With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mo...With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mobile hardware computing power and the demand for high-resolution,high-refresh-rate rendering has intensified,leading to critical bottlenecks,including frame latency and power overload,which constrain large-scale applications of VR systems.This study systematically analyzes four key technologies for efficient VR rendering:(1)foveated rendering,which dynamically reduces rendering precision in peripheral regions based on the physiological characteristics of the human visual system(HVS),thereby significantly decreasing graphics computation load;(2)stereo rendering,optimized through consistent stereo rendering acceleration algorithms;(3)cloud rendering,utilizing object-based decomposition and illumination-based decomposition for distributed resource scheduling;and(4)low-power rendering,integrating parameter-optimized rendering,super-resolution technology,and frame-generation technology to enhance mobile energy efficiency.Through a systematic review of the core principles and optimization approaches of these technologies,this study establishes research benchmarks for developing efficient VR systems that achieve high fidelity and low latency while providing further theoretical support for the engineering implementation and industrial advancement of VR rendering technologies.展开更多
As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is prop...As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is proposed. First, according to the prior information, the contour of the wheel hub is extracted and fitted as an ellipse curve, and the ellipse fitting equation can be obtained. Then, a new un-tangent constraint is adopted to improve the ellipse matching precision. Finally, the 3D coordinates of the wheel center can be reconstructed by the spatial circle projection algorithm with low time complexity and high measurement accuracy. Simulation experiments verify that compared with the ellipse center reconstruction algorithm and the planar constraint optimization algorithm, the proposed method can acquire the 3D coordinates of the spatial circle more exactly. Furthermore, the measurements of the wheelbase, the wheelbase difference and the wheel static radius for three types of vehicles demonstrate the effectiveness of the proposed method for wheel center detection.展开更多
Accurate digital terrain models(DTMs)are essential for a wide range of geospatial and environmental applications,yet their derivation in forested regions remains a significant challenge.Existing global DTMs,typically ...Accurate digital terrain models(DTMs)are essential for a wide range of geospatial and environmental applications,yet their derivation in forested regions remains a significant challenge.Existing global DTMs,typically generated from satellite stereo photogrammetry or interferometric synthetic aperture radar(InSAR),fail to accurately capture understory terrain due to limited penetration capabilities,resulting in elevation overestimation in densely vegetated areas.While airborne light detection and ranging(LiDAR)can provide high-accuracy DTMs,its limited spatial coverage and high acquisition cost hinder large-scale applications.Thus,there is an urgent need for a scalable and cost-effective approach to extract DTMs directly from satellite-derived digital surface models(DSMs).In this study,we propose a simple,interpretable understory terrain extraction method that utilizes canopy height data from Global Ecosystem Dynamics Investigation(GEDI)and Ice,Cloud,and Land Elevation Satellite-2(ICESat-2)to construct a tree height surface model,which is then subtracted from the stereo-derived DSM to generate the final DTM.By directly incorporating LiDAR constraints,the method avoids error propagation from multiple heterogeneous datasets and reduces reliance on ancillary inputs,ensuring ease of implementation and broad applicability.In contrast to machine learning-based terrain modeling methods,which are often prone to overfitting and data bias,the proposed approach is simple,interpretable,and robust across diverse forested landscapes.The accuracy of the resulting DTM was validated against airborne LiDAR reference data and compared with both the Copernicus Digital Elevation Model(DEM)and the forest and buildings removed DEM(FABDEM),a global bare-earth elevation model corrected for vegetation bias.The results indicate that the proposed DTM consistently outperforms the Copernicus DEM(CopDEM)and achieves accuracy comparable to FABDEM.In addition,its finer spatial resolution of 1 m,compared to the 30 m resolution of FABDEM,allows for more detailed terrain representation and better capture of fine-scale variation.This advantage is most pronounced in gently to moderately sloped areas,where the proposed DTM shows clearly higher accuracy than both the CopDEM and FABDEM.The results confirm that high-resolution DTMs can be effectively extracted from DSMs using spaceborne LiDAR constraints,offering a scalable solution for terrain modeling in forested environments where airborne LiDAR is unavailable.To illustrate the potential utility of the proposed DTM,we applied it to a fire risk mapping application based on topographic parameters such as slope,aspect,and elevation.This case highlights how improved terrain representation can support geospatial hazard assessments.展开更多
Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without grou...Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without ground control,the vertical error of the model is the decisive factor that constrains the accuracy of 3D data products.The elevation data obtained by spaceborne laser altimeter have the advantages of short update periods,high positioning precision,and low acquisition cost,providing sufficient data support for improving the elevation accuracy of stereo models through the combined BA.This paper proposes a geometric positioning model based on the integration of Optical Satellite Stereo Imagery(OSSI)and spaceborne laser altimeter data.Firstly,we elaborate the principle and necessity of this work through a literature review of existing methods.Then,the framework of our geo-positioning models.Secondly,four key technologies of the proposed model are expounded in order,including the acquisition and management of global Laser Control Points,the association of LCPs and OSSI,the block adjustment model combining LCPs with OSSI,and the accuracy estimation and quality control of the combined BA.Next,the combined BA experiment using Ziyuan-3(ZY-3)OSSI and ICESat-2 laser data was carried out at the testing site in Shandong Province,China.Experimental results prove that our method can automatically select LCPs with high accuracy.The elevation deviation of the combined BA eventually achieved the Mean Error(ME)of 0.06 m and the Root Mean Square Error(RMSE)of 1.18 m,much lower than the ME of 13.20 m and the RMSE of 3.88 m before the block adjustment.A further research direction will be how to perform more adequate accuracy analysis and quality control using massive laser points as checkpoints.展开更多
An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, u...An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization.展开更多
A stereo matching algorithm based on the epipolar line constraint is designed to meet the real-time and the accuracy requirements. The algorithm is applied to photodynamic therapy binocular surveillance system for por...A stereo matching algorithm based on the epipolar line constraint is designed to meet the real-time and the accuracy requirements. The algorithm is applied to photodynamic therapy binocular surveillance system for port wine stain (PWS) when it monitors the position of the treatment region. The corner matching based on Hu moments is used to calculate the fundamental matrix of the binocular vision system. Experimental results are in agreement with the theoretical calculation.展开更多
Cluster warhead has become the main ammunition of gun,rocket projectile and missile and it has been widely equipped in almost every country.More and more attention is paid to the damage effect of cluster warhead.The s...Cluster warhead has become the main ammunition of gun,rocket projectile and missile and it has been widely equipped in almost every country.More and more attention is paid to the damage effect of cluster warhead.The size of the dispersion area of cluster warhead is the main standard by which the damage effect of cluster warhead is estimated.The practical method of measuring the dispersion area was developed based on binocular stereo vision measurement theory.The calibration principle of the binocular stereo vision cameras was studied.The matching algorithm that relies on the gradient fields of the neighborhood of a pixel has been used to obtain the spatial information of matched points by acquiring apair of corresponding points in the left and right images of binocular cameras.The 3Dpositions of the flying path of cluster warhead were calculated.The umbrella that is similar to the dispersion track of static explosive cluster warhead was applied in the experiment to get the projection area of the umbrella on the ground.Experiment results verify the feasibility of the proposed method.展开更多
In order to quickly and efficiently get the information of the bottom of the shoe pattern and spraying trajectory, the paper proposes a method based on binocular stereo vision. After acquiring target image, edge detec...In order to quickly and efficiently get the information of the bottom of the shoe pattern and spraying trajectory, the paper proposes a method based on binocular stereo vision. After acquiring target image, edge detection based on the canny algorithm, the paper begins stereo matching based on area and characteristics of algorithm. To eliminate false matching points, the paper uses the principle of polar geometry in computer vision. For the purpose of gaining the 3D point cloud of spraying curve, the paper adopts the principle of binocular stereo vision 3D measurement, and then carries on cubic spline curve fitting. By HALCON image processing software programming, it proves the feasibility and effectiveness of the method展开更多
