期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
Application of cluster analysis and stepwise regression in predicting the traffic volume of lanes 被引量:5
1
作者 张赫 王炜 顾怀中 《Journal of Southeast University(English Edition)》 EI CAS 2005年第3期359-362,共4页
Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections... Because of the difficulty to obtain the traffic flow information of lanes at non-detector intersections in most metropolises of the world,based on the relationships between the lanes of signal-controlled intersections,cluster analysis and stepwise regression are integrated to predict the traffic volume of lanes at non-detector isolated controlled intersections.First cluster analysis is used to cluster the lanes of non-detector isolated signal-controlled intersections and the lanes of all signal-controlled intersections with detectors.Then, by the results of cluster analysis,the traffic volume samples are selected randomly and stepwise regression is used to predict the traffic volume of lanes at non-detector isolated signal-controlled intersections.The method is tested by the traffic volume data of lanes of the road network of Nanjing city.The problem of predicting the traffic volume of lanes at non-detector isolated signal-controlled intersections was resolved and can be widely used in urban traffic flow guidance and urban traffic control in cities without enough intersections equipped with detectors. 展开更多
关键词 intelligent transportation systems (ITS) cluster analysis stepwise regression
在线阅读 下载PDF
Population Quantity Variations of Oriental Fruit Fly (Bactrocera dorsalis Hendel) on the Basis of Stepwise Regression Analysis
2
作者 张丽莲 杨林楠 杨仕生 《Plant Diseases and Pests》 CAS 2010年第2期32-34,共3页
[Objective] The research aimed to study the significant influence factors of the population variations of oriental fruit fly. [Method] Using stepwise regression analysis, the population variations law of oriental frui... [Objective] The research aimed to study the significant influence factors of the population variations of oriental fruit fly. [Method] Using stepwise regression analysis, the population variations law of oriental fruit fly in Jianshui County of Yunnan province and the meteorological factors that caused its occurrence were analyzed. And the regression model was built. Finally, the regression model was tested on the basis of the data in Jianshui County of Yunnan Province during 2004-2006.[Result] The main meteorological factors that influenced the occurrence of oriental fruit fly were relative humidity, the lowest monthly temperature and rainfall. [Conclusion] This study will provide certain reference for the prediction researches on the time, quantity and occurrence peak of oriental fruit fly. 展开更多
关键词 Oriental fruit fly stepwise regression analysis Meteorological factors
在线阅读 下载PDF
Analysis of York Pigs Feeding Behavior Using Stepwise Regression and Principal Component Regression 被引量:1
3
作者 Xuelin FU Yajing CHEN +2 位作者 Manting WU Junyong HU Wanghong LIU 《Agricultural Biotechnology》 CAS 2021年第2期78-83,共6页
A statistical analysis was conducted on the feeding behavior of 106 York breeding pigs.Pearson correlation analysis,principal component correlation analysis and multiple stepwise regression equation methods were appli... A statistical analysis was conducted on the feeding behavior of 106 York breeding pigs.Pearson correlation analysis,principal component correlation analysis and multiple stepwise regression equation methods were applied to establish regression equations of the York breeding pigs total feed intake per time and average feed intake per time with corrected fat thickness,feed conversion rate,and corrected daily gain.The results showed that:①there were three peak feed intake periods for the pigs,and the correlation coefficient between the feed intake and the corrected fat thickness of the pigs in the 24 h period was positive or negative,that is,increasing the number of feeding times and the feed intake was not necessarily conducive to the fat thickness accumulation,but the breeding goal of fat thickness could be achieved by controlling the feeding times and feed intake;②the average feed intake of pigs in the 60-90 kg body weight stage was 30%-50%higher than that of the 30-60 kg body weight stage,but the number of feeding times decreased,the peak feeding time was more concentrated,and the feeding duration per time was 3.0 min longer,indicating that as the weight of pigs increased,the feed intake increased significantly;and③the stepwise regression equations and the principal component equations showed that the feeding behavior of York pigs in the 30-90 kg growth stage was not only affected by the feeding time within 24 h,but also by environmental factors such as temperature and humidity.The feeding behavior of York pigs is a complex process of interaction between environmental factors and animal factors. 展开更多
关键词 Feed intake Corrected daily weight gain Feed conversion ratio Corrected fat thickness stepwise regression Principal component regression
