With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mo...With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mobile hardware computing power and the demand for high-resolution,high-refresh-rate rendering has intensified,leading to critical bottlenecks,including frame latency and power overload,which constrain large-scale applications of VR systems.This study systematically analyzes four key technologies for efficient VR rendering:(1)foveated rendering,which dynamically reduces rendering precision in peripheral regions based on the physiological characteristics of the human visual system(HVS),thereby significantly decreasing graphics computation load;(2)stereo rendering,optimized through consistent stereo rendering acceleration algorithms;(3)cloud rendering,utilizing object-based decomposition and illumination-based decomposition for distributed resource scheduling;and(4)low-power rendering,integrating parameter-optimized rendering,super-resolution technology,and frame-generation technology to enhance mobile energy efficiency.Through a systematic review of the core principles and optimization approaches of these technologies,this study establishes research benchmarks for developing efficient VR systems that achieve high fidelity and low latency while providing further theoretical support for the engineering implementation and industrial advancement of VR rendering technologies.展开更多
Accurate estimation of forest terrain and canopy height is crucial for timely understanding of forest growth.Gao Fen-7(GF-7)Satellite is China’s first sub-meter-level three-dimensional(3D)mapping satellite for civili...Accurate estimation of forest terrain and canopy height is crucial for timely understanding of forest growth.Gao Fen-7(GF-7)Satellite is China’s first sub-meter-level three-dimensional(3D)mapping satellite for civilian use,which was equipped with a two-line-array stereo mapping camera and a laser altimeter system that can provide stereo images and full waveform LiDAR data simultaneously.Most of the existing studies have concentrated on evaluating the accuracy of GF-7 for topographic survey in bare land,but few have in-depth studied its ability to measure forest terrain elevation and canopy height.The purpose of this study is to evaluate the potential of GF-7 LiDAR and stereo image for forest terrain and height measurement.The Airborne Laser Scanning(ALS)data were utilized to generate reference terrain and forest vertical information.The validation test was conducted in Pu’er City,Yunnan Province of China,and encouraging results have obtained.The GF-7 LiDAR data obtained the accuracy of forest terrain elevation with RMSE of 8.01 m when 21 available laser footprints were used for results verification;meanwhile,when it was used to calculate the forest height,R^(2)of 0.84 and RMSE of 3.2 m were obtained although only seven effective footprints were used for result verification.The canopy height values obtained from GF-7 stereo images have also been proven to have high accuracy with the resolution of 20 m×20 m compared with ALS data(R2=0.88,RMSE=2.98 m).When the results were verified at the forest sub-compartment scale that taking into account the forest types,further higher accuracy(R^(2)=0.96,RMSE=1.23 m)was obtained.These results show that GF-7 has considerable application potential in forest resources monitoring.展开更多
High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it...High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.展开更多
Molecules with multiple stereocenters are widely present in biologically active natural products and pharmaceuticals. These molecules exhibit great three-dimensional structural diversity, which can affect the strength...Molecules with multiple stereocenters are widely present in biologically active natural products and pharmaceuticals. These molecules exhibit great three-dimensional structural diversity, which can affect the strength and selectivity of protein-ligand interactions^([1]). Therefore, the precise synthesis of each stereoisomer is very important in medicinal chemistry. In the past 40 years, asymmetric catalysis has developed rapidly, and a variety of methods has been developed to construct chiral compounds containing single or adjacent stereocenters^([2]).展开更多
The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo m...The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.展开更多
