Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane(MMAO), were tested in the polymerization of higher α-olefin(1-hexene, 1-decene and 1-hexadec...Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane(MMAO), were tested in the polymerization of higher α-olefin(1-hexene, 1-decene and 1-hexadecene) under suitable conditions. The polymerization results indicated the possibility of precise microstructure control, depending on catalyst structure, polymerization temperature, monomer concentration and types of monomers, which in turn strongly affects the resultant polymer properties. Naphthyl-α-diimine nickel complex bearing chiral bulky sec-phenethyl groups in the o-naphthyl position showed good catalytic activity, and resulted in branched polymers(42-88/1000 C) with high molecular weights(Mn:(4.3-15.2) × 10^4 g·mol^-1) and narrow molecular weight distribution(Mw/Mn = 1.13-1.29, RT), which suggested a living polymerization. The increasing steric hindrance of catalyst leads to enhance insertion for 2,1-insertion of α-olefin and the chain-walking reaction.展开更多
The rare earth complexes Tb(o-BrBA)3,Tb(m-BrBA)3 and Tb(p-BrBA)3 were synthesized using o-,m-,p-bromo benzoic acids(2-bromo benzoic acid,3-bromo benzoic acid and 4-bromo benzoic acid) as ligand,respectively.Th...The rare earth complexes Tb(o-BrBA)3,Tb(m-BrBA)3 and Tb(p-BrBA)3 were synthesized using o-,m-,p-bromo benzoic acids(2-bromo benzoic acid,3-bromo benzoic acid and 4-bromo benzoic acid) as ligand,respectively.The UV spectra showed that the absorption ability of Tb(m-BrBA)3 was the strongest.However,the fluorescent intensity of Tb(o-BrBA)3 was the weakest.The effect of the molecular structure,the energy level of Tb3+ and energy transfer efficiency from ligands to Tb3+ were discussed to explain the experimental results.The results indicated that,due to the large atomic radius of bromine,the steric effect caused by the different substitution bromine on the benzene ring might strongly affect the bond length formed by the coordination atoms and Tb3+.The longer the bond length was,the lower the efficiency of energy transfer was,and the weaker the fluorescent intensity was.展开更多
Amino acids are basic units to construct a protein with the assistance of various interactions.During this building process,steric hindrance derived from amino acid side groups or side chains is a factor that could no...Amino acids are basic units to construct a protein with the assistance of various interactions.During this building process,steric hindrance derived from amino acid side groups or side chains is a factor that could not be ignored.In this contribution,adsorption behaviors of C-terminal amino acid derivatives with amino acid residues fused in 3,4,9,10-perylenetetracarboxylic dianhydride were investigated by scanning tunneling microscopy(STM)and density functional theory(DFT)calculations at various liquid/solid interfaces.STM results at 1-phenyloctane/HOPG interface show that N,N'-3,4,9,10-perylenedicarboximide(GP)and N,N'-methyl-3,4,9,10-perylenedicarboximide(AP)formed linear and herringbone structures,respectively.The driving force could be attributed to different H-bonding sites induced by steric hindrance at side groups.N,N'-Benzyl-3,4,9,10-perylenedicarboximide(PP)generates both linear and herringbone structures because steric hindrance changes the H-bonding sites between PP molecules,whereas N,N'-isopropyl-3,4,9,10-perylenedicarboximide(LP)failed to be imaged because of strong steric hindrance coming from larger side group.To further investigate the impact of steric hindrance,we utilized octanoic acid(OA)as solvent to capture the adsorption details of LP and PP.We found that OA molecules drag PP and LP molecules in a different direction to generate linear structure,impeding the molecular rotation.The structure–solvent relationship shows that the steric hindrance is brought by the large side group,which makes it easier to recognize OA molecules at the interface.These results demonstrate that steric effect plays a significant role in altering interaction sites of the compounds during the adsorption process at the liquid/solid interface.展开更多
The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤...The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤ x ≤ 1 ). The compounds have a monoclinic structure (space group P21/n) and the cell volume expands monotonically with La doping. The Tc and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-x LaxMnMoO6 decreases only at low doping levels (x ≤0.2); while at high doping levels (0.8≤x ≤1), electrical resistivity tends to increase greatly. The resuits suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.展开更多