在线阅读 下载PDF
Stepwise Regression: An Application in Earthquakes Localization
4
作者 Giuseppe Pucciarelli 《Journal of Environmental Science and Engineering(B)》 2018年第3期103-110,共8页
In this paper, an overview of an important feature in statistics field has shown: the stepwise multiple linear regression. Likewise, a link between stepwise multiple linear regression and earthquakes localization has... In this paper, an overview of an important feature in statistics field has shown: the stepwise multiple linear regression. Likewise, a link between stepwise multiple linear regression and earthquakes localization has been descripted. Precisely, the aim of this research is showing how stepwise multiple linear regression contributes to solution of earthquakes localization, describing its conditions of use in HYPO71PC, a software devoted to computation of seismic sources’ collocation. This aim is reached treating a concrete case, that is computation of earthquakes localization happening on Mount Vesuvius, Italy. 展开更多
关键词 stepwise regression earthquakes localization Geiger’s method HYPO71PC Mount Vesuvius
在线阅读 下载PDF
Thinking on Breeding of Fecundity Genes in Guizhou Black Goats Through Cost-benefit Analysis of Mutton Sheep by SAS Multivariate Stepwise Regression
5
作者 Qingmeng LONG Min YAO +4 位作者 Ping LI Shengli XIONG Ying SHI Yan WANG Di ZHOU 《Agricultural Biotechnology》 CAS 2021年第4期77-82,97,共7页
The total output value of mutton in Northwestern China has accounted for more than 60%of the total output value of animal husbandry over the years.It can be seen that the mutton industry in Northwest China not only pl... The total output value of mutton in Northwestern China has accounted for more than 60%of the total output value of animal husbandry over the years.It can be seen that the mutton industry in Northwest China not only plays a pivotal role in animal husbandry,but also plays an important role in Chinese agriculture.In this study,based on cost accounting theory,income-related theories and total factor productivity theory,using basic knowledge of statistics and economics,drawing on existing research results at home and abroad,and adopting a combination of qualitative analysis and quantitative analysis of SAS multiple stepwise regression,the changing trends of cost-benefit of mutton sheep breeding in Northwest agricultural and pastoral areas and influencing factors of production costs and production efficiency were investigated,aiming to provide reference for saving mutton sheep feeding material resources,reducing mutton sheep breeding costs,and improving mutton sheep breeding benefits. 展开更多
关键词 Lamb costs and benefits stepwise regression Guizhou black goats Selection and breeding thinking
在线阅读 下载PDF
A Comparison of Variable Selection by Tabu Search and Stepwise Regression with Multicollinearity Problem
6
作者 Kannat Na Bangchang 《Journal of Statistical Science and Application》 2015年第1期16-24,共9页
This paper has compared variable selection method for multiple linear regression models that have both relative and non-relative variables in full model when predictor variables are highly correlated 0.999 . In this s... This paper has compared variable selection method for multiple linear regression models that have both relative and non-relative variables in full model when predictor variables are highly correlated 0.999 . In this study two objective functions used in the Tabu Search are mean square error (MSE) and the mean absolute error (MAE). The results of Tabu Search are compared with the results obtained by stepwise regression method based on the hit percentage criterion. The simulations cover the both cases, without and with multicollinearity problems. For each situation, 1,000 iterations are examined by applying a different sample size n = 25 and 100 at 0.05 level of significance. Without multicollinearity problem, the hit percentages of the stepwise regression method and Tabu Search using the objective function of MSE are almost the same but slightly higher than the Tabu Search using the objective function of MAE. However with multicollinearity problem the hit percentages of the Tabu Search using both objective functions are higher than the hit percentage of the stepwise regression method. 展开更多
关键词 stepwise regression Tabu Search variable selection
在线阅读 下载PDF
Phase Identification of Low-voltage Distribution Network Based on Stepwise Regression Method 被引量:6
7
作者 Yingqi Yi Siliang Liu +3 位作者 Yongjun Zhang Ying Xue Wenyang Deng Qinhao Li 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第4期1224-1234,共11页