Transformer-based stereo image super-resolution reconstruction(Stereo SR)methods have significantly improved image quality.However,existing methods have deficiencies in paying attention to detailed features and do not...Transformer-based stereo image super-resolution reconstruction(Stereo SR)methods have significantly improved image quality.However,existing methods have deficiencies in paying attention to detailed features and do not consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information.To address these challenges,this paper introduces a novel epipolar line window attention stereo image super-resolution network(EWASSR).For detail feature restoration,we design a feature extractor based on Transformer and convolutional neural network(CNN),which consists of(shifted)window-based self-attention((S)W-MSA)and feature distillation and enhancement blocks(FDEB).This combination effectively solves the problem of global image perception and local feature attention and captures more discriminative high-frequency features of the image.Furthermore,to address the problem of offset of complementary pixels in stereo images,we propose an epipolar line window attention(EWA)mechanism,which divides windows along the epipolar direction to promote efficient matching of shifted pixels,even in pixel smooth areas.More accurate pixel matching can be achieved using adjacent pixels in the window as a reference.Extensive experiments demonstrate that our EWASSR can reconstruct more realistic detailed features.Comparative quantitative results show that in the experimental results of our EWASSR on the Middlebury and Flickr1024 data sets for 2×SR,compared with the recent network,the Peak signal-to-noise ratio(PSNR)increased by 0.37 dB and 0.34 dB,respectively.展开更多
As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is prop...As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is proposed. First, according to the prior information, the contour of the wheel hub is extracted and fitted as an ellipse curve, and the ellipse fitting equation can be obtained. Then, a new un-tangent constraint is adopted to improve the ellipse matching precision. Finally, the 3D coordinates of the wheel center can be reconstructed by the spatial circle projection algorithm with low time complexity and high measurement accuracy. Simulation experiments verify that compared with the ellipse center reconstruction algorithm and the planar constraint optimization algorithm, the proposed method can acquire the 3D coordinates of the spatial circle more exactly. Furthermore, the measurements of the wheelbase, the wheelbase difference and the wheel static radius for three types of vehicles demonstrate the effectiveness of the proposed method for wheel center detection.展开更多
Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without grou...Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without ground control,the vertical error of the model is the decisive factor that constrains the accuracy of 3D data products.The elevation data obtained by spaceborne laser altimeter have the advantages of short update periods,high positioning precision,and low acquisition cost,providing sufficient data support for improving the elevation accuracy of stereo models through the combined BA.This paper proposes a geometric positioning model based on the integration of Optical Satellite Stereo Imagery(OSSI)and spaceborne laser altimeter data.Firstly,we elaborate the principle and necessity of this work through a literature review of existing methods.Then,the framework of our geo-positioning models.Secondly,four key technologies of the proposed model are expounded in order,including the acquisition and management of global Laser Control Points,the association of LCPs and OSSI,the block adjustment model combining LCPs with OSSI,and the accuracy estimation and quality control of the combined BA.Next,the combined BA experiment using Ziyuan-3(ZY-3)OSSI and ICESat-2 laser data was carried out at the testing site in Shandong Province,China.Experimental results prove that our method can automatically select LCPs with high accuracy.The elevation deviation of the combined BA eventually achieved the Mean Error(ME)of 0.06 m and the Root Mean Square Error(RMSE)of 1.18 m,much lower than the ME of 13.20 m and the RMSE of 3.88 m before the block adjustment.A further research direction will be how to perform more adequate accuracy analysis and quality control using massive laser points as checkpoints.展开更多
An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision,...An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization.展开更多
A stereo matching algorithm based on the epipolar line constraint is designed to meet the real-time and the accuracy requirements. The algorithm is applied to photodynamic therapy binocular surveillance system for por...A stereo matching algorithm based on the epipolar line constraint is designed to meet the real-time and the accuracy requirements. The algorithm is applied to photodynamic therapy binocular surveillance system for port wine stain (PWS) when it monitors the position of the treatment region. The corner matching based on Hu moments is used to calculate the fundamental matrix of the binocular vision system. Experimental results are in agreement with the theoretical calculation.展开更多