A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported pol...A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported polarization-dependent differential cross sections provide the most detailed characterization of the influences of reagent alignments on reactivity. To convey the stereo-specific information more accessible to general chemists, we show here, by proper symmetry considerations, how to retrieve from the measurements the relative integral and differential cross sections of two most common collision geometries: the end-on versus side-on attacks. The results, albeit coarse-grained, provide an appealing picture that not only reinforces our intuition about chemical reactivity, but also sheds more light on the conventional (unpolarized) attributes.展开更多
By the reaction of different aromatic dicarboxylic acid with zinc nitrate, three metal-carboxylate frameworks, [Zn3(BDC)3(EtOH)2](1), [Zn3(BDC)3(py)2]·2DMF(2), and [Zn3(NH2-BDC)3(H2O)2]·5DMF...By the reaction of different aromatic dicarboxylic acid with zinc nitrate, three metal-carboxylate frameworks, [Zn3(BDC)3(EtOH)2](1), [Zn3(BDC)3(py)2]·2DMF(2), and [Zn3(NH2-BDC)3(H2O)2]·5DMF(3) which are constructed on the same linear trinuclear Zn3(RCOO)6 secondary building units, have been synthesized and characterized by X-ray diffraction analyses. Structural analyses showed that there are terephthalic acids as ligand linkers to form the hxl topological layer structures for 1 and 2. The introduction of the rigid aromatic ring pyridine in 2 as the terminal co-ligand of Zn3-SBU to instead of the flexible ethanol in 1, will form the layer-pillared supramolecular systems with 2-D crisscross channels, through its π-π stacking interactions. Owing to the steric hindrance of amino groups, 3 was assembled into a three-dimensional porous structure with pcu topology derived from the 2-amino-terephthalic acid as linkers to connect the Zn3-SBUs through a head-to-tail type.展开更多
A series of“half-sandwich”bis(imino)pyridyl iron complexes with a substituted 8-(p-Xphenyl)naphthylamine(X=OMe,Me,CF3)was designed and synthesized by combining weakπ-πinteraction with steric and electronic tunings...A series of“half-sandwich”bis(imino)pyridyl iron complexes with a substituted 8-(p-Xphenyl)naphthylamine(X=OMe,Me,CF3)was designed and synthesized by combining weakπ-πinteraction with steric and electronic tunings.The weak noncovalentπ-πinteraction as well as the steric and electronic effects of bis(imino)pyridyl iron complexes were identified by experimental analyses and calculations.The roles of weakπ-πinteraction,steric bulk,and electronic tuning on the ethylene polymerization performance of bis(imino)pyridyl iron catalysts were studied in detail.The combination ofπ-πinteraction with steric and electronic tunings can access to thermally stable bis(imino)pyridyl iron at 130°C.展开更多
LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instab...LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instability currently hinder its broader application.Herein,inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules(polyethylene glycol-400,PEG-400),the pomegranate-type LiMn_(0.5)Fe_(0.5)PO_(4)-0.5@C(P-LMFP@C)cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method.The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor,which prevents agglomeration during sintering.The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li^(+)transport kinetics,improving the rate performance and cycling stability.As a result,the designed P-LMFP@C has remarkable electrochemical behavior,boasting excellent capacity retention(98%after 100 cycles at the 1C rate)and rate capability(91 mAh·g^(-1)at 20C).Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.展开更多
The practical application of emerging rechargeable aqueous zinc(Zn)batteries is challenged by the poor reversibility and cycling stability of Zn anodes,primarily due to parasitic side reactions.While numerous strategi...The practical application of emerging rechargeable aqueous zinc(Zn)batteries is challenged by the poor reversibility and cycling stability of Zn anodes,primarily due to parasitic side reactions.While numerous strategies have been proposed,balancing the suppression of side reactions with the maintenance of fast Zn plating/stripping kinetics remains a significant challenge.In this study,sucrose,a sterically-hindered organic molecule with abundant hydroxyl groups,is employed to suppress the side reactions and maintain the moderate kinetics of Zn plating/stripping by modulating the hydrogen bond network without altering the Zn^(2+)solvation structure.Its steric hindrance effect further impedes the lateral diffusion of Zn atoms on the electrode surface within the electric double layer,effectively mitigating dendrite growth and stabilizing the electrodeposition process.Consequently,the formulated Suc/ZnSO_(4)electrolyte achieves a remarkably Coulombic efficiency of 99.90% over 2600 cycles at 3 mA cm^(-2)for 1 mAh cm^(-2)in Zn‖Cu cells.The enhanced Zn anode reversibility leads to excellent cycling stability in Zn‖LiFePO_(4)cells and Zn‖β-MnO_(2)cells.This study underscores the potential of sterically-hindered organic molecule strategies to enhance Zn anode stability while maintaining favorable Zn deposition/stripping dynamics in aqueous Zn batteries.展开更多
