Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 2...Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 200 mV, only one sublattice shows up in regions without moir6 patterns while both sublattices are seen in regions with moir6 pattens. This phenomenon can be used to identify AB stacked regions. The scattering characteristics at various types of step edges are different from those of monolayer graphene edges, either armchair or zigzag.展开更多
Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product s...Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product synth-esis.This review comprehensively examines the key steps and catalytic systems involved in the conversion of cel-lulose to isosorbide.Initially,the reaction pathway from cellulose to isosorbide is elucidated,emphasizing three critical steps:cellulose hydrolysis,glucose hydrogenation,and the two-step dehydration of sorbitol to produce isosorbide.Additionally,the activation energy and acidic sites during cellulose hydrolysis,the impact of metal particle size and catalyst support on hydrogenation,and the effects of catalyst acidity,pore structure,and reaction conditions on sorbitol dehydration have been thoroughly examined.Finally,the progress made in cellulose con-version to isosorbide is summarized,current challenges are highlighted,and future development trends are pro-jected in this review.展开更多
Functional traits are characteristics associated with the growth,reproduction,and survival of individuals.Studying them helps us understand how species traits drive ecosystem functioning.Thus,we evaluated the differen...Functional traits are characteristics associated with the growth,reproduction,and survival of individuals.Studying them helps us understand how species traits drive ecosystem functioning.Thus,we evaluated the differences in traits and functional diversity between forest edges and interiors,and how the inclusion of intraspecific trait variation affects the assessment of functional diversity in these habitats.We sampled 10 representative forest patches,and,in each patch,we established five plots on the edge and five inside the forest,collecting leaf functional traits,allometric and wood density for all species.We assessed functional diversity using functional richness(FRic),divergence(FDiv),and dispersion(FDis).To assess the impact of incorporating intraspecific variation when comparing trait values and functional diversity indices,we established two scenarios:one that excludes intraspecific variation and another that includes it.We found that the edge and interior harbor individuals with distinct functional traits that alleviate the inherent stress of each habitat.The edge was also found to be more selective in terms of the range of functional traits,resulting in lower functional diversity.Our findings demonstrated that habitats play an important role in intraspecific trait variation(ITV)and that statistically significant differences between habitats,in relation to traits and functional diversity,were better observed with the inclusion of intraspecific variation.Our study highlights the potential of using natural forest patches to understand the edge effect,regardless of habitat loss.Additionally,we emphasize the importance of incorporating ITV into functional diversity studies,especially those on a smaller scale that incorporate quantitative variables,to better understand and predict ecological patterns.展开更多
The primary Mach Reflection(MR)and pressure/heating loads on V-shaped Blunt Leading Edges(VBLEs)with variable elliptic cross-sections and conic crotches are theoretically investigated in this study.The simplified cont...The primary Mach Reflection(MR)and pressure/heating loads on V-shaped Blunt Leading Edges(VBLEs)with variable elliptic cross-sections and conic crotches are theoretically investigated in this study.The simplified continuity method is used to forecast the shock configurations.The theoretical predictions and the numerical simulations for the Mach stem and the triple point as well as the curved shock accord well.Based on the theoretical model,an analysis of the impact of the axial ratio a/b of the cross-sectional shape and the eccentricity e of the crotch sweep path on shock structures is carried out.The shock configurations obtained from the theoretical model enable the derivation of the transition boundaries between the primary MR and the same family Regular Reflection(sRR).It is found that the increase of a/b and e can both facilitate the primary MR to sRR transition.The resulting transition and the corresponding generation of the wall pressure and heat flux are then investigated.The results indicate that higher values of the ratio a/b can significantly reduce the wall pressure and heating loads by inducing the primary MR to sRR transition.Conversely,the increase in the eccentricity e results in increased loads,despite causing the same transition.展开更多