Cluster warhead has become the main ammunition of gun,rocket projectile and missile and it has been widely equipped in almost every country.More and more attention is paid to the damage effect of cluster warhead.The s...Cluster warhead has become the main ammunition of gun,rocket projectile and missile and it has been widely equipped in almost every country.More and more attention is paid to the damage effect of cluster warhead.The size of the dispersion area of cluster warhead is the main standard by which the damage effect of cluster warhead is estimated.The practical method of measuring the dispersion area was developed based on binocular stereo vision measurement theory.The calibration principle of the binocular stereo vision cameras was studied.The matching algorithm that relies on the gradient fields of the neighborhood of a pixel has been used to obtain the spatial information of matched points by acquiring apair of corresponding points in the left and right images of binocular cameras.The 3Dpositions of the flying path of cluster warhead were calculated.The umbrella that is similar to the dispersion track of static explosive cluster warhead was applied in the experiment to get the projection area of the umbrella on the ground.Experiment results verify the feasibility of the proposed method.展开更多
In order to quickly and efficiently get the information of the bottom of the shoe pattern and spraying trajectory, the paper proposes a method based on binocular stereo vision. After acquiring target image, edge detec...In order to quickly and efficiently get the information of the bottom of the shoe pattern and spraying trajectory, the paper proposes a method based on binocular stereo vision. After acquiring target image, edge detection based on the canny algorithm, the paper begins stereo matching based on area and characteristics of algorithm. To eliminate false matching points, the paper uses the principle of polar geometry in computer vision. For the purpose of gaining the 3D point cloud of spraying curve, the paper adopts the principle of binocular stereo vision 3D measurement, and then carries on cubic spline curve fitting. By HALCON image processing software programming, it proves the feasibility and effectiveness of the method展开更多
It is important to reduce data redundancy of stereo video in practical applications. In this paper,first,a data embedding method for stereo video(DEMSV) is investigated by embedding the encoding data into the refere...It is important to reduce data redundancy of stereo video in practical applications. In this paper,first,a data embedding method for stereo video(DEMSV) is investigated by embedding the encoding data into the reference frame to encode stereo video. It can use only one channel to transfer all the video data and the receiver can choose a monocular video decoder or stereo video decoder adaptively. Then,introducing the joint prediction scheme in the coding process of DEMSV,we propose a novel data embedding method for H.264 stereo video codec with joint prediction scheme(DEMSV-JPS) to achieve high coding efficiency. Experimental results show that the proposed method can obtain high peak signal-to-noise ratio(PSNR) and compression ratio(at least 33 dB for the test sequence) . Comparing the testing methods using JPS and without using JPS,we prove that JPS can further improve the objective and visual quality. DEMSV-JPS shows such advantages and will be suitable to applications in real-time environments of stereo-video transmission.展开更多
基金Supported by the National Key R&D Program of China under grant No.2022YFB3303203the National Natural Science Foundation of China under grant No.62272275.
文摘With technological advancements,virtual reality(VR),once limited to high-end professional applications,is rapidly expanding into entertainment and broader consumer domains.However,the inherent contradiction between mobile hardware computing power and the demand for high-resolution,high-refresh-rate rendering has intensified,leading to critical bottlenecks,including frame latency and power overload,which constrain large-scale applications of VR systems.This study systematically analyzes four key technologies for efficient VR rendering:(1)foveated rendering,which dynamically reduces rendering precision in peripheral regions based on the physiological characteristics of the human visual system(HVS),thereby significantly decreasing graphics computation load;(2)stereo rendering,optimized through consistent stereo rendering acceleration algorithms;(3)cloud rendering,utilizing object-based decomposition and illumination-based decomposition for distributed resource scheduling;and(4)low-power rendering,integrating parameter-optimized rendering,super-resolution technology,and frame-generation technology to enhance mobile energy efficiency.Through a systematic review of the core principles and optimization approaches of these technologies,this study establishes research benchmarks for developing efficient VR systems that achieve high fidelity and low latency while providing further theoretical support for the engineering implementation and industrial advancement of VR rendering technologies.
基金supported by the National Key Research and Development Program of China[grant numbers 2021YFE0117700 and 2022YFF1302100]the ESA-MOST China Dragon 5 Cooperation[grant number 59313]National Science and Technology Major Project of China's High Resolution Earth Observation System[grant numbers 30-Y30A02-9001-20/22-7 and 21-Y20B01-9001-19/22].