Covalent organic frameworks(COFs)provide a unique platform with tunable structures allowing precise control of pore sizes,shapes and functions.The key to synthesizing COFs with desired structures is to precisely contr...Covalent organic frameworks(COFs)provide a unique platform with tunable structures allowing precise control of pore sizes,shapes and functions.The key to synthesizing COFs with desired structures is to precisely control the conformation and geometry of building blocks as well as the growth direction of COFs.To achieve this,steric effects are noteworthy that may have a significant impact on the assembly of COFs.Specifically,the introduction of sterically demanding substituents or bulky groups into monomers of COFs will lead to intramolecular conformational changes and intermolecular repulsions,which induce structural changes in COFs,including changes in torsion angles,interlayer distances,stacking modes and topologies of 2D COFs,and changes in spatial nodes,interpenetration and topologies of 3D COFs.This review will help to understand the impacts of steric effects on the structures of COFs and to take them into extensive consideration in the design and synthesis of COFs with novel functionalities and structural attributes.展开更多
The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of org...The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of organic phenols with montmorillonite, illite and kaolinite in seawater is monovalent anion exchage.(2) Their isotherms of stepwise exchage on clay surfaces belong to the Langmuir type or stepwise type.(3) The discovery of the"steric hindrance effects of stepwise exchange of organic phenols on clays surfaces", and revelation of an exchange mechanisrn diffeient from that in references are the greatest achieverments in this work.展开更多
Molecular bulks are favorable for the thermal and morphological stability in organic wide-bandgap semiconducting polymers with potential applications in both information and energy electronics. In this review, we pres...Molecular bulks are favorable for the thermal and morphological stability in organic wide-bandgap semiconducting polymers with potential applications in both information and energy electronics. In this review, we present our progress in the design of fluorene-based bulky semiconductors with a fractal four-element pattern. Firstly, we established one-pot methods to spirofluorenes, especially spiro[fluorene-9,9'-xanthene] (SFX) serving as the next-generation spiro-based semiconductors. Secondly, we observed the supramolecular forces at the bulky groups and discovered the supramolecular steric hindrance (SSH) effect on polymorphisms, nanocrystals as well as device performance. Thus, a synergistically molecular attractor-repulsor theory (SMART) was proposed for the control of nanocrystal morphology, thin film phase and morphology. Thirdly, the third possible type of defects has been identified to generate green band (g-band) emission in wide- bandgap semiconductors by the introduction of molecular strain design of cyclofluorene. Finally, the first bulky polydiarylfluorene with highly crystalline and β conformation was achieved by an attractor-repulsor design of tadpole-shape monomer, which offered an effective platform to fabricate stable wide-bandgap semiconducting devices. All the discoveries offer the solid basis to break through bottlenecks of organic/polymer wide-bandgap semiconductors by the improvements of overall performances.展开更多
Long-alkyl tail triphenylene (TP) side-chain liquid crystalline polymers (SCLCPs) with different spacer length (P-m-TP, m = 2, 3, 4, 6, 8, which is the number of carbon atom in the flexible alkyl spacers) have b...Long-alkyl tail triphenylene (TP) side-chain liquid crystalline polymers (SCLCPs) with different spacer length (P-m-TP, m = 2, 3, 4, 6, 8, which is the number of carbon atom in the flexible alkyl spacers) have been successfully synthesized via free radical polymerization. The differential scanning calorimetry (DSC), polarized light microscopy (POM), ultraviolet-visible spectroscopy (UV- Vis), wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) measurements were performed to investigate the influence of multiple effects on the self-organization behaviors of P-m-TP, including steric effect, decoupling effect and π-π stacking effect. The experimental results revealed that P-m-TP (m = 2, 3, 4) formed the columnar phase which was developed by the TP moieties and the main chain as a whole, suggesting that the side-chains had strong steric effect even though the number of spacer length (m) exceeded 4. In addition, the clearing points (Tis) of the polymers were above 300 ℃. When m = 6 and 8, the polymers displayed hexagonal columnar phase and exhibited the low Tis (91 and 80 ℃ respectively), originating from the self-assembly of triphenylene due to the decoupling effect and π-π stacking effect. This work offers a viable and inspiring pathway to control the phase transition temperature and phase structure ofTP SCLCPs via simply tailoring the spacer length and increasing the alkyl tail length of TP.展开更多
