The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes toge...The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes together provides an estimate of actual stem respiration(R_S).We know that the relative proportion of CO_2 in those fluxes varies greatly among tree species,but we do not yet have a clear understanding of the causes for this variation.One possible explanation is that species differ in stem radial CO_2 conductance(g_c).A high g_c would favor the E_A pathway and a low g_cwould favor the F_Tpathway.However,g_chas only been measured once in situ and only in a single tree species.We measured g_cusing two methods in stems of Fraxinus mandshurica Rupr.(ash)and Betula platyphylla Suk.(birch)trees in situ,along with R_S,E_A,F_T and DS.Stem radial CO_2 conductance was substantially greater in ash trees than in birch trees.Corresponding to that finding,in ash trees over 24 h,E_Aconstituted the entire flux of respired CO_2 ,and F_Twas negative,indicating that additional CO_2 ,probably transported from the root system via the xylem,was also diffusing into the atmosphere.In ash trees,F_T was negative over the entire 24 h,and this study represents the first time that has been reported.The addition of xylem-transported CO_2 to E_A caused E_Ato be 9% higher than the actual R_Sover the diel measurement period.Birch trees,which had lower g_c,also had a more commonly seen pattern,with E_A accounting for about 80% of the CO_2 released from local cell respiration and F_T accounting for the remainder.The inorganic carbon concentration in xylem sap was also lower in ash trees than in birch trees:2.7 versus 5.3 mmol L^(-1),respectively.Our results indicate that stem CO_2 conductance could be a very useful measurement to help explain differences among species in the proportion of respired CO_2 that remains in the xylem or diffuses into the atmosphere.展开更多
基金supported by the National Natural Science Foundation of China(31670476 and 31100284)the Fundamental Research Funds for the Central Universities(2572016CA02)
文摘The CO_2 released from respiring cells in woody tissues of trees can contribute to one of three fluxes:efflux to the atmosphere(E_A),internal xylem sap transport flux(F_T),and storage flux(DS).Adding those fluxes together provides an estimate of actual stem respiration(R_S).We know that the relative proportion of CO_2 in those fluxes varies greatly among tree species,but we do not yet have a clear understanding of the causes for this variation.One possible explanation is that species differ in stem radial CO_2 conductance(g_c).A high g_c would favor the E_A pathway and a low g_cwould favor the F_Tpathway.However,g_chas only been measured once in situ and only in a single tree species.We measured g_cusing two methods in stems of Fraxinus mandshurica Rupr.(ash)and Betula platyphylla Suk.(birch)trees in situ,along with R_S,E_A,F_T and DS.Stem radial CO_2 conductance was substantially greater in ash trees than in birch trees.Corresponding to that finding,in ash trees over 24 h,E_Aconstituted the entire flux of respired CO_2 ,and F_Twas negative,indicating that additional CO_2 ,probably transported from the root system via the xylem,was also diffusing into the atmosphere.In ash trees,F_T was negative over the entire 24 h,and this study represents the first time that has been reported.The addition of xylem-transported CO_2 to E_A caused E_Ato be 9% higher than the actual R_Sover the diel measurement period.Birch trees,which had lower g_c,also had a more commonly seen pattern,with E_A accounting for about 80% of the CO_2 released from local cell respiration and F_T accounting for the remainder.The inorganic carbon concentration in xylem sap was also lower in ash trees than in birch trees:2.7 versus 5.3 mmol L^(-1),respectively.Our results indicate that stem CO_2 conductance could be a very useful measurement to help explain differences among species in the proportion of respired CO_2 that remains in the xylem or diffuses into the atmosphere.