Reptile fauna should be considered a conservation objective,especially in respect of the impacts of climate change on their distribution and range’s dynamics.Investigating the environmental drivers of reptile species...Reptile fauna should be considered a conservation objective,especially in respect of the impacts of climate change on their distribution and range’s dynamics.Investigating the environmental drivers of reptile species richness and identifying their suitable habitats is a fundamental prerequisite to setting efficient long-term conservation measures.This study focused on geographical patterns and estimations of species richness for herpetofauna widely spread Z.vivipara,N.natrix,V.berus,A.colchica,and protected in Latvia C.austriaca,E.orbicularis,L.agilis inhabiting northern(model territory Latvia)and southern(model territory Ukraine)part of their European range.The ultimate goal was to designate a conservation network that will meet long-term goals for survival of the target species in the context of climate change.We used stacked species distribution models for creating maps depicting the distribution of species richness under current and future(by 2050)climates for marginal reptilepopulations.Using cluster analysis,we showed that this herpeto-complex can be divided into“widespread species”and“forest species”.For all forest species we predicted a climate-driven reduction in their distribution range both North(Latvia)and South(Ukraine).The most vulnerable populations of“forest species”tend to be located in the South of their range,as a consequence of northward shifts by 2050.By 2050 the greatest reduction in range is predicted for currently widely spread Z.vivipara(by 1.4 times)and V.berus(by 2.2 times).In terms of designing an effective protected-area network,these results permit to identify priority conservation areas where the full ensemble of selected reptile species can be found,and confirms the relevance of abioticmulti-factor GIS-modelling for achieving this goal.展开更多
This work presents a systematic analysis of proton-induced total ionizing dose(TID)effects in 1.2 k V silicon carbide(SiC)power devices with various edge termination structures.Three edge terminations including ring-a...This work presents a systematic analysis of proton-induced total ionizing dose(TID)effects in 1.2 k V silicon carbide(SiC)power devices with various edge termination structures.Three edge terminations including ring-assisted junction termination extension(RA-JTE),multiple floating zone JTE(MFZ-JTE),and field limiting rings(FLR)were fabricated and irradiated with45 Me V protons at fluences ranging from 1×10^(12) to 1×10^(14) cm^(-2).Experimental results,supported by TCAD simulations,show that the RA-JTE structure maintained stable breakdown performance with less than 1%variation due to its effective electric field redistribution by multiple P+rings.In contrast,MFZ-JTE and FLR exhibit breakdown voltage shifts of 6.1%and 15.2%,respectively,under the highest fluence.These results demonstrate the superior radiation tolerance of the RA-JTE structure under TID conditions and provide practical design guidance for radiation-hardened Si C power devices in space and other highradiation environments.展开更多
Due to the growth of smart cities,many real-time systems have been developed to support smart cities using Internet of Things(IoT)and emerging technologies.They are formulated to collect the data for environment monit...Due to the growth of smart cities,many real-time systems have been developed to support smart cities using Internet of Things(IoT)and emerging technologies.They are formulated to collect the data for environment monitoring and automate the communication process.In recent decades,researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations.However,the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity.These systems are vulnerable to a variety of cyberattacks,including unauthorized access,denial-of-service attacks,and data leakage,which compromise the network’s security.Additionally,uneven load balancing between mobile IoT devices,which frequently experience link interferences,compromises the trustworthiness of the system.This paper introduces a Multi-Agent secured framework using lightweight edge computing to enhance cybersecurity for sensor networks,aiming to leverage artificial intelligence for adaptive routing and multi-metric trust evaluation to achieve data privacy and mitigate potential threats.Moreover,it enhances the efficiency of distributed sensors for energy consumption through intelligent data analytics techniques,resulting in highly consistent and low-latency network communication.Using simulations,the proposed framework reveals its significant performance compared to state-of-the-art approaches for energy consumption by 43%,latency by 46%,network throughput by 51%,packet loss rate by 40%,and denial of service attacks by 42%.展开更多
This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagno...This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.展开更多
With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods ...With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.展开更多
The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges be...The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.展开更多