文摘Accurate estimation of forest terrain and canopy height is crucial for timely understanding of forest growth.Gao Fen-7(GF-7)Satellite is China’s first sub-meter-level three-dimensional(3D)mapping satellite for civilian use,which was equipped with a two-line-array stereo mapping camera and a laser altimeter system that can provide stereo images and full waveform LiDAR data simultaneously.Most of the existing studies have concentrated on evaluating the accuracy of GF-7 for topographic survey in bare land,but few have in-depth studied its ability to measure forest terrain elevation and canopy height.The purpose of this study is to evaluate the potential of GF-7 LiDAR and stereo image for forest terrain and height measurement.The Airborne Laser Scanning(ALS)data were utilized to generate reference terrain and forest vertical information.The validation test was conducted in Pu’er City,Yunnan Province of China,and encouraging results have obtained.The GF-7 LiDAR data obtained the accuracy of forest terrain elevation with RMSE of 8.01 m when 21 available laser footprints were used for results verification;meanwhile,when it was used to calculate the forest height,R^(2)of 0.84 and RMSE of 3.2 m were obtained although only seven effective footprints were used for result verification.The canopy height values obtained from GF-7 stereo images have also been proven to have high accuracy with the resolution of 20 m×20 m compared with ALS data(R2=0.88,RMSE=2.98 m).When the results were verified at the forest sub-compartment scale that taking into account the forest types,further higher accuracy(R^(2)=0.96,RMSE=1.23 m)was obtained.These results show that GF-7 has considerable application potential in forest resources monitoring.
基金Key Basic Research Project of Strengthening the Foundations Plan of China (Grant No.2019-JCJQ-ZD-360-12)National Defense Basic Scientific Research Program of China (Grant No.JCKY2021208B011)to provide fund for conducting experiments。
文摘High speed photography technique is potentially the most effective way to measure the motion parameter of warhead fragment benefiting from its advantages of high accuracy,high resolution and high efficiency.However,it faces challenge in dense objects tracking and 3D trajectories reconstruction due to the characteristics of small size and dense distribution of fragment swarm.To address these challenges,this work presents a warhead fragments motion trajectories tracking and spatio-temporal distribution reconstruction method based on high-speed stereo photography.Firstly,background difference algorithm is utilized to extract the center and area of each fragment in the image sequence.Subsequently,a multi-object tracking(MOT)algorithm using Kalman filtering and Hungarian optimal assignment is developed to realize real-time and robust trajectories tracking of fragment swarm.To reconstruct 3D motion trajectories,a global stereo trajectories matching strategy is presented,which takes advantages of epipolar constraint and continuity constraint to correctly retrieve stereo correspondence followed by 3D trajectories refinement using polynomial fitting.Finally,the simulation and experimental results demonstrate that the proposed method can accurately track the motion trajectories and reconstruct the spatio-temporal distribution of 1.0×10^(3)fragments in a field of view(FOV)of 3.2 m×2.5 m,and the accuracy of the velocity estimation can achieve 98.6%.
基金Supported by the National Natural Science Foundation of China (22171215 and 22301225)the Hubei Provincial Outstanding Youth Fund (2022CFA092)Hubei Provincial Natural Science Foundation (2023AFB034)。
文摘Molecules with multiple stereocenters are widely present in biologically active natural products and pharmaceuticals. These molecules exhibit great three-dimensional structural diversity, which can affect the strength and selectivity of protein-ligand interactions^([1]). Therefore, the precise synthesis of each stereoisomer is very important in medicinal chemistry. In the past 40 years, asymmetric catalysis has developed rapidly, and a variety of methods has been developed to construct chiral compounds containing single or adjacent stereocenters^([2]).
基金Supported by the National Natural Science Foundation of China(42221002,42171432)Shanghai Municipal Science and Technology Major Project(2021SHZDZX0100)the Fundamental Research Funds for the Central Universities.
文摘The geometric accuracy of topographic mapping with high-resolution remote sensing images is inevita-bly affected by the orbiter attitude jitter.Therefore,it is necessary to conduct preliminary research on the stereo mapping camera equipped on lunar orbiter before launching.In this work,an imaging simulation method consid-ering the attitude jitter is presented.The impact analysis of different attitude jitter on terrain undulation is conduct-ed by simulating jitter at three attitude angles,respectively.The proposed simulation method is based on the rigor-ous sensor model,using the lunar digital elevation model(DEM)and orthoimage as reference data.The orbit and attitude of the lunar stereo mapping camera are simulated while considering the attitude jitter.Two-dimensional simulated stereo images are generated according to the position and attitude of the orbiter in a given orbit.Experi-mental analyses were conducted by the DEM with the simulated stereo image.The simulation imaging results demonstrate that the proposed method can ensure imaging efficiency without losing the accuracy of topographic mapping.The effect of attitude jitter on the stereo mapping accuracy of the simulated images was analyzed through a DEM comparison.