The rejection properties of a nanofiltration organic membrane were investigated using KCI solutions, NaC1 solutions, NaC1/benzyl alcohol hybrid solutions and KCl/benzyl alcohol hybrid solutions. The presence of benzyl...The rejection properties of a nanofiltration organic membrane were investigated using KCI solutions, NaC1 solutions, NaC1/benzyl alcohol hybrid solutions and KCl/benzyl alcohol hybrid solutions. The presence of benzyl alcohol (3.7 mol · m-3) caused a decrease in electrolyte rejection within the range of 0 to 6%. The mechanism of the decrease was discussed. The cation-n bond was assumed to form in the hybrid solution and to further induce the partial dehydration of the cation. The steric and charge density inhibition of the salt activity was strengthened, and the salt rejection was thus decreased. A simulation was performed to evaluate the radius of the cation. 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.展开更多
As evidenced from recent literature,interest in employing information theory measures for understanding different properties of atomic and molecular systems is increasing tremendously.Following our earlier efforts in ...As evidenced from recent literature,interest in employing information theory measures for understanding different properties of atomic and molecular systems is increasing tremendously.Following our earlier efforts in this field,we here evaluate the feasibility of using information theory functionals such as Fisher information,Shannon entropy,Onicescu information energy,and Ghosh-Berkowitz-Parr entropy as measures of steric effects for the steric analysis of water nanoclusters.Taking the structural isomers of water hexamers as working models and using information theoretic quantities,we show that the relative energies of water nanoclusters and the computed steric energies are related.We also show the strong effects of steric repulsion on conformational stabilities.At the same time,we have also assessed the usefulness of simultaneously considering the different information theoretic quantities,and achieved more accurate descriptions of the stability of water nanoclusters.In order to consider the effects of cluster size on the obtained results and the extent of applicability of information theoretic quantities,we have also benchmarked larger water nanoclusters with 32 and 64 units.Scrutinizing the obtained data from information theory functionals,we found that Fisher information shows the best overall performance.Our findings underline that the information theoretic quantities,especially Fisher information,can be used as quantitative measures of relative energies and consequently the order of stability of nanoclusters,which affirmed the utility of information theory for investigating various physical and chemical problems.展开更多
The construction of high color purity and high resolution organic light-emitting diodes(OLEDs)is facilitated by the development of highly-efficient organic luminescent materials with narrow-band emission.Herein,in ord...The construction of high color purity and high resolution organic light-emitting diodes(OLEDs)is facilitated by the development of highly-efficient organic luminescent materials with narrow-band emission.Herein,in order to address the problem of broad emission spectra of organic luminescent materials,an effective molecular design strategy is presented to reduce the full width at half maximum(FWHM)of emission by integrating the steric hindrance effect in the pyrene system.As the bulky group was introduced into the 2-position,compounds 5 not only show a relative high quantum yield(>0.31)in the solid state,but also can suppress the molecular rotation of triphenylamine(TPA)at the 3-position to narrow the FWHM in the solid state compared to that in solution.Compound 5c containing biphenyl units exhibits a maximum emission peak at 484 nm with a quantum yield of 0.38 and FWHM value of 49 nm in the solid state.展开更多
基金financially supported by the Fundamental Research Funds for the Central Universities (WK2060200025)Advanced Catalysis and Green Manufacturing Collaborative Innovation Center (ACGM2016-06-01)Yixing Taodu Ying Cai Program
文摘Naphthyl-α-diimine nickel complexes with systematically varied ligand sterics, activated by modified methylaluminoxane(MMAO), were tested in the polymerization of higher α-olefin(1-hexene, 1-decene and 1-hexadecene) under suitable conditions. The polymerization results indicated the possibility of precise microstructure control, depending on catalyst structure, polymerization temperature, monomer concentration and types of monomers, which in turn strongly affects the resultant polymer properties. Naphthyl-α-diimine nickel complex bearing chiral bulky sec-phenethyl groups in the o-naphthyl position showed good catalytic activity, and resulted in branched polymers(42-88/1000 C) with high molecular weights(Mn:(4.3-15.2) × 10^4 g·mol^-1) and narrow molecular weight distribution(Mw/Mn = 1.13-1.29, RT), which suggested a living polymerization. The increasing steric hindrance of catalyst leads to enhance insertion for 2,1-insertion of α-olefin and the chain-walking reaction.