In this paper, we present a new method for reducing seismic noise while preserving structural and stratigraphic discontinuities. Structure-oriented edge-preserving smoothing requires information such as the local orie...In this paper, we present a new method for reducing seismic noise while preserving structural and stratigraphic discontinuities. Structure-oriented edge-preserving smoothing requires information such as the local orientation and edge of the reflections. The information is usually estimated from seismic data with full frequency bandwidth. When the data has a very low signal to noise ratio (SNR), the noise usually reduces the estimation accuracy. For seismic data with extremely low SNR, the dominant frequency has higher SNR than other frequencies, so it can provide orientation and edge information more reliably than other frequencies. Orientation and edge are usually described in terms of apparent reflection dips and coherence differences, respectively. When frequency changes, both dip and coherence difference change more slowly than the seismogram itself. For this reason, dip and coherence estimated from dominant frequency data can approximately represent those of other frequency data. Ricker wavelet are widely used in seismic modeling. The Marr wavelet has the same shape as Ricker wavelets in both time and frequency domains, so the Marr wavelet transform is selected to divide seismic data into several frequency bands. Reflection apparent dip as well as the edge information can be obtained by scanning the dominant frequency data. This information can be used to selectively smooth the frequency bands (dominant, low, and high frequencies) separately by structure-oriented edge-preserving smoothing technology. The ultimate noise-suppressed seismic data is the combination of the smoothed frequency band data. Application to synthetic and real data shows the method can effectively reduce noise, preserve edges, improve trackable reflection continuity, and maintain useful information in seismic data.展开更多
With positive integers r,t and n,where n≥rt and t≥2,the maximum number of edges of a simple graph of order n is estimated,which does not contain r disjoint copies of K_r for r=2 and 3.
基金supported by the National Basic Research Program of China(Grant No.2012CB921300)the National Natural Science Foundation of China(Grant Nos.11074005 and 91021007)the Chinese Ministry of Education
文摘Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 200 mV, only one sublattice shows up in regions without moir6 patterns while both sublattices are seen in regions with moir6 pattens. This phenomenon can be used to identify AB stacked regions. The scattering characteristics at various types of step edges are different from those of monolayer graphene edges, either armchair or zigzag.
文摘Upgrading of abundant cellulosic biomass to isosorbide can reduce the dependence on limited fossil resources and provide a sustainable way to produce isosorbide,utilized for polymers,medicine and health care product synth-esis.This review comprehensively examines the key steps and catalytic systems involved in the conversion of cel-lulose to isosorbide.Initially,the reaction pathway from cellulose to isosorbide is elucidated,emphasizing three critical steps:cellulose hydrolysis,glucose hydrogenation,and the two-step dehydration of sorbitol to produce isosorbide.Additionally,the activation energy and acidic sites during cellulose hydrolysis,the impact of metal particle size and catalyst support on hydrogenation,and the effects of catalyst acidity,pore structure,and reaction conditions on sorbitol dehydration have been thoroughly examined.Finally,the progress made in cellulose con-version to isosorbide is summarized,current challenges are highlighted,and future development trends are pro-jected in this review.
基金the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) by granting the scholarship (Finance Code 001)supported by the Brazilian National Council for Scientific and Technological Development (CNPq, project number 433828/2018-8,435598/2018-0)+1 种基金the Minas Gerais Research Funding Foundation (FAPEMIG, project number CRA APQ 00929-15)CNPq productivity fellowships
文摘Functional traits are characteristics associated with the growth,reproduction,and survival of individuals.Studying them helps us understand how species traits drive ecosystem functioning.Thus,we evaluated the differences in traits and functional diversity between forest edges and interiors,and how the inclusion of intraspecific trait variation affects the assessment of functional diversity in these habitats.We sampled 10 representative forest patches,and,in each patch,we established five plots on the edge and five inside the forest,collecting leaf functional traits,allometric and wood density for all species.We assessed functional diversity using functional richness(FRic),divergence(FDiv),and dispersion(FDis).To assess the impact of incorporating intraspecific variation when comparing trait values and functional diversity indices,we established two scenarios:one that excludes intraspecific variation and another that includes it.We found that the edge and interior harbor individuals with distinct functional traits that alleviate the inherent stress of each habitat.The edge was also found to be more selective in terms of the range of functional traits,resulting in lower functional diversity.Our findings demonstrated that habitats play an important role in intraspecific trait variation(ITV)and that statistically significant differences between habitats,in relation to traits and functional diversity,were better observed with the inclusion of intraspecific variation.Our study highlights the potential of using natural forest patches to understand the edge effect,regardless of habitat loss.Additionally,we emphasize the importance of incorporating ITV into functional diversity studies,especially those on a smaller scale that incorporate quantitative variables,to better understand and predict ecological patterns.
