasmonate.We found that the increase in latex regeneration by ethylene is due to the increase in gene level expression and enzymatic activity of key photosynthesis and glycolysis enzymes for the generation of precursors in the first phase of rubber biosynthesis.Latex flow is supported by up-regulated genes in sucrose metabolism such as invertases,induction of sucrose transporters(SUT),and aquaporins(PIP)to maintain flow and turgor pressure in laticifers.Meanwhile,the increase in latex yield mediated by jasmonate may be due to the induction of laticifer differentiation in the long term and in the short term be mediated by the induction of small rubber particles(SRPP)as non-enzymatic cofactors in the production of latex.This information contributes to the knowledge of latex biosynthesis,which allows for a greater support for the exogenous application of jasmonates and ethylene to regulate its production. 展开更多
关键词 Rubber tree SUCROSE TAPPING ETHEPHON LATICIFERS Natural rubber Stimulation Plant secondary metabolites
在线阅读 下载PDF
Improving the efficiency of hybrid combination preparation in rice breeding by a modified flowering stimulant 被引量:1
7
作者 Ling Zheng Shangxing Zhang +10 位作者 Fengyin Xue Yifan Yun Pin Liu Hua Yuan Weilan Chen Peng Qin Yuping Wang Bingtian Ma Shigui Li Yong Chen Bin Tu 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2020年第3期36-40,共5页
The utilization of hybrid vigor is an important breakthrough in the history of rice breeding.To select the best hybrid combinations,breeders manually perform extensive testing of hybridizations between restorer and st... The utilization of hybrid vigor is an important breakthrough in the history of rice breeding.To select the best hybrid combinations,breeders manually perform extensive testing of hybridizations between restorer and sterile lines,which is a laborious and time-consuming process.Here,we report that a modified flowering stimulant containing methyl jasmonate(MeJA),6-benzylamine adenine and kinetin effectively promotes the flowering and seed set of male-sterile rice lines.Different concentrations of the ingredients were tested to identify an optimal formulation.Seed quality evaluation indicated that hybrid seeds from plants sprayed with the flowering stimulant had a higher germination rate than seeds from plants prepared by glume-cutting.In summary,the modified flowering stimulant described in this study may help reduce the labor requirement associated with hybrid rice breeding and improve yield and efficiency. 展开更多
关键词 hybrid rice CROSS flowering stimulant methyl jasmonate KINETIN
原文传递
Multi-target neural circuit reconstruction and enhancement in spinal cord injury 被引量:1
8
作者 Lingyun Cao Siyun Chen +2 位作者 Shuping Wang Ya Zheng Dongsheng Xu 《Neural Regeneration Research》 2026年第3期957-971,共15页
After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the tim... After spinal cord injury,impairment of the sensorimotor circuit can lead to dysfunction in the motor,sensory,proprioceptive,and autonomic nervous systems.Functional recovery is often hindered by constraints on the timing of interventions,combined with the limitations of current methods.To address these challenges,various techniques have been developed to aid in the repair and reconstruction of neural circuits at different stages of injury.Notably,neuromodulation has garnered considerable attention for its potential to enhance nerve regeneration,provide neuroprotection,restore neurons,and regulate the neural reorganization of circuits within the cerebral cortex and corticospinal tract.To improve the effectiveness of these interventions,the implementation of multitarget early interventional neuromodulation strategies,such as electrical and magnetic stimulation,is recommended to enhance functional recovery across different phases of nerve injury.This review concisely outlines the challenges encountered following spinal cord injury,synthesizes existing neurostimulation techniques while emphasizing neuroprotection,repair,and regeneration of impaired connections,and advocates for multi-targeted,task-oriented,and timely interventions. 展开更多
关键词 multi-targets nerve root magnetic stimulation neural circuit NEUROMODULATION peripheral nerve stimulation RECONSTRUCTION spinal cord injury task-oriented training TIMING transcranial magnetic stimulation
暂未订购
Microglia overexpressing brain-derived neurotrophic factor promote vascular repair and functional recovery in mice after spinal cord injury 被引量:1