Accurate information for consumer phase connectivity in a low-voltage distribution network(LVDN)is critical for the management of line losses and the quality of customer service.The wide application of smart meters pr... Accurate information for consumer phase connectivity in a low-voltage distribution network(LVDN)is critical for the management of line losses and the quality of customer service.The wide application of smart meters provides the data basis for the phase identification of LVDN.However,the measurement errors,poor communication,and data distortion have significant impacts on the accuracy of phase identification.In order to solve this problem,this paper proposes a phase identification method of LVDN based on stepwise regression(SR)method.First,a multiple linear regression model based on the principle of energy conservation is established for phase identification of LVDN.Second,the SR algorithm is used to identify the consumer phase connectivity.Third,by defining a significance correction factor,the results from the SR algorithm are updated to improve the accuracy of phase identification.Finally,an LVDN test system with 63 consumers is constructed based on the real load.The simulation results prove that the identification accuracy achieved by the proposed method is higher than other phase identification methods under the influence of various errors. 展开更多
关键词 Phase identification low-voltage distribution network(LVDN) stepwise regression smart meter data-driven method
原文传递
A Study on Influence of Predictor Multicollinearity on Performance of the Stepwise Regression Prediction Equation 被引量:4
8
作者 金龙 黄小燕 史旭明 《Acta meteorologica Sinica》 SCIE 2010年第5期593-601,共9页
The prediction accuracy of the traditional stepwise regression prediction equation(SRPE)is affected by the multicollinearity among its predictors.This paper introduces the condition number analysis into the predicti... The prediction accuracy of the traditional stepwise regression prediction equation(SRPE)is affected by the multicollinearity among its predictors.This paper introduces the condition number analysis into the prediction modeling to minimize the multicollinearity in the SRPE.In the condition number prediction modeling,the condition number is used to select the combination of predictors with the lowest multicollinearity from the possible combinations of a number of candidate predictors(variables),and the selected combination is then used to construct the condition number regression prediction equation(CNRPE).This novel prediction modeling is performed in typhoon track prediction,which is a difficult task among meteorological disaster predictions.Six pairs of typhoon track latitude/longitude SRPEs and CNRPEs for July,August,and September are built by employing the traditional and the novel prediction modeling approaches,respectively,and by using a large number of identical modeling samples.The comparative analysis indicates that under the condition of the same candidate predictors(variables)and predictands(dependent variables),although the fitting accuracy of the novel prediction models used for the historical samples of South China Sea(SCS)typhoon tracks is slightly lower than that of the traditional prediction models,the prediction accuracy for the independent samples is obviously improved,with the averaged prediction error of the novel models for July,August,and September being 153.9 kin,which is 75.3 km smaller than that of the traditional models(a reduction of 33%).This is because the novel prediction modeling effectively minimizes the multicollinearity by computation and analysis of the condition number.It is shown further that when F=1.0,2.0,and 3.0,the average prediction errors of the traditional SRPEs are obviously larger than those of the CNRPEs.Moreover,extremely large and unreasonable prediction errors occur at some individual points of the typhoon track predicted by the SRPEs due to the multicollinearity existing in the combination of predictors. 展开更多
关键词 MULTICOLLINEARITY meteorological prediction stepwise regression
在线阅读 下载PDF
Stepwise multiple regression method of greenhouse gas emission modeling in the energy sector in Poland 被引量:5
9
作者 Alicja Kolasa-Wiecek 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第4期47-54,共8页
The energy sector in Poland is the source of 81% of greenhouse gas(GHG) emissions. Poland,among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector activ... The energy sector in Poland is the source of 81% of greenhouse gas(GHG) emissions. Poland,among other European Union countries, occupies a leading position with regard to coal consumption. Polish energy sector actively participates in efforts to reduce GHG emissions to the atmosphere, through a gradual decrease of the share of coal in the fuel mix and development of renewable energy sources. All evidence which completes the knowledge about issues related to GHG emissions is a valuable source of information. The article presents the results of modeling of GHG emissions which are generated by the energy sector in Poland. For a better understanding of the quantitative relationship between total consumption of primary energy and greenhouse gas emission, multiple stepwise regression model was applied. The modeling results of CO2 emissions demonstrate a high relationship(0.97) with the hard coal consumption variable. Adjustment coefficient of the model to actual data is high and equal to 95%. The backward step regression model, in the case of CH4 emission, indicated the presence of hard coal(0.66), peat and fuel wood(0.34), solid waste fuels, as well as other sources(- 0.64) as the most important variables. The adjusted coefficient is suitable and equals R2= 0.90. For N2 O emission modeling the obtained coefficient of determination is low and equal to 43%. A significant variable influencing the amount of N2 O emission is the peat and wood fuel consumption. 展开更多