It is important to reduce data redundancy of stereo video in practical applications. In this paper,first,a data embedding method for stereo video(DEMSV) is investigated by embedding the encoding data into the refere...It is important to reduce data redundancy of stereo video in practical applications. In this paper,first,a data embedding method for stereo video(DEMSV) is investigated by embedding the encoding data into the reference frame to encode stereo video. It can use only one channel to transfer all the video data and the receiver can choose a monocular video decoder or stereo video decoder adaptively. Then,introducing the joint prediction scheme in the coding process of DEMSV,we propose a novel data embedding method for H.264 stereo video codec with joint prediction scheme(DEMSV-JPS) to achieve high coding efficiency. Experimental results show that the proposed method can obtain high peak signal-to-noise ratio(PSNR) and compression ratio(at least 33 dB for the test sequence) . Comparing the testing methods using JPS and without using JPS,we prove that JPS can further improve the objective and visual quality. DEMSV-JPS shows such advantages and will be suitable to applications in real-time environments of stereo-video transmission.展开更多
A new motion model and estimation algorithm is proposed to compute the general rigid motion object's 6-DOF motion parameters and center of rotation based on stereo vision. The object's 6-DOF motion model is designed...A new motion model and estimation algorithm is proposed to compute the general rigid motion object's 6-DOF motion parameters and center of rotation based on stereo vision. The object's 6-DOF motion model is designed from the rigid object's motion character under the two defined reference frames. According to the rigid object's motion model and motion dynamics knowledge, the corresponding motion algorithm to compute the 6-DOF motion parameters is worked out. By the rigid object pure rotation motion model and space sphere geometry knowledge, the center of rotation may be calculated after eliminating the translation motion out of the 6-DOF motion. The motion equations are educed based on the motion model and the closed-form solutions are figured out. To heighten the motion estimation algorithm's robust, RANSAC algorithm is applied to delete the outliers. Simulation and real experiments are conducted and the experiment results are analyzed. The results prove the motion model's correction and algorithm's validity.展开更多
An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable...An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.展开更多
The borescopy inspection problem of aeroengine interior important partdamages such as firebox's burn and corruption, vane' s crack, bump, abrade and concave pit, is aimedat. A new system is developed to carry ...The borescopy inspection problem of aeroengine interior important partdamages such as firebox's burn and corruption, vane' s crack, bump, abrade and concave pit, is aimedat. A new system is developed to carry out 3D measurement and stereo reconstruction of engineinterior damage, in which the borescope of Japanese OLYMPUS Corporation is used as hardware. In thesystem, functions are implemented, such as image collection, camera calibration, imagepreprocessing, stereo matching, 3D measurement and stereo reconstruction. It can provide moredetailed inspection and more accurate estimation of engine interior damages. Finally, an example isused to verify the effectivity of the new method.展开更多
A geometrical analysis based algorithm is proposed to achieve the stereo matching of a single-lens prism based stereovision system. By setting the multi- face prism in frontal position of the static CCD (CM-140MCL) ...A geometrical analysis based algorithm is proposed to achieve the stereo matching of a single-lens prism based stereovision system. By setting the multi- face prism in frontal position of the static CCD (CM-140MCL) camera, equivalent stereo images with different orientations are captured synchronously by virtual cameras which are defined by two boundary lines: the optical axis and CCD camera field of view boundary. Subsequently, the geometrical relationship between the 2D stereo images and corresponding 3D scene is established by employing two fundamentals: ray sketching in which all the pertinent points, lines, and planes are expressed in the 3D camera coordinates and the rule of refraction. Landing on this relationship, the epipolar geometry is thus obtained by fitting a set of corresponding candidate points and thereafter, stereo matching of the prism based stereovision system is obtained. Moreover, the unique geometrical properties of the imaging system allow the proposed method free from the complicated camera calibration procedures and to be easily generalized from binocular and tri-oeular to multi-ocular stereovision systems. The performance of the algorithm is presented through the experiments on the binocular imaging system and the comparison with a conventional projection method demonstrates the efficient assessment of our novel contributions.展开更多
基金Supported by the National Key R&D Program of China under grant No.2022YFB3303203the National Natural Science Foundation of China under grant No.62272275.