9
作者 Fanzhuo Zeng Yuxin Li +6 位作者 Xiaoyu Li Xinyang Gu Yue Cao Shuai Cheng He Tian Rongcheng Mei Xifan Mei 《Neural Regeneration Research》 2026年第1期365-376,共12页
Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in s... Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited.Microglia is the resident immune cells of the central nervous system,play a critical role in spinal cord injury.Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors.However,excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars,which hinder axonal regeneration.Despite this,the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood.To elucidate the role of microglia in spinal cord injury,we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia.We observed that sustained depletion of microglia resulted in an expansion of the lesion area,downregulation of brain-derived neurotrophic factor,and impaired functional recovery after spinal cord injury.Next,we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia.We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function.Additionally,brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury.Furthermore,through using specific transgenic mouse lines,TMEM119,and the colony-stimulating factor 1 receptor inhibitor PLX73086,we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages.In conclusion,our findings suggest the critical role of microglia in the formation of protective glial scars.Depleting microglia is detrimental to recovery of spinal cord injury,whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury. 展开更多
关键词 ANGIOGENESIS apoptosis brain-derived neurotrophic factor colony stimulating factor 1 receptor inflammation MICROGLIA motor function spinal cord injury vascular endothelial growth factor
暂未订购
Neuromodulation technologies improve functional recovery after brain injury:From bench to bedside
10
作者 Mei Liu Yijing Meng +4 位作者 Siguang Ouyang Meng’ai Zhai Likun Yang Yang Yang Yuhai Wang 《Neural Regeneration Research》 2026年第2期506-520,共15页
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functio... Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited.This limited plasticity serves as a primary barrier to functional recovery after brain injury.Neuromodulation technologies represent one of the fastest-growing fields in medicine.These techniques utilize electricity,magnetism,sound,and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury.Therefore,this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury.Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury.However,studies report negative findings,potentially due to variations in stimulation protocols,differences in observation periods,and the severity of functional impairments among participants across different clinical trials.Additionally,we observed that different neuromodulation techniques share remarkably similar mechanisms,including promoting neuroplasticity,enhancing neurotrophic factor release,improving cerebral blood flow,suppressing neuroinflammation,and providing neuroprotection.Finally,considering the advantages and disadvantages of various neuromodulation techniques,we propose that future development should focus on closed-loop neural circuit stimulation,personalized treatment,interdisciplinary collaboration,and precision stimulation. 展开更多
关键词 functional recovery invasive electrical stimulation NEUROMODULATION noninvasive electrical stimulation stroke transcranial magnetic stimulation transcranial photobiomodulation transcranial ultrasound stimulation traumatic brain injury
暂未订购
Effects of noninvasive brain stimulation on motor functions in animal models of ischemia and trauma in the central nervous system
11
作者 Seda Demir Gereon R.Fink +1 位作者 Maria A.Rueger Stefan J.Blaschke 《Neural Regeneration Research》 2026年第4期1264-1276,共13页
Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of kn... Noninvasive brain stimulation techniques offer promising therapeutic and regenerative prospects in neurological diseases by modulating brain activity and improving cognitive and motor functions.Given the paucity of knowledge about the underlying modes of action and optimal treatment modalities,a thorough translational investigation of noninvasive brain stimulation in preclinical animal models is urgently needed.Thus,we reviewed the current literature on the mechanistic underpinnings of noninvasive brain stimulation in models of central nervous system impairment,with a particular emphasis on traumatic brain injury and stroke.Due to the lack of translational models in most noninvasive brain stimulation techniques proposed,we found this review to the most relevant techniques used in humans,i.e.,transcranial magnetic stimulation and transcranial direct current stimulation.We searched the literature in Pub Med,encompassing the MEDLINE and PMC databases,for studies published between January 1,2020 and September 30,2024.Thirty-five studies were eligible.Transcranial magnetic stimulation and transcranial direct current stimulation demonstrated distinct strengths in augmenting rehabilitation post-stroke and traumatic brain injury,with emerging mechanistic evidence.Overall,we identified neuronal,inflammatory,microvascular,and apoptotic pathways highlighted in the literature.This review also highlights a lack of translational surrogate parameters to bridge the gap between preclinical findings and their clinical translation. 展开更多
关键词 noninvasive brain stimulation preclinical modeling STROKE transcranial direct current stimulation transcranial magnetic stimulation traumatic brain injury
暂未订购
Therapeutic effects of low-intensity transcranial focused ultrasound stimulation on ischemic stroke in rats:An in vivo evaluation using electrical impedance tomography
12
作者 Jiecheng Guo Sixuan He +4 位作者 Li Yan Lei Wang Xuetao Shi Huijing Hu Le Li 《Neural Regeneration Research》 2026年第3期1183-1190,共8页
Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance to... Although previous studies have demonstrated that transcranial focused ultrasound stimulation protects the ischemic brain,clear criteria for the stimulation time window and intensity are lacking.Electrical impedance tomography enables real-time monitoring of changes in cerebral blood perfusion within the ischemic brain,but investigating the feasibility of using this method to assess post-stroke rehabilitation in vivo remains critical.In this study,ischemic stroke was induced in rats through middle cerebral artery occlusion surgery.Transcranial focused ultrasound stimulation was used to treat the rat model of ischemia,and electrical impedance tomography was used to measure impedance during both the acute stage of ischemia and the rehabilitation stage following the stimulation.Electrical impedance tomography results indicated that cerebral impedance increased after the onset of ischemia and decreased following transcranial focused ultrasound stimulation.Furthermore,the stimulation promoted motor function recovery,reduced cerebral infarction volume in the rat model of ischemic stroke,and induced the expression of brain-derived neurotrophic factor in the ischemic brain.Our results also revealed a significant correlation between the impedance of the ischemic brain post-intervention and improvements in behavioral scores and infarct volume.This study shows that daily administration of transcranial focused ultrasound stimulation for 20 minutes to the ischemic hemisphere 24 hours after cerebral ischemia enhanced motor recovery in a rat model of ischemia.Additionally,our findings indicate that electrical impedance tomography can serve as a valuable tool for quantitatively evaluating rehabilitation after ischemic stroke in vivo.These findings suggest the feasibility of using impedance data collected via electrical impedance tomography to clinically assess the effects of rehabilitatory interventions for patients with ischemic stroke. 展开更多
关键词 animal model brain stimulation electrical impedance tomography evaluation impedance noninvasive treatment real-time monitoring REHABILITATION STROKE transcranial focused ultrasound stimulation
暂未订购
Neuromodulation techniques for modulating cognitive function:Enhancing stimulation precision and intervention effects
13
作者 Hanwen Cao Li Shang +9 位作者 Deheng Hu Jianbing Huang Yu Wang Ming Li Yilin Song Qianzi Yang Yan Luo Ying Wang Xinxia Cai Juntao Liu 《Neural Regeneration Research》 2026年第2期491-501,共11页