基金Project supported by the National Natural Science Foundation of China (50973003)Anhui Science and Technology Program (090518026)+1 种基金Natural Science Foundation of Fuyang Normal College (2011CXY04,2009FSKJ04,2011HJJC02ZD,2011HJJC01ZD,2011HJJC05YB,2011HJJC04YB,2011HJJC03YB,2010FSKJ01ZD)Open fund of State Key Laboratory of Rare Earth Materials Chemistry and Applications (RE201101)
文摘The rare earth complexes Tb(o-BrBA)3,Tb(m-BrBA)3 and Tb(p-BrBA)3 were synthesized using o-,m-,p-bromo benzoic acids(2-bromo benzoic acid,3-bromo benzoic acid and 4-bromo benzoic acid) as ligand,respectively.The UV spectra showed that the absorption ability of Tb(m-BrBA)3 was the strongest.However,the fluorescent intensity of Tb(o-BrBA)3 was the weakest.The effect of the molecular structure,the energy level of Tb3+ and energy transfer efficiency from ligands to Tb3+ were discussed to explain the experimental results.The results indicated that,due to the large atomic radius of bromine,the steric effect caused by the different substitution bromine on the benzene ring might strongly affect the bond length formed by the coordination atoms and Tb3+.The longer the bond length was,the lower the efficiency of energy transfer was,and the weaker the fluorescent intensity was.
基金supported by the Ministry of Science and Technology(No.2017YFA0205000)National Natural Science Foundation of China(Nos.21303024,21365003,21463003,51478123,21962003,21902033)+6 种基金the National Key Basic Research Program of China(No.2012CB933001)the Chinese Academy of Sciences(No.YZ201318)The jiangxi Provincial"Ganpo Talents 555 Projects",Jiangxi Provincial Education Department Fund(No.KJLD13080)Jiangxi Provincial Funds for Distinguished Young Scientists(No.20153BCB23001)Jjiangxi Provincial Project of Scientific and Technological Innovation Team(No.20152BCB24008)Jiangxi Province Youth Science Foundation Project(No.20192BAB216013)Science and Technology Project of Jiangxi Province Education Department(No.180775)are also gratefully acknowledged.
文摘Amino acids are basic units to construct a protein with the assistance of various interactions.During this building process,steric hindrance derived from amino acid side groups or side chains is a factor that could not be ignored.In this contribution,adsorption behaviors of C-terminal amino acid derivatives with amino acid residues fused in 3,4,9,10-perylenetetracarboxylic dianhydride were investigated by scanning tunneling microscopy(STM)and density functional theory(DFT)calculations at various liquid/solid interfaces.STM results at 1-phenyloctane/HOPG interface show that N,N'-3,4,9,10-perylenedicarboximide(GP)and N,N'-methyl-3,4,9,10-perylenedicarboximide(AP)formed linear and herringbone structures,respectively.The driving force could be attributed to different H-bonding sites induced by steric hindrance at side groups.N,N'-Benzyl-3,4,9,10-perylenedicarboximide(PP)generates both linear and herringbone structures because steric hindrance changes the H-bonding sites between PP molecules,whereas N,N'-isopropyl-3,4,9,10-perylenedicarboximide(LP)failed to be imaged because of strong steric hindrance coming from larger side group.To further investigate the impact of steric hindrance,we utilized octanoic acid(OA)as solvent to capture the adsorption details of LP and PP.We found that OA molecules drag PP and LP molecules in a different direction to generate linear structure,impeding the molecular rotation.The structure–solvent relationship shows that the steric hindrance is brought by the large side group,which makes it easier to recognize OA molecules at the interface.These results demonstrate that steric effect plays a significant role in altering interaction sites of the compounds during the adsorption process at the liquid/solid interface.
基金Project supported bythe National Natural Science Foundation of China (50073024 ,90101001) the Special Funds for MajorState Basic Research Projects (G1999064800) +1 种基金the Project fromthe Chinese Academy of Sciences (KJCX2-SW-H07) the In-ternational Collaboration Project from Changchun City ,China (04-03GH268)
文摘The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2- x Lax MnMoO6 (0 ≤ x ≤ 1 ). The compounds have a monoclinic structure (space group P21/n) and the cell volume expands monotonically with La doping. The Tc and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-x LaxMnMoO6 decreases only at low doping levels (x ≤0.2); while at high doping levels (0.8≤x ≤1), electrical resistivity tends to increase greatly. The resuits suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.