关键词 Greenhouse gases Burning of fossil fuels Energy sector Backward stepwise regression modeling
原文传递
Study on QSAR of Taxol and its Derivatives Based on Stepwise Multivariate Linear Regression Analysis 被引量:1
10
作者 刘艾林 迟翰林 《Journal of Chinese Pharmaceutical Sciences》 CAS 1997年第1期21-25,共5页
Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was foun... Abstract Using the method of stepwise multivariate linear regression (SMLR), the quantitative structure activity relationships (QSAR) of two isomeric series of taxol and its derivatives have been studied. It was found that the molar refractivity of the C3′substituent of the C13 side chain has significant correlation with its activity. We deduce that structural changes in the C3′substituents may be critical to the anticancer function. It would be useful to the design and synthesis of taxol like compounds with improved activities. 展开更多
关键词 TAXOL stepwise multivariate linear regression (SMLR) Molar refractivity
全文增补中
Stepwise multiple regressions application in liposome orthogonal experiments 被引量:1
11
作者 范晓婧 刘倩 +2 位作者 甄鹏 张扬 胡新 《Journal of Chinese Pharmaceutical Sciences》 CAS 2007年第2期96-100,共5页
Aim New statistical method was applied in data analysis of orthogonal experiments to optimize the preparation of liposome. Method Particle size, zeta potential, encapsulation efficiency and physical stability of lipos... Aim New statistical method was applied in data analysis of orthogonal experiments to optimize the preparation of liposome. Method Particle size, zeta potential, encapsulation efficiency and physical stability of liposomes were selected by orthogonal design as evaluating indicators. Through three statistical methods (direct observation, variance analysis and stepwise multiple regression), the optimized preparing conditions were acquired and validated by experiment. Results All of the four indicators were different by these analyses. The validation experiments indicated that the optimized conditions by stepwise multiple regressions were better than that by traditional analysis. Conclusion Experiment results suggested that multiple regressions could avoid the weakness of direct observation and variance analysis, but more work should be done in preparing liposomes. 展开更多
关键词 Orthogonal experiment LIPOSOME stepwise multiple regressions
暂未订购
Model’s parameter sensitivity assessment and their impact on Urban Densification using regression analysis
12
作者 Anasua Chakraborty Mitali Yeshwant Joshi +2 位作者 Ahmed Mustafa Mario Cools Jacques Teller 《Geography and Sustainability》 2025年第2期143-156,共14页
The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for... The impact of different global and local variables in urban development processes requires a systematic study to fully comprehend the underlying complexities in them.The interplay between such variables is crucial for modelling urban growth to closely reflects reality.Despite extensive research,ambiguity remains about how variations in these input variables influence urban densification.In this study,we conduct a global sensitivity analysis(SA)using a multinomial logistic regression(MNL)model to assess the model’s explanatory and predictive power.We examine the influence of global variables,including spatial resolution,neighborhood size,and density classes,under different input combinations at a provincial scale to understand their impact on densification.Additionally,we perform a stepwise regression to identify the significant explanatory variables that are important for understanding densification in the Brussels Metropolitan Area(BMA).Our results indicate that a finer spatial resolution of 50 m and 100 m,smaller neighborhood size of 5×5 and 3×3,and specific density classes—namely 3(non-built-up,low and high built-up)and 4(non-built-up,low,medium and high built-up)—optimally explain and predict urban densification.In line with the same,the stepwise regression reveals that models with a coarser resolution of 300 m lack significant variables,reflecting a lower explanatory power for densification.This approach aids in identifying optimal and significant global variables with higher explanatory power for understanding and predicting urban densification.Furthermore,these findings are reproducible in a global urban context,offering valuable insights for planners,modelers and geographers in managing future urban growth and minimizing modelling. 展开更多
关键词 Urban densification Sensitivity analysis Multinomial logistic regression stepwise regression