Neuromodulation techniques effectively intervene in cognitive function,holding considerable scientific and practical value in fields such as aerospace,medicine,life sciences,and brain research.These techniques utilize... Neuromodulation techniques effectively intervene in cognitive function,holding considerable scientific and practical value in fields such as aerospace,medicine,life sciences,and brain research.These techniques utilize electrical stimulation to directly or indirectly target specific brain regions,modulating neural activity and influencing broader brain networks,thereby regulating cognitive function.Regulating cognitive function involves an understanding of aspects such as perception,learning and memory,attention,spatial cognition,and physical function.To enhance the application of cognitive regulation in the general population,this paper reviews recent publications from the Web of Science to assess the advancements and challenges of invasive and non-invasive stimulation methods in modulating cognitive functions.This review covers various neuromodulation techniques for cognitive intervention,including deep brain stimulation,vagus nerve stimulation,and invasive methods using microelectrode arrays.The non-invasive techniques discussed include transcranial magnetic stimulation,transcranial direct current stimulation,transcranial alternating current stimulation,transcutaneous electrical acupoint stimulation,and time interference stimulation for activating deep targets.Invasive stimulation methods,which are ideal for studying the pathogenesis of neurological diseases,tend to cause greater trauma and have been less researched in the context of cognitive function regulation.Non-invasive methods,particularly newer transcranial stimulation techniques,are gentler and more appropriate for regulating cognitive functions in the general population.These include transcutaneous acupoint electrical stimulation using acupoints and time interference methods for activating deep targets.This paper also discusses current technical challenges and potential future breakthroughs in neuromodulation technology.It is recommended that neuromodulation techniques be combined with neural detection methods to better assess their effects and improve the accuracy of non-invasive neuromodulation.Additionally,researching closed-loop feedback neuromodulation methods is identified as a promising direction for future development. 展开更多
关键词 acupuncture points ATTENTION brain COGNITION efficiency electrical stimulation MICROELECTRODES movement disorders nervous system PERCEPTION
暂未订购
Beyond the surface:Advancing neurorehabilitation with transcranial temporal interference stimulation——clinical applications and future prospects
14
作者 Camille E.Proulx Friedhelm C.Hummel 《Neural Regeneration Research》 2026年第5期1987-1988,共2页
Brain lesions,such as those caused by stroke or traumatic brain injury(TBI),frequently result in persistent motor and cognitive impairments that significantly affect the individual patient's quality of life.Despit... Brain lesions,such as those caused by stroke or traumatic brain injury(TBI),frequently result in persistent motor and cognitive impairments that significantly affect the individual patient's quality of life.Despite differences in the mechanisms of injury,both conditions share a high prevalence of motor and cognitive impairments.These deficits show only limited natural recovery. 展开更多
关键词 NEUROREHABILITATION STIMULATION TRANSCRANIAL TEMPORAL INTERFERENCE motor cognitive impairments brain lesionssuch motor cognitive impairmentsthese
暂未订购
Deep brain stimulation for the treatment of Alzheimer's disease:A safer and more effective strategy
15
作者 Fan Zhang Yao Meng Wei Zhang 《Neural Regeneration Research》 2026年第5期1899-1909,共11页
Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an in... Alzheimer's disease is the most common type of cognitive disorder,and there is an urgent need to develop more effective,targeted and safer therapies for patients with this condition.Deep brain stimulation is an invasive surgical treatment that modulates abnormal neural activity by implanting electrodes into specific brain areas followed by electrical stimulation.As an emerging therapeutic approach,deep brain stimulation shows significant promise as a potential new therapy for Alzheimer's disease.Here,we review the potential mechanisms and therapeutic effects of deep brain stimulation in the treatment of Alzheimer's disease based on existing clinical and basic research.In clinical studies,the most commonly targeted sites include the fornix,the nucleus basalis of Meynert,and the ventral capsule/ventral striatum.Basic research has found that the most frequently targeted areas include the fornix,nucleus basalis of Meynert,hippocampus,entorhinal cortex,and rostral intralaminar thalamic nucleus.All of these individual targets exhibit therapeutic potential for patients with Alzheimer's disease and associated mechanisms of action have been investigated.Deep