基金This work was supported by Sichuan Science and Technology Program(2023YFG0262).
文摘Transformer-based stereo image super-resolution reconstruction(Stereo SR)methods have significantly improved image quality.However,existing methods have deficiencies in paying attention to detailed features and do not consider the offset of pixels along the epipolar lines in complementary views when integrating stereo information.To address these challenges,this paper introduces a novel epipolar line window attention stereo image super-resolution network(EWASSR).For detail feature restoration,we design a feature extractor based on Transformer and convolutional neural network(CNN),which consists of(shifted)window-based self-attention((S)W-MSA)and feature distillation and enhancement blocks(FDEB).This combination effectively solves the problem of global image perception and local feature attention and captures more discriminative high-frequency features of the image.Furthermore,to address the problem of offset of complementary pixels in stereo images,we propose an epipolar line window attention(EWA)mechanism,which divides windows along the epipolar direction to promote efficient matching of shifted pixels,even in pixel smooth areas.More accurate pixel matching can be achieved using adjacent pixels in the window as a reference.Extensive experiments demonstrate that our EWASSR can reconstruct more realistic detailed features.Comparative quantitative results show that in the experimental results of our EWASSR on the Middlebury and Flickr1024 data sets for 2×SR,compared with the recent network,the Peak signal-to-noise ratio(PSNR)increased by 0.37 dB and 0.34 dB,respectively.
基金The National Natural Science Foundation of China(No.61272223)the National Key Scientific Apparatus Development of Special Item(No.2012YQ170003-5)
文摘As the location of the wheel center is the key to accurately measuring the wheelbase, the wheelbase difference and the wheel static radius, a high-precision wheel center detection method based on stereo vision is proposed. First, according to the prior information, the contour of the wheel hub is extracted and fitted as an ellipse curve, and the ellipse fitting equation can be obtained. Then, a new un-tangent constraint is adopted to improve the ellipse matching precision. Finally, the 3D coordinates of the wheel center can be reconstructed by the spatial circle projection algorithm with low time complexity and high measurement accuracy. Simulation experiments verify that compared with the ellipse center reconstruction algorithm and the planar constraint optimization algorithm, the proposed method can acquire the 3D coordinates of the spatial circle more exactly. Furthermore, the measurements of the wheelbase, the wheelbase difference and the wheel static radius for three types of vehicles demonstrate the effectiveness of the proposed method for wheel center detection.
基金supported by the National Science Fund for Distinguished Young Scholars[grant number 61825103]the Fundamental Research Funds for The Central Universities[grant number 2042022kf1002].
文摘Block Adjustment(BA)is one of the essential techniques for producing high-precision geospatial 3D data products with optical stereo satellite imagery.For block adjustment with few ground-control points or without ground control,the vertical error of the model is the decisive factor that constrains the accuracy of 3D data products.The elevation data obtained by spaceborne laser altimeter have the advantages of short update periods,high positioning precision,and low acquisition cost,providing sufficient data support for improving the elevation accuracy of stereo models through the combined BA.This paper proposes a geometric positioning model based on the integration of Optical Satellite Stereo Imagery(OSSI)and spaceborne laser altimeter data.Firstly,we elaborate the principle and necessity of this work through a literature review of existing methods.Then,the framework of our geo-positioning models.Secondly,four key technologies of the proposed model are expounded in order,including the acquisition and management of global Laser Control Points,the association of LCPs and OSSI,the block adjustment model combining LCPs with OSSI,and the accuracy estimation and quality control of the combined BA.Next,the combined BA experiment using Ziyuan-3(ZY-3)OSSI and ICESat-2 laser data was carried out at the testing site in Shandong Province,China.Experimental results prove that our method can automatically select LCPs with high accuracy.The elevation deviation of the combined BA eventually achieved the Mean Error(ME)of 0.06 m and the Root Mean Square Error(RMSE)of 1.18 m,much lower than the ME of 13.20 m and the RMSE of 3.88 m before the block adjustment.A further research direction will be how to perform more adequate accuracy analysis and quality control using massive laser points as checkpoints.
