期刊文献+
共找到18篇文章
< 1 >
每页显示 20 50 100
Stochastic response of steel columns subjected to lateral blast based on modified single degree of freedom(MSDOF)method
1
作者 Mohammad Momeni Chiara Bedon +1 位作者 Mohammad Ali Hadianfard Sina Malekpour 《Resilient Cities and Structures》 2025年第1期1-15,共15页
This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(S... This paper aims to evaluate the stochastic response of steel columns subjected to blast loads using the modified single degree of freedom(MSDOF)method,which assessed towards the conventional single degree of freedom(SDOF)and the experimentally validated Finite Element(FE)methods(LSDYNA).For this purpose,special atten-tion is given to calculating the response of H-shaped steel columns under blast.The damage amount is determined based on the support rotation criterion,which is expressed as a function of their maximum lateral mid-span dis-placement.To account for uncertainties in input parameters and obtain the failure probability,the Monte Carlo simulation(MCS)method is employed,complemented by the Latin Hypercube Sampling(LHS)method to reduce the number of simulations.A parametric analysis is hence performed to examine the effect of several input pa-rameters(including both deterministic and probabilistic parameters)on the probability of column damage as a function of support rotation.First,the MSDOF method confirms its higher accuracy in estimating the probability of column damage due to blast,compared to the conventional SDOF.The collected results also show that un-certainties of several input parameters have significant effects on the column behavior.In particular,geometric parameters(including cross-sectional characteristics,boundary conditions and column length)have major effect on the corresponding column response,in the same way of input blast load parameters and material properties. 展开更多
关键词 Stochastic response Steel column Lateral blast UNCERTAINTY Modified single degree of freedom(MSDOF) METHOD Parametric analysis
在线阅读 下载PDF
Cyclic response of floating geosynthetic-encased steel slag columns in soft clay
2
作者 Kaiwen Liu Bailin Li +3 位作者 Yuangang Li M.Hesham El Naggar Tengfei Wang Ruizhe Qiu 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1182-1193,共12页
Geosynthetic-encased stone column(GESC)technology for strengthening soft clay offers significant advantages in terms of cost-effectiveness,environmental sustainability,and engineering applicability.It is widely applie... Geosynthetic-encased stone column(GESC)technology for strengthening soft clay offers significant advantages in terms of cost-effectiveness,environmental sustainability,and engineering applicability.It is widely applied in treating soft foundations for railways,bridges,and embankments.This study evaluates the cyclic response of the geosynthetic-encased steel slag column(GESSC)composite foundation employing three-dimensional nonlinear finite element analysis.A numerical study is conducted to assess the cyclic response of floating GESSC considering the influence of key design variables,including cyclic load amplitude,loading frequency,geosynthetic encasement stiffness,and length-to-diameter ratio.Results show that both cyclic load amplitude and frequency affect the cumulative settlement and excess pore pressure within the GESSC foundation.Within specified limits,increasing the encasement stiffness and column length can significantly improve the GESSC load-bearing characteristics.The parametric study suggests an optimal geosynthetic encasement stiffness for the field prototype columns within the range of 4480–5760 kN/m and a critical steel slag column length of 10 times the column diameter. 展开更多
关键词 Steel slag column Soft clay Cyclic loading Numerical simulation GEOSYNTHETICS
在线阅读 下载PDF
Dynamic Response of RPC-Filled Steel Tubular Columns with High Load Carrying Capacity Under Axial Impact Loading 被引量:12
3
作者 田志敏 吴平安 贾建伟 《Transactions of Tianjin University》 EI CAS 2008年第6期441-449,共9页
Experimental investigation into impact-resistant behavior of reactive powder concrete (RPC)-filled steel tubular columns was conducted,and dynamic response of the columns under axial impact loading was studied by mean... Experimental investigation into impact-resistant behavior of reactive powder concrete (RPC)-filled steel tubular columns was conducted,and dynamic response of the columns under axial impact loading was studied by means of numerical simulation method.Increase coefficient of load carrying capacity and ratio of load carrying capacity between steel tube and RPC core of col-umns were obtained. 展开更多
关键词 RPC-filled steel tubular column impact test numerical simulation impact properties anti-explosive properties
在线阅读 下载PDF
Numerical and experimental study on seismic behavior of concrete-filled T-section steel tubular columns and steel beam planar frames 被引量:4
4
作者 ZHANG Ji-cheng HUANG Yong-shui +2 位作者 CHEN Yu DU Guo-feng ZHOU Ling-jiao 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第7期1774-1785,共12页