在线阅读 下载PDF
Quantifying TiO_2 Abundance of Lunar Soils:Partial Least Squares and Stepwise Multiple Regression Analysis for Determining Causal Effect 被引量:4
13
作者 Lin Li 《Journal of Earth Science》 SCIE CAS CSCD 2011年第5期549-565,共17页
Partial least squares (PLS) regression was applied to the Lunar Soft Characterization Consortium (LSCC) dataset for spectral estimation of TiO2. The LSCC dataset was split into a number of subsets including the lo... Partial least squares (PLS) regression was applied to the Lunar Soft Characterization Consortium (LSCC) dataset for spectral estimation of TiO2. The LSCC dataset was split into a number of subsets including the low-Ti, high-Ti, total mare soils, total highland, Apollo 16, and Apollo 14 soils to investigate the effects of interfering minerals and nonlinearity on the PLS performance. The PLS weight loading vectors were analyzed through stepwise multiple regression analysis (SMRA) to identify mineral species driving and interfering the PLS performance. PLS exhibits high performance for estimating TiO2 for the LSCC low-Ti and high-Ti mare samples and both groups analyzed together. The results suggest that while the dominant TiO2-bearing minerals are few, additional PLS factors are required to compensate the effects on the important PLS factors of minerals that are not highly corrected to TiO2, to accommodate nonlinear relationships between reflectance and TiO2, and to correct inconsistent mineral-TiO2 correlations between the high-Ti and iow-Ti mare samples. Analysis of the LSCC highland soil samples indicates that the Apollo 16 soils are responsible for the large errors of TiO2 estimates when the soils are modeled with other subgroups. For the LSCC Apollo 16 samples, the dominant spectral effects of plagioclase over other dark minerals are primarily responsible for large errors of estimated TiO2. For the Apollo 14 soils, more accurate estimation for TiO2 is attributed to the posi- tive correlation between a major TiOe-bearing component and TiO2, explaining why the Apollo 14 soils follow the regression trend when analyzed with other soils groups. 展开更多
关键词 lunar soils LSCC dataset TiO2 abundance partial least squares stepwise multiple regression.
原文传递
Statistical analysis of nitrogen use efficiency in Northeast China using multiple linear regression and Random Forest 被引量:3
14
作者 LIU Ying-xia Gerard B.M.HEUVELINK +4 位作者 Zhanguo BAI HE Ping JIANG Rong HUANG Shaohui XU Xin-peng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第12期3637-3657,共21页
Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the applica... Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability. 展开更多
关键词 partial factor productivity of N partial nutrient balance of N stepwise multiple linear regression Random Forest county scale Northeast China
在线阅读 下载PDF
New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis 被引量:6
15
作者 Farhadian Hadi Katibeh Homayoon 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期415-421,共7页
There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow ... There are various analytical, empirical and numerical methods to calculate groundwater inflow into tun- nels excavated in rocky media. Analytical methods have been widely applied in prediction of groundwa- ter inflow to tunnels due to their simplicity and practical base theory. Investigations show that the real amount of water infiltrating into jointed tunnels is much less than calculated amount using analytical methods and obtained results are very dependent on tunnel's geometry and environmental situations. In this study, using multiple regression analysis, a new empirical model for estimation of groundwater seepage into circular tunnels was introduced. Our data was acquired from field surveys and laboratory analysis of core samples. New regression variables were defined after perusing single and two variables relationship between groundwater seepage and other variables. Finally, an appropriate model for estima- tion of leakage was obtained using the stepwise algorithm. Statistics like R, R2, R2e and the histogram of residual values in the model represent a good reputation and fitness for this model to estimate the groundwater seepage into tunnels. The new experimental model was used for the test data and results were satisfactory. Therefore, multiple regression analysis is an effective and efficient way to estimate the groundwater seeoage into tunnels. 展开更多
关键词 Groundwater inflow Analytical equation Multiple regression analysis stepwise algorithm Tunnel
在线阅读 下载PDF
Development of a Model Material Suitable for Reservoir Landslide Model Tests
16
作者 Minghao Miao Huiming Tang +4 位作者 Sha Lu Changdong Li Kun Fang Yixiao Gu Chunyan Tang 《Journal of Earth Science》 2025年第5期1989-2004,共16页