文摘A recent study has revealed a full 3-dimentional reactive scattering picture of the reaction CI+CHD3(v1=1) as the C1 atoms attack CHD3 from various directions respective to the C-H stretching bond. The reported polarization-dependent differential cross sections provide the most detailed characterization of the influences of reagent alignments on reactivity. To convey the stereo-specific information more accessible to general chemists, we show here, by proper symmetry considerations, how to retrieve from the measurements the relative integral and differential cross sections of two most common collision geometries: the end-on versus side-on attacks. The results, albeit coarse-grained, provide an appealing picture that not only reinforces our intuition about chemical reactivity, but also sheds more light on the conventional (unpolarized) attributes.
基金supported by the National Natural Science Foundation of China(No.11375082,11305086,11175080)Science Foundation of Hunan Province Department of Education(No.12A117)the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry(Wang X.F.)
文摘By the reaction of different aromatic dicarboxylic acid with zinc nitrate, three metal-carboxylate frameworks, [Zn3(BDC)3(EtOH)2](1), [Zn3(BDC)3(py)2]·2DMF(2), and [Zn3(NH2-BDC)3(H2O)2]·5DMF(3) which are constructed on the same linear trinuclear Zn3(RCOO)6 secondary building units, have been synthesized and characterized by X-ray diffraction analyses. Structural analyses showed that there are terephthalic acids as ligand linkers to form the hxl topological layer structures for 1 and 2. The introduction of the rigid aromatic ring pyridine in 2 as the terminal co-ligand of Zn3-SBU to instead of the flexible ethanol in 1, will form the layer-pillared supramolecular systems with 2-D crisscross channels, through its π-π stacking interactions. Owing to the steric hindrance of amino groups, 3 was assembled into a three-dimensional porous structure with pcu topology derived from the 2-amino-terephthalic acid as linkers to connect the Zn3-SBUs through a head-to-tail type.
基金supported by the State Key Research Development Program of China(No.2021YFB3800701)National Natural Science Foundation of China(NSFC,No.52173016)+2 种基金Guangdong Basic and Applied Basic Research Foundation(Nos.2024A1515012784,2024A1515011102,and 2023A1515110549)Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.24qnpy047)PetroChina Scientific and Technological Projects(No.2022DJ6308).
文摘A series of“half-sandwich”bis(imino)pyridyl iron complexes with a substituted 8-(p-Xphenyl)naphthylamine(X=OMe,Me,CF3)was designed and synthesized by combining weakπ-πinteraction with steric and electronic tunings.The weak noncovalentπ-πinteraction as well as the steric and electronic effects of bis(imino)pyridyl iron complexes were identified by experimental analyses and calculations.The roles of weakπ-πinteraction,steric bulk,and electronic tuning on the ethylene polymerization performance of bis(imino)pyridyl iron catalysts were studied in detail.The combination ofπ-πinteraction with steric and electronic tunings can access to thermally stable bis(imino)pyridyl iron at 130°C.
基金supported by the Key Technologies R&D Program of Xiamen(No.3502Z20231057)Industry Leading Key Projects of Fujian Province(No.2022H0057)+2 种基金the National Natural Science Foundation of China(No.21975212)High-Level Talent Start-Up Foundation of Xiamen Institute of Technology for financial support(No.YKJ23017R)Graduate Science and Technology Innovation Program of Xiamen University of Technology(No.YKJCX2023194).
文摘LiMnxFe1-xPO_(4) is a promising cathode candidate due to its high security and the availability of a high 4.1 V operating voltage and high energy density.However,the poor electrochemical kinetics and structural instability currently hinder its broader application.Herein,inspired by the hydrogen-bonded cross-linking and steric hindrance effect between short-chain polymer molecules(polyethylene glycol-400,PEG-400),the pomegranate-type LiMn_(0.5)Fe_(0.5)PO_(4)-0.5@C(P-LMFP@C)cathode materials with 3D ion/electron dual-conductive network structure were constructed through ball mill-assisted spray-drying method.The intermolecular effects of PEG-400 promote the spheroidization and uniform PEG coating of LMFP precursor,which prevents agglomeration during sintering.The 3D ion/electron dual-conductive network structure in P-LMFP@C accelerates the Li^(+)transport kinetics,improving the rate performance and cycling stability.As a result,the designed P-LMFP@C has remarkable electrochemical behavior,boasting excellent capacity retention(98%after 100 cycles at the 1C rate)and rate capability(91 mAh·g^(-1)at 20C).Such strategy introduces a novel window for designing high-performance olivine cathodes and offers compatibility with a range of energy storage materials for diverse applications.