基金support of the National Natural Science Foundation of China(Nos.U20A2069,12302389,12372295)the Natural Science Foundation of Fujian Province,China(No.2023J01046)。
文摘The primary Mach Reflection(MR)and pressure/heating loads on V-shaped Blunt Leading Edges(VBLEs)with variable elliptic cross-sections and conic crotches are theoretically investigated in this study.The simplified continuity method is used to forecast the shock configurations.The theoretical predictions and the numerical simulations for the Mach stem and the triple point as well as the curved shock accord well.Based on the theoretical model,an analysis of the impact of the axial ratio a/b of the cross-sectional shape and the eccentricity e of the crotch sweep path on shock structures is carried out.The shock configurations obtained from the theoretical model enable the derivation of the transition boundaries between the primary MR and the same family Regular Reflection(sRR).It is found that the increase of a/b and e can both facilitate the primary MR to sRR transition.The resulting transition and the corresponding generation of the wall pressure and heat flux are then investigated.The results indicate that higher values of the ratio a/b can significantly reduce the wall pressure and heating loads by inducing the primary MR to sRR transition.Conversely,the increase in the eccentricity e results in increased loads,despite causing the same transition.
文摘Reptile fauna should be considered a conservation objective,especially in respect of the impacts of climate change on their distribution and range’s dynamics.Investigating the environmental drivers of reptile species richness and identifying their suitable habitats is a fundamental prerequisite to setting efficient long-term conservation measures.This study focused on geographical patterns and estimations of species richness for herpetofauna widely spread Z.vivipara,N.natrix,V.berus,A.colchica,and protected in Latvia C.austriaca,E.orbicularis,L.agilis inhabiting northern(model territory Latvia)and southern(model territory Ukraine)part of their European range.The ultimate goal was to designate a conservation network that will meet long-term goals for survival of the target species in the context of climate change.We used stacked species distribution models for creating maps depicting the distribution of species richness under current and future(by 2050)climates for marginal reptilepopulations.Using cluster analysis,we showed that this herpeto-complex can be divided into“widespread species”and“forest species”.For all forest species we predicted a climate-driven reduction in their distribution range both North(Latvia)and South(Ukraine).The most vulnerable populations of“forest species”tend to be located in the South of their range,as a consequence of northward shifts by 2050.By 2050 the greatest reduction in range is predicted for currently widely spread Z.vivipara(by 1.4 times)and V.berus(by 2.2 times).In terms of designing an effective protected-area network,these results permit to identify priority conservation areas where the full ensemble of selected reptile species can be found,and confirms the relevance of abioticmulti-factor GIS-modelling for achieving this goal.
基金supported by the IITP(Institute for Information&Communications Technology Planning&Evaluation)under the ITRC(Information Technology Research Center)support program(IITP-2025-RS-2024-00438288)grant funded by the Korea government(MSIT)+1 种基金National Research Council of Science&Technology(NST)grant by the MSIT(Aerospace Semiconductor Strategy Research Project No.GTL25051-000)supported by the IC Design Education Center(IDEC),Korea。
文摘This work presents a systematic analysis of proton-induced total ionizing dose(TID)effects in 1.2 k V silicon carbide(SiC)power devices with various edge termination structures.Three edge terminations including ring-assisted junction termination extension(RA-JTE),multiple floating zone JTE(MFZ-JTE),and field limiting rings(FLR)were fabricated and irradiated with45 Me V protons at fluences ranging from 1×10^(12) to 1×10^(14) cm^(-2).Experimental results,supported by TCAD simulations,show that the RA-JTE structure maintained stable breakdown performance with less than 1%variation due to its effective electric field redistribution by multiple P+rings.In contrast,MFZ-JTE and FLR exhibit breakdown voltage shifts of 6.1%and 15.2%,respectively,under the highest fluence.These results demonstrate the superior radiation tolerance of the RA-JTE structure under TID conditions and provide practical design guidance for radiation-hardened Si C power devices in space and other highradiation environments.