brain stimulation may exert therapeutic effects on Alzheimer's disease through various mechanisms,including reducing the deposition of amyloid-β,activation of the cholinergic system,increasing the levels of neurotrophic factors,enhancing synaptic activity and plasticity,promoting neurogenesis,and improving glucose metabolism.Currently,clinical trials investigating deep brain stimulation for Alzheimer's disease remain insufficient.In the future,it is essential to focus on translating preclinical mechanisms into clinical trials.Furthermore,consecutive follow-up studies are needed to evaluate the long-term safety and efficacy of deep brain stimulation for Alzheimer's disease,including cognitive function,neuropsychiatric symptoms,quality of life and changes in Alzheimer's disease biomarkers.Researchers must also prioritize the initiation of multi-center clinical trials of deep brain stimulation with large sample sizes and target earlier therapeutic windows,such as the prodromal and even the preclinical stages of Alzheimer's disease.Adopting these approaches will permit the efficient exploration of more effective and safer deep brain stimulation therapies for patients with Alzheimer's disease. 展开更多
关键词 Alzheimer's disease amyloid-β cholinergic system deep brain stimulation entorhinal cortex FORNIX HIPPOCAMPUS MECHANISMS nucleus basalis of Meynert THERAPY
暂未订购
Grafts of hydrogel-embedded electrically stimulated subventricular stem cells into the stroke cavity improves functional recovery of mice
16
作者 Andreea-Mihaela Cercel Ianis KS Boboc +5 位作者 Roxana Surugiu Thorsten R.Doeppner Dirk M.Hermann Bogdan Catalin Andrei Gresita Aurel Popa-Wagner 《Neural Regeneration Research》 2026年第2期695-703,共9页
The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly f... The major aim of stroke therapy is to stimulate brain repair and improve behavioral recovery after cerebral ischemia.One option is to stimulate endogenous neurogenesis in the subventricular zone and direct the newly formed neurons to the damaged area.However,only a small percentage of these neurons survive,and many do not reach the damaged area,possibly because the corpus callosum impedes the migration of subventricular zone-derived stem cells into the lesioned cortex.A second major obstacle to stem cell therapy is the strong inflammatory reaction induced by cerebral ischemia,whereby the associated phagocytic activity of brain macrophages removes both therapeutic cells and/or cell-based drug carriers.To address these issues,neurogenesis was electrically stimulated in the subventricular zone,followed by isolation of proliferating cells,including newly formed neurons,which were subsequently mixed with a nutritional hydrogel.This mixture was then transferred to the stroke cavity of day 14 post-stroke mice.We found that the performance of the treated animals improved in behavioral tests,including novel object,open field,hole board,grooming,and“time-to-feel”adhesive tape tests.Furthermore,immunostaining revealed that the stem cell marker nestin,the neuroepithelial marker Mash1,and the immature neuronal marker doublecortin-positive cells survived in the transplanted area for 2 weeks,possibly due to reduced phagocytic activity and supportive angiogenesis.These results clearly indicate that the transplantation of committed subventricular zone stem cells combined with a protective nutritional gel directly into the infarct cavity after the peak of stroke-induced neuroinflammation represents a feasible approach to improve neurorestoration after cerebral ischemia. 展开更多
关键词 ANXA3 behavioral recovery DOUBLECORTIN electrical stimulation Mash1 NESTIN STROKE subventricular neural stem cells supportive hydrogel vascular cell adhesion molecule 1
暂未订购
基于RGB相机的无标志物TMS机器人辅助定位方法
17
作者 程强 赵帅 +3 位作者 郝小龙 刘杰 许静静 李世俊 《北京工业大学学报》 北大核心 2025年第8期908-917,共10页
经颅磁刺激(transcranial magnetic stimulation, TMS)是一种神经调制方法,临床中凭借医生经验手动确定TMS线圈摆放位姿,导致线圈摆放位置和姿态不准确且重复定位精度差。针对上述问题,提出一种TMS线圈机器人辅助定位系统,使用RGB相机... 经颅磁刺激(transcranial magnetic stimulation, TMS)是一种神经调制方法,临床中凭借医生经验手动确定TMS线圈摆放位姿,导致线圈摆放位置和姿态不准确且重复定位精度差。针对上述问题,提出一种TMS线圈机器人辅助定位系统,使用RGB相机替代导航系统中双目红外相机,采用一种基于神经网络的无标志物TMS线圈机器人辅助定位方法。搭建神经网络实现相机空间线圈姿态到操作臂空间关节角度的映射,并通过仿真数据训练验证了该神经网络架构适用于TMS线圈位姿摆放问题。随后,通过实验验证了该方法的可行性,同时表明训练的神经网络针对TMS线圈定位任务具有良好的泛化能力。最后,在笛卡儿空间的位姿验证结果显示TMS线圈三维位置平均误差为2.16 mm,总体姿态误差为0.055 rad,使用RGB相机的TMS线圈机器人辅助定位系统在精度上达到了与其他使用双目红外相机的科研或商用系统相同的水平,满足TMS临床治疗要求,具备临床应用的可行性。 展开更多
关键词 经颅磁刺激(transcranial magnetic stimulation TMS) 机器人辅助TMS系统 RGB相机 神经网络 位姿估计 手眼标定
