期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
BOUNDARY ELEMENT APPROXIMATION OF STEKLOV EIGENVALUE PROBLEM FOR HELMHOLTZ EQUATION 被引量:5
1
作者 Tang, WJ Guan, Z Han, HD 《Journal of Computational Mathematics》 SCIE EI CSCD 1998年第2期165-178,共14页
Steklov eigenvalue problem of Helmholtz equation is considered in the present paper. Steklov eigenvalue problem is reduced to a new variational formula on the boundary of a given domain, in which the self-adjoint prop... Steklov eigenvalue problem of Helmholtz equation is considered in the present paper. Steklov eigenvalue problem is reduced to a new variational formula on the boundary of a given domain, in which the self-adjoint property of the original differential operator is kept and the calculating of hyper-singular integral is avoided. A numerical example showing the efficiency of this method and an optimal error estimate are given. 展开更多
关键词 steklov eigenvalue problem differential operator error estimate boundary element approximation
原文传递
Local a priori/a posteriori error estimates of conforming finite elements approximation for Steklov eigenvalue problems 被引量:2
2
作者 YANG YiDu BI Hai 《Science China Mathematics》 SCIE 2014年第6期1319-1329,共11页
Based on the work of Xu and Zhou(2000),this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems,and proves a local a priori error estimate and a new local a pos... Based on the work of Xu and Zhou(2000),this paper makes a further discussion on conforming finite elements approximation for Steklov eigenvalue problems,and proves a local a priori error estimate and a new local a posteriori error estimate in ||·||1,Ω0 norm for conforming elements eigenfunction,which has not been studied in existing literatures. 展开更多
关键词 steklov eigenvalue problems conforming finite elements local error estimates
原文传递
An accurate a posteriori error estimator for the Steklov eigenvalue problem and its applications
3
作者 Fei Xu Qiumei Huang 《Science China Mathematics》 SCIE CSCD 2021年第3期623-638,共16页
In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenp... In this paper, a type of accurate a posteriori error estimator is proposed for the Steklov eigenvalue problem based on the complementary approach, which provides an asymptotic exact estimate for the approximate eigenpair. Besides, we design a type of cascadic adaptive finite element method for the Steklov eigenvalue problem based on the proposed a posteriori error estimator. In this new cascadic adaptive scheme, instead of solving the Steklov eigenvalue problem in each adaptive space directly, we only need to do some smoothing steps for linearized boundary value problems on a series of adaptive spaces and solve some Steklov eigenvalue problems on a low dimensional space. Furthermore, the proposed a posteriori error estimator provides the way to refine meshes and control the number of smoothing steps for the cascadic adaptive method. Some numerical examples are presented to validate the efficiency of the algorithm in this paper. 展开更多
关键词 steklov eigenvalue problem a posteriori error estimator cascadic multigrid method adaptive finite element method complementary method
原文传递
NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM
4
作者 Hal Bi Yidu Yang +1 位作者 Yuanyuan Yu Jiayu Han 《Journal of Computational Mathematics》 SCIE CSCD 2018年第5期682-692,共11页
This paper is concerned with the finite elements approximation for the Steklov eigen- value problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average inter... This paper is concerned with the finite elements approximation for the Steklov eigen- value problem on concave polygonal domain. We make full use of the regularity estimate and the characteristic of edge average interpolation operator of nonconforming Crouzeix- Raviart element, and prove a new and optimal error estimate in || ||o,δΩ for the eigenfunc- tion of linear conforming finite element and the nonconforming Crouzeix-Raviart element. Finally, we present some numerical results to support the theoretical analysis. 展开更多
关键词 steklov eigenvalue problem Concave polygonal domain Linear conforming finite element Nonconforming Crouzeix-Raviart element Error estimates.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部