文摘With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mobile hardware computing power and the demand for high-resolution,high-refresh-rate rendering has intensified,leading to critical bottlenecks,including frame latency and power overload,which constrain large-scale applications of VR systems.This study systematically analyzes four key technologies for efficient VR rendering:(1)foveated rendering,which dynamically reduces rendering precision in peripheral regions based on the physiological characteristics of the human visual system(HVS),thereby significantly decreasing graphics computation load;(2)stereo rendering,optimized through consistent stereo rendering acceleration algorithms;(3)cloud rendering,utilizing object-based decomposition and illumination-based decomposition for distributed resource scheduling;and(4)low-power rendering,integrating parameter-optimized rendering,super-resolution technology,and frame-generation technology to enhance mobile energy efficiency.Through a systematic review of the core principles and optimization approaches of these technologies,this study establishes research benchmarks for developing efficient VR systems that achieve high fidelity and low latency while providing further theoretical support for the engineering implementation and industrial advancement of VR rendering technologies.
基金The National Natural Science Foundation of China(No.61272223)the National Key Scientific Apparatus Development of Special Item(No.2012YQ170003-5)
文摘As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is proposed. First, according to the prior information, the contour of the wheel hub is extracted and fitted as an ellipse curve, and the ellipse fitting equation can be obtained. Then, a new un-tangent constraint is adopted to improve the ellipse matching precision. Finally, the 3D coordinates of the wheel center can be reconstructed by the spatial circle projection algorithm with low time complexity and high measurement accuracy. Simulation experiments verify that compared with the ellipse center reconstruction algorithm and the planar constraint optimization algorithm, the proposed method can acquire the 3D coordinates of the spatial circle more exactly. Furthermore, the measurements of the wheelbase, the wheelbase difference and the wheel static radius for three types of vehicles demonstrate the effectiveness of the proposed method for wheel center detection.
基金supported by the National Key Research and Development Program of China(Nos.SQ2022YFB3900026 and 2022YFB3903305)supported by the Leading Talents of Guangdong Pearl River Talent Program(No.2021CX02S024)the Guangdong S&T programme(No.2024B1212050011).
文摘Accurate digital terrain models(DTMs)are essential for a wide range of geospatial and environmental applications,yet their derivation in forested regions remains a significant challenge.Existing global DTMs,typically generated from satellite stereo photogrammetry or interferometric synthetic aperture radar(InSAR),fail to accurately capture understory terrain due to limited penetration capabilities,resulting in elevation overestimation in densely vegetated areas.While airborne light detection and ranging(LiDAR)can provide high-accuracy DTMs,its limited spatial coverage and high acquisition cost hinder large-scale applications.Thus,there is an urgent need for a scalable and cost-effective approach to extract DTMs directly from satellite-derived digital surface models(DSMs).In this study,we propose a simple,interpretable understory terrain extraction method that utilizes canopy height data from Global Ecosystem Dynamics Investigation(GEDI)and Ice,Cloud,and Land Elevation Satellite-2(ICESat-2)to construct a tree height surface model,which is then subtracted from the stereo-derived DSM to generate the final DTM.By directly incorporating LiDAR constraints,the method avoids error propagation from multiple heterogeneous datasets and reduces reliance on ancillary inputs,ensuring ease of implementation and broad applicability.In contrast to machine learning-based terrain modeling methods,which are often prone to overfitting and data bias,the proposed approach is simple,interpretable,and robust across diverse forested landscapes.The accuracy of the resulting DTM was validated against airborne LiDAR reference data and compared with both the Copernicus Digital Elevation Model(DEM)and the forest and buildings removed DEM(FABDEM),a global bare-earth elevation model corrected for vegetation bias.The results indicate that the proposed DTM consistently outperforms the Copernicus DEM(CopDEM)and achieves accuracy comparable to FABDEM.In addition,its finer spatial resolution of 1 m,compared to the 30 m resolution of FABDEM,allows for more detailed terrain representation and better capture of fine-scale variation.This advantage is most pronounced in gently to moderately sloped areas,where the proposed DTM shows clearly higher accuracy than both the CopDEM and FABDEM.The results confirm that high-resolution DTMs can be effectively extracted from DSMs using spaceborne LiDAR constraints,offering a scalable solution for terrain modeling in forested environments where airborne LiDAR is unavailable.To illustrate the potential utility of the proposed DTM,we applied it to a fire risk mapping application based on topographic parameters such as slope,aspect,and elevation.This case highlights how improved terrain representation can support geospatial hazard assessments.