The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineeri... The seismic behavior of planar frames with concrete-filled T-section columns to steel beam was experimentally and numerically studied. A finite element analysis (FEA) model was developed to investigate the engineering properties of the planar frames. Two 1:2.5 reduced-scale specimens of T-section concrete-filled steel tubular column and steel beam of single-story and single-bay plane frames were designed and fabricated based on the design principles of strong-column, weak-beam and stronger-joint. One three-dimensional entity model of the investigated frame structure was built using a large-scale nonlinear finite-element analysis software ABAQUS. Experimental results show that the axial compression ratio has no effect on the failure mode of the structure, while with the increase of axial compression ratio and the dissipated energy ability increasing, the structural ductility decreased. The results from both experiments and simulations agree with each other, which verifies the validity and accuracy of the developed finite element model. Furthermore, the developed finite element model helps to reflect the detailed stress status of the investigated frame at different time and different positions. 展开更多
关键词 planar frames T-section steel tubular columns seismic behavior mechanical properties finite element analysis
在线阅读 下载PDF
Experimental Behavior of Recycled Aggregate Concrete Filled Steel Tubular Columns 被引量:2
5
作者 Thirumalai R Suresh Babu S 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1414-1417,共4页
During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this m... During the modernization or rehabilitation activity,the demolished structural waste causes large soil pollution and unavailability of natural aggregate is the big concern for the construction industry.Therefore,this manuscript deals with the Composite Steel Circular Column(CSCC)with Recycled Aggregate concrete(RAC)as infill is partly used,with the replacement of 25%and 50%in M30 grade of Concrete.And internal reinforcement steel is fully replaced by rolled steel tubes(circular and square)with varied thickness,ISA-unequal angle.Around 14 specimens are cast and examined under axial load for analysis of the deflection characteristics,the load-bearing capacity along with its buckling behavior.The experimental values are estimated through LVDT(linear variable differential transducer)at 3-phase.The curve of load-deflection is drawn with the load pattern.From the date interpretation,it is found column made of 50%-RAC has more than 25%-RAC. 展开更多
关键词 composite steel circular column(CSCC) recycled aggregate concrete(RAC) ISAinternational standard angle LVDT(linear variable differential transducer)
原文传递
Low cyclic fatigue performance of concrete-filled steel tube columns 被引量:1
6
作者 秦鹏 谭杨 肖岩 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4035-4042,共8页
Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete... Eight concrete-filled steel tubular(CFT) columns were tested subjected to cyclic loading under constant axial load. Experimental parameters included axial compression ratio, loading sequences, and strength of concrete and steel. The seismic performance of CFT columns and failure modes were analyzed. The test results show that different axial load ratios and loading sequences have effects on the load carrying capacity, ductility and energy dissipation capacity of CFT columns, as well as the failure modes of the CFT columns. The failure pattern can be categorized into two types: local buckling failure of steel tube in compression zone, and low cycle fatigue tearing rupture failure of steel tube. The seismic behavior was evaluated through the energy index obtained from each cycle. 展开更多
关键词 concrete-filled steel tubular columns low cyclic fatigue seismic performance failure mode
在线阅读 下载PDF
Three-dimensional nonlinear analysis of creep in concrete filled steel tube columns 被引量:1
7
作者 程晓东 李广宇 叶贵如 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期826-835,共10页
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th... This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design. 展开更多
关键词 Three-dimensional virtual laminated element (3D-VLE) Creep analysis Three-dimensional viscoelastic theory Three-parameters viscoelastic model Concrete filled steel tube columns
在线阅读 下载PDF
A simplified model to predict blast response of CFST columns 被引量:1
8
作者 ZHANG Jun-hao CHEN Bin JIANG Shi-yong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第3期683-691,共9页
In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers t... In order to study the dynamic response of concrete-filled steel tube(CFST) columns against blast loads,a simplified model is established utilizing the equivalent single-degree-of-freedom(SDOF) method,which considers the non-uniform distribution of blast loads on real column and the axial load-bending moment(P-M) interaction of CFST columns.Results of the SDOF analysis compare well with the experimental data reported in open literature and the values from finite element modeling(FEM) using the program LS-DYNA.Further comparisons between the results of SDOF and FEM analysis show that the proposed model is effective to predict the dynamic response of CFST columns with different blast conditions and column details.Also,it is found that the maximum responses of the columns are overestimated when ignoring the non-uniformity of blast loads,and that neglecting the effect of P-M interaction underestimates the maximum response of the columns with large axial load ratio against close range blast.The proposed SDOF model can be used in the design of the blast-loaded CFST columns. 展开更多