基金supported by the Deanship of Graduate Studies and Scientific Research at Jouf University.
文摘Due to the growth of smart cities,many real-time systems have been developed to support smart cities using Internet of Things(IoT)and emerging technologies.They are formulated to collect the data for environment monitoring and automate the communication process.In recent decades,researchers have made many efforts to propose autonomous systems for manipulating network data and providing on-time responses in critical operations.However,the widespread use of IoT devices in resource-constrained applications and mobile sensor networks introduces significant research challenges for cybersecurity.These systems are vulnerable to a variety of cyberattacks,including unauthorized access,denial-of-service attacks,and data leakage,which compromise the network’s security.Additionally,uneven load balancing between mobile IoT devices,which frequently experience link interferences,compromises the trustworthiness of the system.This paper introduces a Multi-Agent secured framework using lightweight edge computing to enhance cybersecurity for sensor networks,aiming to leverage artificial intelligence for adaptive routing and multi-metric trust evaluation to achieve data privacy and mitigate potential threats.Moreover,it enhances the efficiency of distributed sensors for energy consumption through intelligent data analytics techniques,resulting in highly consistent and low-latency network communication.Using simulations,the proposed framework reveals its significant performance compared to state-of-the-art approaches for energy consumption by 43%,latency by 46%,network throughput by 51%,packet loss rate by 40%,and denial of service attacks by 42%.
文摘This study proposes a lightweight rice disease detection model optimized for edge computing environments.The goal is to enhance the You Only Look Once(YOLO)v5 architecture to achieve a balance between real-time diagnostic performance and computational efficiency.To this end,a total of 3234 high-resolution images(2400×1080)were collected from three major rice diseases Rice Blast,Bacterial Blight,and Brown Spot—frequently found in actual rice cultivation fields.These images served as the training dataset.The proposed YOLOv5-V2 model removes the Focus layer from the original YOLOv5s and integrates ShuffleNet V2 into the backbone,thereby resulting in both model compression and improved inference speed.Additionally,YOLOv5-P,based on PP-PicoDet,was configured as a comparative model to quantitatively evaluate performance.Experimental results demonstrated that YOLOv5-V2 achieved excellent detection performance,with an mAP 0.5 of 89.6%,mAP 0.5–0.95 of 66.7%,precision of 91.3%,and recall of 85.6%,while maintaining a lightweight model size of 6.45 MB.In contrast,YOLOv5-P exhibited a smaller model size of 4.03 MB,but showed lower performance with an mAP 0.5 of 70.3%,mAP 0.5–0.95 of 35.2%,precision of 62.3%,and recall of 74.1%.This study lays a technical foundation for the implementation of smart agriculture and real-time disease diagnosis systems by proposing a model that satisfies both accuracy and lightweight requirements.