基金supported by the National Science Fund for Distinguished Young Scholars[grant number 61825103]the Fundamental Research Funds for The Central Universities[grant number 2042022kf1002].
文摘Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without ground control,the vertical error of the model is the decisive factor that constrains the accuracy of 3D data products.The elevation data obtained by spaceborne laser altimeter have the advantages of short update periods,high positioning precision,and low acquisition cost,providing sufficient data support for improving the elevation accuracy of stereo models through the combined BA.This paper proposes a geometric positioning model based on the integration of Optical Satellite Stereo Imagery(OSSI)and spaceborne laser altimeter data.Firstly,we elaborate the principle and necessity of this work through a literature review of existing methods.Then,the framework of our geo-positioning models.Secondly,four key technologies of the proposed model are expounded in order,including the acquisition and management of global Laser Control Points,the association of LCPs and OSSI,the block adjustment model combining LCPs with OSSI,and the accuracy estimation and quality control of the combined BA.Next,the combined BA experiment using Ziyuan-3(ZY-3)OSSI and ICESat-2 laser data was carried out at the testing site in Shandong Province,China.Experimental results prove that our method can automatically select LCPs with high accuracy.The elevation deviation of the combined BA eventually achieved the Mean Error(ME)of 0.06 m and the Root Mean Square Error(RMSE)of 1.18 m,much lower than the ME of 13.20 m and the RMSE of 3.88 m before the block adjustment.A further research direction will be how to perform more adequate accuracy analysis and quality control using massive laser points as checkpoints.
基金supported by the National Natural Science Foundation of China(No.60605023,60775048)Specialized Research Fund for the Doctoral Program of Higher Education(No.20060141006)
文摘An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(2007AA04Z231)~~
文摘A stereo matching algorithm based on the epipolar line constraint is designed to meet the real-time and the accuracy requirements. The algorithm is applied to photodynamic therapy binocular surveillance system for port wine stain (PWS) when it monitors the position of the treatment region. The corner matching based on Hu moments is used to calculate the fundamental matrix of the binocular vision system. Experimental results are in agreement with the theoretical calculation.
基金National Major Scientific Equipment Development Projects of China(No.2013YQ240803)Natural Science Foundation for Young Scientists of Shanxi Province(No.2012021011-1)Scientific and Technological Project in Shanxi Province(No.20140321010-02)
文摘Cluster warhead has become the main ammunition of gun,rocket projectile and missile and it has been widely equipped in almost every country.More and more attention is paid to the damage effect of cluster warhead.The size of the dispersion area of cluster warhead is the main standard by which the damage effect of cluster warhead is estimated.The practical method of measuring the dispersion area was developed based on binocular stereo vision measurement theory.The calibration principle of the binocular stereo vision cameras was studied.The matching algorithm that relies on the gradient fields of the neighborhood of a pixel has been used to obtain the spatial information of matched points by acquiring apair of corresponding points in the left and right images of binocular cameras.The 3Dpositions of the flying path of cluster warhead were calculated.The umbrella that is similar to the dispersion track of static explosive cluster warhead was applied in the experiment to get the projection area of the umbrella on the ground.Experiment results verify the feasibility of the proposed method.