在线阅读 下载PDF
Passive activity enhances residual control ability in patients with complete spinal cord injury 被引量:2
18
作者 Yanqing Xiao Mingming Gao +6 位作者 Zejia He Jia Zheng Hongming Bai Jia-Sheng Rao Guiyun Song Wei Song Xiaoguang Li 《Neural Regeneration Research》 SCIE CAS 2025年第8期2337-2347,共11页
Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these... Patients with complete spinal cord injury retain the potential for volitional muscle activity in muscles located below the spinal injury level.However,because of prolonged inactivity,initial attempts to activate these muscles may not effectively engage any of the remaining neurons in the descending pathway.A previous study unexpectedly found that a brief clinical round of passive activity significantly increased volitional muscle activation,as measured by surface electromyography.In this study,we further explored the effect of passive activity on surface electromyographic signals during volitional control tasks among individuals with complete spinal cord injury.Eleven patients with chronic complete thoracic spinal cord injury were recruited.Surface electromyography data from eight major leg muscles were acquired and compared before and after the passive activity protocol.The results indicated that the passive activity led to an increased number of activated volitional muscles and an increased frequency of activation.Although the cumulative root mean square of surface electromyography amplitude for volitional control of movement showed a slight increase after passive activity,the difference was not statistically significant.These findings suggest that brief passive activity may enhance the ability to initiate volitional muscle activity during surface electromyography tasks and underscore the potential of passive activity for improving residual motor control among patients with motor complete spinal cord injury. 展开更多
关键词 complete spinal cord injury cycle training epidural electrical stimulation motor training passive activity physiological state spinal cord circuit surface electromyography volitional control task
暂未订购
Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor-and Cygb-associated signaling pathways 被引量:1
19
作者 Biao Xiao Chaoyang Chu +6 位作者 Zhicheng Lin Tianyuan Fang Yuyu Zhou Chuxia Zhang Jianghui Shan Shiyu Chen Liping Li 《Neural Regeneration Research》 SCIE CAS 2025年第9期2706-2726,共21页
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati... A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease. 展开更多
关键词 acousto-optic stimulation adult neurogenesis Alzheimer's disease amyloid precursor protein/presenilin 1 mice amyloid-beta deposition brain cell apoptosis cognitive impairment depression-like behavior involuntary treadmill exercise olfactory stimulation serum metabolites
暂未订购
The Supplementary Motor Area as a Flexible Hub Mediating Behavioral and Neuroplastic Changes in Motor Sequence Learning:A TMS and TMS-EEG Study 被引量:1
20
作者 Jing Chen Yanzi Fan +6 位作者 Xize Jia Fengmei Fan Jinhui Wang Qihong Zou Bing Chen Xianwei Che Yating Lv 《Neuroscience Bulletin》 2025年第5期837-852,共16页
Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modula... Attempts have been made to modulate motor sequence learning(MSL)through repetitive transcranial magnetic stimulation,targeting different sites within the sensorimotor network.However,the target with the optimum modulatory effect on neural plasticity associated with MSL remains unclarified.This study was therefore designed to compare the role of the left primary motor cortex and the left supplementary motor area proper(SMAp)in modulating MSL across different complexity levels and for both hands,as well as the associated neuroplasticity by applying intermittent theta burst stimulation together with the electroencephalogram and concurrent transcranial magnetic stimulation.Our data demonstrated the role of SMAp stimulation in modulating neural communication to support MSL,which is achieved by facilitating regional activation and orchestrating neural coupling across distributed brain regions,particularly in interhemispheric connections.These findings may have important clinical implications,particularly for motor rehabilitation in populations such as post-stroke patients. 展开更多
关键词 Motor sequence learning Intermittent theta burst stimulation Concurrent transcranial magnetic stimulation and electroencephalogram NEUROPLASTICITY Functional connectivity
原文传递
上一页 1 2 128 下一页 到第
使用帮助 返回顶部