基金funded by the National Key Research and Development Program of China(2022YFB2404500)the Shenzhen Outstanding Talents Training Fund(01090100002)the National Natural Science Foundation of China(52201280)。
文摘The practical application of emerging rechargeable aqueous zinc(Zn)batteries is challenged by the poor reversibility and cycling stability of Zn anodes,primarily due to parasitic side reactions.While numerous strategies have been proposed,balancing the suppression of side reactions with the maintenance of fast Zn plating/stripping kinetics remains a significant challenge.In this study,sucrose,a sterically-hindered organic molecule with abundant hydroxyl groups,is employed to suppress the side reactions and maintain the moderate kinetics of Zn plating/stripping by modulating the hydrogen bond network without altering the Zn^(2+)solvation structure.Its steric hindrance effect further impedes the lateral diffusion of Zn atoms on the electrode surface within the electric double layer,effectively mitigating dendrite growth and stabilizing the electrodeposition process.Consequently,the formulated Suc/ZnSO_(4)electrolyte achieves a remarkably Coulombic efficiency of 99.90% over 2600 cycles at 3 mA cm^(-2)for 1 mAh cm^(-2)in Zn‖Cu cells.The enhanced Zn anode reversibility leads to excellent cycling stability in Zn‖LiFePO_(4)cells and Zn‖β-MnO_(2)cells.This study underscores the potential of sterically-hindered organic molecule strategies to enhance Zn anode stability while maintaining favorable Zn deposition/stripping dynamics in aqueous Zn batteries.
基金supported by the National Natural Science Foundation of China(22225503,U21A20285,21975188,22105149)the support by the fellowship of China National Postdoctoral Program for Innovative Talents(BX2021226)。
文摘Covalent organic frameworks(COFs)provide a unique platform with tunable structures allowing precise control of pore sizes,shapes and functions.The key to synthesizing COFs with desired structures is to precisely control the conformation and geometry of building blocks as well as the growth direction of COFs.To achieve this,steric effects are noteworthy that may have a significant impact on the assembly of COFs.Specifically,the introduction of sterically demanding substituents or bulky groups into monomers of COFs will lead to intramolecular conformational changes and intermolecular repulsions,which induce structural changes in COFs,including changes in torsion angles,interlayer distances,stacking modes and topologies of 2D COFs,and changes in spatial nodes,interpenetration and topologies of 3D COFs.This review will help to understand the impacts of steric effects on the structures of COFs and to take them into extensive consideration in the design and synthesis of COFs with novel functionalities and structural attributes.
基金Project supported by the National Natural Science Fund. (Nos. E 85111 and 4890275)
文摘The exchange action of six types of organic phenols on clay surfaces in seawater is systematically studied in this work. The following significant conclusions are drawn from the experiments. (1) The interaction of organic phenols with montmorillonite, illite and kaolinite in seawater is monovalent anion exchage.(2) Their isotherms of stepwise exchage on clay surfaces belong to the Langmuir type or stepwise type.(3) The discovery of the"steric hindrance effects of stepwise exchange of organic phenols on clays surfaces", and revelation of an exchange mechanisrn diffeient from that in references are the greatest achieverments in this work.
基金financially supported by the National Natural Science Funds for Excellent Young Scholar(No.21322402)the National Natural Science Foundation of China(Nos.21274064,61475074,21504041 and 61136003)+3 种基金University of Jiangsu Province Natural Science Foundation Project(No.14KJB510027)Natural Science Foundation of Jiangsu Province(No.BM2012010)Excellent Science and Technology Innovation Team of Jiangsu Higher Education Institutions,Synergetic Innovation Center for Organic Electronics and Information Displays,Natural Science of the Education Committee of Jiangsu Province(No.15KJB430019)Jiangsu Planned Projects for Postdoctoral Research Funds(No.1501019B)
文摘Molecular bulks are favorable for the thermal and morphological stability in organic wide-bandgap semiconducting polymers with potential applications in both information and energy electronics. In this review, we present our progress in the design of fluorene-based bulky semiconductors with a fractal four-element pattern. Firstly, we established one-pot methods to spirofluorenes, especially spiro[fluorene-9,9'-xanthene] (SFX) serving as the next-generation spiro-based semiconductors. Secondly, we observed the supramolecular forces at the bulky groups and discovered the supramolecular steric hindrance (SSH) effect on polymorphisms, nanocrystals as well as device performance. Thus, a synergistically molecular attractor-repulsor theory (SMART) was proposed for the control of nanocrystal morphology, thin film phase and morphology. Thirdly, the third possible type of defects has been identified to generate green band (g-band) emission in wide- bandgap semiconductors by the introduction of molecular strain design of cyclofluorene. Finally, the first bulky polydiarylfluorene with highly crystalline and β conformation was achieved by an attractor-repulsor design of tadpole-shape monomer, which offered an effective platform to fabricate stable wide-bandgap semiconducting devices. All the discoveries offer the solid basis to break through bottlenecks of organic/polymer wide-bandgap semiconductors by the improvements of overall performances.