In the physical model test of landslides,the selection of analogous materials is the key,and it is difficult to consider the similarity of mechanical properties and seepage performance at the same time.To develop a mo... In the physical model test of landslides,the selection of analogous materials is the key,and it is difficult to consider the similarity of mechanical properties and seepage performance at the same time.To develop a model material suitable for analysing the deformation and failure of reservoir landslides,based on the existing research foundation of analogous materials,5 materials and 5 physical-mechanical parameters were selected to design an orthogonal test.The factor sensitivity of each component ratio and its influence on the physical-mechanical indices were studied by range analysis and stepwise regression analysis,and the proportioning method was determined.Finally,the model material was developed,and a model test was carried out considering Huangtupo as the prototype application.The results showed that(1)the model material composed of sand,barite powder,glass beads,clay,and bentonite had a wide distribution of physical-mechanical parameters,which could be applied to model tests under different conditions;(2)the physical-mechanical parameters of analogous materials matched the application prototype;and(3)the mechanical properties and seepage performance of the model material sample met the requirements of reservoir landslide model tests,which could be used to simulate landslide evolution and analyse the deformation process. 展开更多
关键词 analogous material physical model test reservoir landslide range analysis stepwise regression stage division PIVlab LANDSLIDES engineering geology
原文传递
Staged deformation evolution of extra-large accumulation landslides under hydrodynamic actions
17
作者 LU Bo GUO Yu +1 位作者 WU Yongjin ZHU Yujie 《Journal of Mountain Science》 2025年第9期3408-3432,共25页
The Yemaomian landslide,the largest near-dam accumulation landslide in the Three Gorges Reservoir area,is situated 17 km upstream of the Three Gorges Dam.Nearly 20 years of monitoring data indicate that the landslide ... The Yemaomian landslide,the largest near-dam accumulation landslide in the Three Gorges Reservoir area,is situated 17 km upstream of the Three Gorges Dam.Nearly 20 years of monitoring data indicate that the landslide has been undergoing slow deformation with a low deformation rate and magnitude.This paper applies a stepwise linear regression method and a mechanical model of hydrodynamics triggering to deeply explore the relationship between geological conditions,external factors,and deformation characteristics.Based on the stage transition characteristics of external triggering factors,the deformation evolution process of the landslide since the reservoir impoundment is divided into three stages:(1)June 2003-September 2006,the landslide was reactivated by the significant rise in reservoir water levels,in a retrogressive mode;(2)October 2006-September 2018,the deformation mode shifted from retrogressive mode to creep deformation as a whole,primarily due to the degradation effect on the landslide mass caused by immersion in reservoir water.(3)October 2018-February 2024,a further significant reduction in the overall deformation rate and the impact of seasonal rainfall on landslide deformation surpassed that of reservoir water level fluctuations.The main component of landslide deformation is convergent creep,and extreme rainfall will be an important triggering factor for the local instability.Identifying the deformation evolution stages and determining the dominant external influencing factors at each stage is crucial for landslide research,and this paper provides an effective research paradigm for this purpose. 展开更多
关键词 Three Gorges Reservoir area Near-dam reservoir landslide Water-rock interaction stepwise regression model Deformation development stages Numerical simulation
原文传递
Analysis and Evaluation Indicator Selection of Chilling Tolerance of Different Cotton Genotypes 被引量:2
18
作者 武辉 侯丽丽 +4 位作者 周艳飞 范志超 石俊毅 阿丽艳.肉孜 张巨松 《Agricultural Science & Technology》 CAS 2012年第11期2338-2346,共9页
[Objectivc] This study aimed to investigate the chilling tolerance of seedlings of different cotton genotypes and screen appropriate indicators for assess- ing chilling tolerance, to establish reliable mathematical ev... [Objectivc] This study aimed to investigate the chilling tolerance of seedlings of different cotton genotypes and screen appropriate indicators for assess- ing chilling tolerance, to establish reliable mathematical evaluation model for chilling tolerance of cotton, thus providing theoretical basis for breeding and promoting new chilling-tolerant cotton germplasms and large-scale evaluation of chilling tolerance of cotton varieties. [Method] Fifteen cotton varieties (lines) were used as experimental materials. The photosynthetic gas exchange parameters, chlorophyll fluorescence ki- netic parameters, chlorophyll content, relative soluble sugar content, malonaldehyde content, relative proiine content, relative conductivity and other 12 physiological indi- cators of seedling leaves under low temperature treatment (5 ℃, 12 h) and recovery treatment (25 ℃. 