文摘With the rapid expansion of drone applications,accurate detection of objects in aerial imagery has become crucial for intelligent transportation,urban management,and emergency rescue missions.However,existing methods face numerous challenges in practical deployment,including scale variation handling,feature degradation,and complex backgrounds.To address these issues,we propose Edge-enhanced and Detail-Capturing You Only Look Once(EHDC-YOLO),a novel framework for object detection in Unmanned Aerial Vehicle(UAV)imagery.Based on the You Only Look Once version 11 nano(YOLOv11n)baseline,EHDC-YOLO systematically introduces several architectural enhancements:(1)a Multi-Scale Edge Enhancement(MSEE)module that leverages multi-scale pooling and edge information to enhance boundary feature extraction;(2)an Enhanced Feature Pyramid Network(EFPN)that integrates P2-level features with Cross Stage Partial(CSP)structures and OmniKernel convolutions for better fine-grained representation;and(3)Dynamic Head(DyHead)with multi-dimensional attention mechanisms for enhanced cross-scale modeling and perspective adaptability.Comprehensive experiments on the Vision meets Drones for Detection(VisDrone-DET)2019 dataset demonstrate that EHDC-YOLO achieves significant improvements,increasing mean Average Precision(mAP)@0.5 from 33.2%to 46.1%(an absolute improvement of 12.9 percentage points)and mAP@0.5:0.95 from 19.5%to 28.0%(an absolute improvement of 8.5 percentage points)compared with the YOLOv11n baseline,while maintaining a reasonable parameter count(2.81 M vs the baseline’s 2.58 M).Further ablation studies confirm the effectiveness of each proposed component,while visualization results highlight EHDC-YOLO’s superior performance in detecting objects and handling occlusions in complex drone scenarios.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Grant Nos.XDB28000000 and XDB0460000)the Quantum Science and Technology-National Science and Technology Major Project (Grant No.2021ZD0302600)the National Key Research and Development Program of China(Grant No.2024YFA1409002)。
文摘The hybridization gap in strained-layer InAs/In_(x)Ga_(1−x) Sb quantum spin Hall insulators(QSHIs)is significantly enhanced compared to binary InAs/GaSb QSHI structures,where the typical indium composition,x,ranges between 0.2 and 0.4.This enhancement prompts a critical question:to what extent can quantum wells(QWs)be strained while still preserving the fundamental QSHI phase?In this study,we demonstrate the controlled molecular beam epitaxial growth of highly strained-layer QWs with an indium composition of x=0.5.These structures possess a substantial compressive strain within the In_(0.5)Ga_(0.5)Sb QW.Detailed crystal structure analyses confirm the exceptional quality of the resulting epitaxial films,indicating coherent lattice structures and the absence of visible dislocations.Transport measurements further reveal that the QSHI phase in InAs/In_(0.5)Ga_(0.5)Sb QWs is robust and protected by time-reversal symmetry.Notably,the edge states in these systems exhibit giant magnetoresistance when subjected to a modest perpendicular magnetic field.This behavior is in agreement with the𝑍2 topological property predicted by the Bernevig–Hughes–Zhang model,confirming the preservation of topologically protected edge transport in the presence of enhanced bulk strain.
基金supported by China National Petroleum Corporation (CNPC) Innovation Fund (Grant No.07E1019)Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) (Grant No.200804251502)
文摘In this paper, we present a new method for reducing seismic noise while preserving structural and stratigraphic discontinuities. Structure-oriented edge-preserving smoothing requires information such as the local orientation and edge of the reflections. The information is usually estimated from seismic data with full frequency bandwidth. When the data has a very low signal to noise ratio (SNR), the noise usually reduces the estimation accuracy. For seismic data with extremely low SNR, the dominant frequency has higher SNR than other frequencies, so it can provide orientation and edge information more reliably than other frequencies. Orientation and edge are usually described in terms of apparent reflection dips and coherence differences, respectively. When frequency changes, both dip and coherence difference change more slowly than the seismogram itself. For this reason, dip and coherence estimated from dominant frequency data can approximately represent those of other frequency data. Ricker wavelet are widely used in seismic modeling. The Marr wavelet has the same shape as Ricker wavelets in both time and frequency domains, so the Marr wavelet transform is selected to divide seismic data into several frequency bands. Reflection apparent dip as well as the edge information can be obtained by scanning the dominant frequency data. This information can be used to selectively smooth the frequency bands (dominant, low, and high frequencies) separately by structure-oriented edge-preserving smoothing technology. The ultimate noise-suppressed seismic data is the combination of the smoothed frequency band data. Application to synthetic and real data shows the method can effectively reduce noise, preserve edges, improve trackable reflection continuity, and maintain useful information in seismic data.
文摘With positive integers r,t and n,where n≥rt and t≥2,the maximum number of edges of a simple graph of order n is estimated,which does not contain r disjoint copies of K_r for r=2 and 3.