基金financially supported by the National Natural Science Foundation of China (No.21504075)Natural Science Foundation of Hunan Province (No.2017JJ3294)
文摘Long-alkyl tail triphenylene (TP) side-chain liquid crystalline polymers (SCLCPs) with different spacer length (P-m-TP, m = 2, 3, 4, 6, 8, which is the number of carbon atom in the flexible alkyl spacers) have been successfully synthesized via free radical polymerization. The differential scanning calorimetry (DSC), polarized light microscopy (POM), ultraviolet-visible spectroscopy (UV- Vis), wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) measurements were performed to investigate the influence of multiple effects on the self-organization behaviors of P-m-TP, including steric effect, decoupling effect and π-π stacking effect. The experimental results revealed that P-m-TP (m = 2, 3, 4) formed the columnar phase which was developed by the TP moieties and the main chain as a whole, suggesting that the side-chains had strong steric effect even though the number of spacer length (m) exceeded 4. In addition, the clearing points (Tis) of the polymers were above 300 ℃. When m = 6 and 8, the polymers displayed hexagonal columnar phase and exhibited the low Tis (91 and 80 ℃ respectively), originating from the self-assembly of triphenylene due to the decoupling effect and π-π stacking effect. This work offers a viable and inspiring pathway to control the phase transition temperature and phase structure ofTP SCLCPs via simply tailoring the spacer length and increasing the alkyl tail length of TP.
文摘The rejection properties of a nanofiltration organic membrane were investigated using KCI solutions, NaC1 solutions, NaC1/benzyl alcohol hybrid solutions and KCl/benzyl alcohol hybrid solutions. The presence of benzyl alcohol (3.7 mol · m-3) caused a decrease in electrolyte rejection within the range of 0 to 6%. The mechanism of the decrease was discussed. The cation-n bond was assumed to form in the hybrid solution and to further induce the partial dehydration of the cation. The steric and charge density inhibition of the salt activity was strengthened, and the salt rejection was thus decreased. A simulation was performed to evaluate the radius of the cation. 2015 The Chemical Industry and Engineering Society of China, and Chemical Industry Press. All rights reserved.
文摘As evidenced from recent literature,interest in employing information theory measures for understanding different properties of atomic and molecular systems is increasing tremendously.Following our earlier efforts in this field,we here evaluate the feasibility of using information theory functionals such as Fisher information,Shannon entropy,Onicescu information energy,and Ghosh-Berkowitz-Parr entropy as measures of steric effects for the steric analysis of water nanoclusters.Taking the structural isomers of water hexamers as working models and using information theoretic quantities,we show that the relative energies of water nanoclusters and the computed steric energies are related.We also show the strong effects of steric repulsion on conformational stabilities.At the same time,we have also assessed the usefulness of simultaneously considering the different information theoretic quantities,and achieved more accurate descriptions of the stability of water nanoclusters.In order to consider the effects of cluster size on the obtained results and the extent of applicability of information theoretic quantities,we have also benchmarked larger water nanoclusters with 32 and 64 units.Scrutinizing the obtained data from information theory functionals,we found that Fisher information shows the best overall performance.Our findings underline that the information theoretic quantities,especially Fisher information,can be used as quantitative measures of relative energies and consequently the order of stability of nanoclusters,which affirmed the utility of information theory for investigating various physical and chemical problems.
文摘The construction of high color purity and high resolution organic light-emitting diodes(OLEDs)is facilitated by the development of highly-efficient organic luminescent materials with narrow-band emission.Herein,in order to address the problem of broad emission spectra of organic luminescent materials,an effective molecular design strategy is presented to reduce the full width at half maximum(FWHM)of emission by integrating the steric hindrance effect in the pyrene system.As the bulky group was introduced into the 2-position,compounds 5 not only show a relative high quantum yield(>0.31)in the solid state,but also can suppress the molecular rotation of triphenylamine(TPA)at the 3-position to narrow the FWHM in the solid state compared to that in solution.Compound 5c containing biphenyl units exhibits a maximum emission peak at 484 nm with a quantum yield of 0.38 and FWHM value of 49 nm in the solid state.