24 h) were determined; based on the chilling tolerance coefficient (CTC) of various individual indicators, the comprehensive evaluation of chilling toler- ance was conducled by using principal component analysis, hierarchical cluster anal- ysis and stepwise regression analysis. [Result] The results showed that the 12 indi- vidual physiological indicators could be classified into 7 independent comprehensive components by principal component analysis; 15 cotton varieties (lines) were clus- tered into three categories by using membership function method and hierarchical cluster analysis; the mathematical model for evaluating chilling tolerance of cotton seedlings was established: D =0.275 -0.244Fo1 +0.206Fv/Fm1+0.326g,%-0.056SS + 0.225MDA+O.O38REC (FF=0.995), and the evaluation accuracy of the equation was higher than 94.25%,0. Six identification indicators closely related to chilling tolerance were screened, including Fo,, Fv/Fm1, Seedling leaves of cotton varieties (lines) gs2, SS, MDA, and REC. [Conclusion] with high chilling tolerance are less dam- aged under low temperature stress, and are able to maintain relatively high photo- synthetic electron transport capacity and high stomatal conductance after recovery treatment, which is contributed to gas exchange and recovery of photosynthetic ca- pacity. Determination of the six indicators under the same stress condition can be adopted for rapid identification and prediction of the chilling tolerance of other cotton varieties, which provides basis for the breeding, promotion, identification and screen- ing of chilling tolerant germplasms. 展开更多
关键词 COTTON Chilling tolerance Principal components analysis Comprehensiveevaluation stepwise regression analysis
在线阅读 下载PDF
Minimum Data Set for Assessing Soil Quality in Farmland of Northeast China 被引量:20
19
作者 CHEN Yu-Dong WANG Huo-Yan +4 位作者 ZHOU Jian-Min XING Lu ZHU Bai-Shu ZHAO Yong-Cun CHEN Xiao-Qin 《Pedosphere》 SCIE CAS CSCD 2013年第5期564-576,共13页
Soil quality assessment provides a tool for agriculture managers and policy makers to gain a better understanding of how various agricultural systems affect soil resources. Soil quality of Hailun County, a typical soy... Soil quality assessment provides a tool for agriculture managers and policy makers to gain a better understanding of how various agricultural systems affect soil resources. Soil quality of Hailun County, a typical soybean (Glycine max L. Merill) growing area located in Northeast China, was evaluated using soil quality index (SQI) methods. Each SQI was computed using a minimum data set (MDS) selected using principal components analysis (PCA) as a data reduction technique. Eight MDS indicators were selected from 20 physical and chemical soil measurements. The MDS accounted for 74.9% of the total variance in the total data set (TDS). The SQI values for 88 soil samples were evaluated with linear scoring techniques and various weight methods. The results showed that SQI values correlated well with soybean yield (r = 0.658**) when indicators in MDS were weighted by the regression coefficient computed for each yield and index. Stepwise regression between yield and principal components (PCs) indicated that available boron (AvB), available phosphorus (AvP), available potassium (AvK), available iron (AvFe) and texture were the main factors limiting soybean yield. The method used to select an MDS could not only appropriately assess soil quality but also be used as a powerful tool for soil nutrient diagnosis at the regional level. 展开更多
关键词 norm value principal component analysis soil quality index stepwise regression
原文传递
Statistical Analysis of Leaf Water Use Efficiency and Physiology Traits of Winter Wheat Under Drought Condition 被引量:8
20
作者 WU Xiao-li BAO Wei-kai 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第1期82-89,共8页
Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency ... Five statistical methods including simple correlation, multiple linear regression, stepwise regression, principal components, and path analysis were used to explore the relationship between leaf water use efficiency (WUE) and physiological traits (photosynthesis rate, stomatal conductance, transpiration rate, intercellular CO2 concentration, etc.) of 29 wheat cultivars. The results showed that photosynthesis rate, stomatal conductance, and transpiration rate were the most important leaf WUE parameters under drought condition. Based on the results of statistical analyses, principal component analysis could be the most suitable method to ascertain the relationship between leaf WUE and relative physiological traits. It is reasonable to assume that high leaf WUE wheat could be obtained by selecting breeding materials with high photosynthesis rate, low transpiration rate, and stomatal conductance under dry area. 展开更多
关键词 leaf water use efficiency multiple linear regression path analysis principal components simple correlation stepwise regression wheat genotype
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部