文摘In order to quickly and efficiently get the information of the bottom of the shoe pattern and spraying trajectory, the paper proposes a method based on binocular stereo vision. After acquiring target image, edge detection based on the canny algorithm, the paper begins stereo matching based on area and characteristics of algorithm. To eliminate false matching points, the paper uses the principle of polar geometry in computer vision. For the purpose of gaining the 3D point cloud of spraying curve, the paper adopts the principle of binocular stereo vision 3D measurement, and then carries on cubic spline curve fitting. By HALCON image processing software programming, it proves the feasibility and effectiveness of the method
基金Supported by the National Natural Science foundation of China (60832003)
文摘It is important to reduce data redundancy of stereo video in practical applications. In this paper,first,a data embedding method for stereo video(DEMSV) is investigated by embedding the encoding data into the reference frame to encode stereo video. It can use only one channel to transfer all the video data and the receiver can choose a monocular video decoder or stereo video decoder adaptively. Then,introducing the joint prediction scheme in the coding process of DEMSV,we propose a novel data embedding method for H.264 stereo video codec with joint prediction scheme(DEMSV-JPS) to achieve high coding efficiency. Experimental results show that the proposed method can obtain high peak signal-to-noise ratio(PSNR) and compression ratio(at least 33 dB for the test sequence) . Comparing the testing methods using JPS and without using JPS,we prove that JPS can further improve the objective and visual quality. DEMSV-JPS shows such advantages and will be suitable to applications in real-time environments of stereo-video transmission.
基金National Natural Science Foundation of China (No.50275040)
文摘A new motion model and estimation algorithm is proposed to compute the general rigid motion object's 6-DOF motion parameters and center of rotation based on stereo vision. The object's 6-DOF motion model is designed from the rigid object's motion character under the two defined reference frames. According to the rigid object's motion model and motion dynamics knowledge, the corresponding motion algorithm to compute the 6-DOF motion parameters is worked out. By the rigid object pure rotation motion model and space sphere geometry knowledge, the center of rotation may be calculated after eliminating the translation motion out of the 6-DOF motion. The motion equations are educed based on the motion model and the closed-form solutions are figured out. To heighten the motion estimation algorithm's robust, RANSAC algorithm is applied to delete the outliers. Simulation and real experiments are conducted and the experiment results are analyzed. The results prove the motion model's correction and algorithm's validity.
基金Project(2012CB725301)supported by the National Basic Research Program of ChinaProject(201412015)supported by the National Special Fund for Surveying and Mapping Geographic Information Scientific Research in the Public Welfare of ChinaProject(212000168)supported by the Basic Survey-Mapping Program of National Administration of Surveying,Mapping and Geoinformation of China
文摘An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.
文摘The borescopy inspection problem of aeroengine interior important partdamages such as firebox's burn and corruption, vane' s crack, bump, abrade and concave pit, is aimedat. A new system is developed to carry out 3D measurement and stereo reconstruction of engineinterior damage, in which the borescope of Japanese OLYMPUS Corporation is used as hardware. In thesystem, functions are implemented, such as image collection, camera calibration, imagepreprocessing, stereo matching, 3D measurement and stereo reconstruction. It can provide moredetailed inspection and more accurate estimation of engine interior damages. Finally, an example isused to verify the effectivity of the new method.
基金supported by the Ministry of Education of Singapore under Grant No.R265-000-277-112
文摘A geometrical analysis based algorithm is proposed to achieve the stereo matching of a single-lens prism based stereovision system. By setting the multi- face prism in frontal position of the static CCD (CM-140MCL) camera, equivalent stereo images with different orientations are captured synchronously by virtual cameras which are defined by two boundary lines: the optical axis and CCD camera field of view boundary. Subsequently, the geometrical relationship between the 2D stereo images and corresponding 3D scene is established by employing two fundamentals: ray sketching in which all the pertinent points, lines, and planes are expressed in the 3D camera coordinates and the rule of refraction. Landing on this relationship, the epipolar geometry is thus obtained by fitting a set of corresponding candidate points and thereafter, stereo matching of the prism based stereovision system is obtained. Moreover, the unique geometrical properties of the imaging system allow the proposed method free from the complicated camera calibration procedures and to be easily generalized from binocular and tri-oeular to multi-ocular stereovision systems. The performance of the algorithm is presented through the experiments on the binocular imaging system and the comparison with a conventional projection method demonstrates the efficient assessment of our novel contributions.