基金supported by the National Natural Science Foundation of China (No.60605023,60775048)Specialized Research Fund for the Doctoral Program of Higher Education (No.20060141006)
文摘An adaptive weighted stereo matching algorithm with multilevel and bidirectional dynamic programming based on ground control points (GCPs) is presented. To decrease time complexity without losing matching precision, using a multilevel search scheme, the coarse matching is processed in typical disparity space image, while the fine matching is processed in disparity-offset space image. In the upper level, GCPs are obtained by enhanced volumetric iterative algorithm enforcing the mutual constraint and the threshold constraint. Under the supervision of the highly reliable GCPs, bidirectional dynamic programming framework is employed to solve the inconsistency in the optimization path. In the lower level, to reduce running time, disparity-offset space is proposed to efficiently achieve the dense disparity image. In addition, an adaptive dual support-weight strategy is presented to aggregate matching cost, which considers photometric and geometric information. Further, post-processing algorithm can ameliorate disparity results in areas with depth discontinuities and related by occlusions using dual threshold algorithm, where missing stereo information is substituted from surrounding regions. To demonstrate the effectiveness of the algorithm, we present the two groups of experimental results for four widely used standard stereo data sets, including discussion on performance and comparison with other methods, which show that the algorithm has not only a fast speed, but also significantly improves the efficiency of holistic optimization.
基金Supported by the National High Technology Research and Development Program of China("863"Program)(2007AA04Z231)~~
文摘A stereo matching algorithm based on the epipolar line constraint is designed to meet the real-time and the accuracy requirements. The algorithm is applied to photodynamic therapy binocular surveillance system for port wine stain (PWS) when it monitors the position of the treatment region. The corner matching based on Hu moments is used to calculate the fundamental matrix of the binocular vision system. Experimental results are in agreement with the theoretical calculation.
基金National Major Scientific Equipment Development Projects of China(No.2013YQ240803)Natural Science Foundation for Young Scientists of Shanxi Province(No.2012021011-1)Scientific and Technological Project in Shanxi Province(No.20140321010-02)
文摘Cluster warhead has become the main ammunition of gun,rocket projectile and missile and it has been widely equipped in almost every country.More and more attention is paid to the damage effect of cluster warhead.The size of the dispersion area of cluster warhead is the main standard by which the damage effect of cluster warhead is estimated.The practical method of measuring the dispersion area was developed based on binocular stereo vision measurement theory.The calibration principle of the binocular stereo vision cameras was studied.The matching algorithm that relies on the gradient fields of the neighborhood of a pixel has been used to obtain the spatial information of matched points by acquiring apair of corresponding points in the left and right images of binocular cameras.The 3Dpositions of the flying path of cluster warhead were calculated.The umbrella that is similar to the dispersion track of static explosive cluster warhead was applied in the experiment to get the projection area of the umbrella on the ground.Experiment results verify the feasibility of the proposed method.
文摘In order to quickly and efficiently get the information of the bottom of the shoe pattern and spraying trajectory, the paper proposes a method based on binocular stereo vision. After acquiring target image, edge detection based on the canny algorithm, the paper begins stereo matching based on area and characteristics of algorithm. To eliminate false matching points, the paper uses the principle of polar geometry in computer vision. For the purpose of gaining the 3D point cloud of spraying curve, the paper adopts the principle of binocular stereo vision 3D measurement, and then carries on cubic spline curve fitting. By HALCON image processing software programming, it proves the feasibility and effectiveness of the method
基金Supported by the National Natural Science foundation of China (60832003)
文摘It is important to reduce data redundancy of stereo video in practical applications. In this paper,first,a data embedding method for stereo video(DEMSV) is investigated by embedding the encoding data into the reference frame to encode stereo video. It can use only one channel to transfer all the video data and the receiver can choose a monocular video decoder or stereo video decoder adaptively. Then,introducing the joint prediction scheme in the coding process of DEMSV,we propose a novel data embedding method for H.264 stereo video codec with joint prediction scheme(DEMSV-JPS) to achieve high coding efficiency. Experimental results show that the proposed method can obtain high peak signal-to-noise ratio(PSNR) and compression ratio(at least 33 dB for the test sequence) . Comparing the testing methods using JPS and without using JPS,we prove that JPS can further improve the objective and visual quality. DEMSV-JPS shows such advantages and will be suitable to applications in real-time environments of stereo-video transmission.