关键词 concrete-filled steel tube (CFST) columns dynamic response single-degree-of-freedom (SDOF) analysis non-uniformblast loads axial load-bending moment (P-M) interaction
在线阅读 下载PDF
Analysis and seismic tests of composite shear walls with CFST columns and steel plate deep beams 被引量:1
9
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Zhang Jianwei Xu Fangfang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第4期609-624,共16页
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat... A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures. 展开更多
关键词 concrete filled steel tube (CFST) column steel plate (SP) deep beam composite shear wall seismic test calculation and analysis
在线阅读 下载PDF
Numerical damage evaluation of perforated steel columns subjected to blast loading
10
作者 Mahmoud T.Nawar Ibrahim T.Arafa Osama M.Elhosseiny 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期735-746,共12页
The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not ... The structural performance of perforated steel columns(PSCs)is significantly more complex than the one of solid web I-shaped elements under the diversity of blast loading scenarios.The damage criterion of PSCs is not only related to initial deformation response during the blast but also the residual axial load capacity and it can be considered as a reliable index after the blast effects.Therefore,the PSCs damages will be studied in two stages;direct and post blast effects.In the present study,the dynamic response of PSCs was numerically evaluated under different levels of blast threats using LS-DYNA software.Extensive explicit finite element(FE)analyses are carried out to investigate the effect of various parameters,such as web opening shapes,boundary conditions and strengthening details on the damage index and toughness of the PSCs compared to the parent steel sections.The results of the comparative study show that the damage and toughness decrease when the support condition changes from pinned to fixed ends through the two stages of loadings.PSCs give high toughness compared to its parent sections during blast shock stage while,a remarkable decrease in toughness is observed during the application of axial gravity after blast shock.Furthermore,the web opening shapes have slight effects on the global dynamic behavior of PSCs,particularly in terms of residual capacity.On the contrary,the retrofitting strategy using both closed holes at end and vertical stiffeners have an effective enhancement to get higher toughness in case of the extreme blasts. 展开更多
关键词 Perforated steel columns Blast load Damage criterion Numerical modeling Explicit finite element analysis Web-opening shapes
在线阅读 下载PDF
Seismic behavior of steel tubular bridge columns equipped with low-yield-point steel plates in the root replaceable pier
11
作者 Li Haifeng Jiang Kaiping +1 位作者 Chen Yisu Han Xue 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第2期527-548,共22页
To enable rapid recovery of a steel bridge column after an earthquake,a novel tubular-section steel bridge column equipped with low-yield-point(LYP)steel tubular plates in the root replaceable pier is proposed.For the... To enable rapid recovery of a steel bridge column after an earthquake,a novel tubular-section steel bridge column equipped with low-yield-point(LYP)steel tubular plates in the root replaceable pier is proposed.For the purpose of discussing the seismic behavior of the novel steel bridge column,quasi-static tests and finite element simulation analyses of the specimens were carried out.The effects of parameters such as the axial compression ratio,eccentricity,and thickness and material strength of the tubular plate in the energy-dissipating zone are discussed.Experimental results from seven specimens that were subjected to four failure modes are presented.The damage to the quasi-static specimens is localized to the replaceable energy-dissipating pier.The seismic behavior of the novel steel bridge columns is significantly influenced by the axial compression ratio and eccentricity of specimens.Numerical results show that the high stress area of the specimens is mainly concentrated in the connection zone between the LYP steel tubular plate and the bottom steel plate,which is consistent with the position of the quasi-static specimen when it was prone to fracture.Finally,a calculation formula is proposed to facilitate the capacity prediction of this new steel tubular bridge column under repeated loading. 展开更多
关键词 earthquake-resilient steel tubular bridge column low-yield-point steel seismic performance quasi-static test
在线阅读 下载PDF
Ductility and Ultimate Capacity of Concrete-Filled Lattice Rectangular Steel Tube Columns
12
作者 Chengquan Wang Yun Zou +3 位作者 Tianqi Li Jie Ding Xiaoping Feng Tiange Lei 《Structural Durability & Health Monitoring》 EI 2018年第2期99-110,共12页
A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation c... A kind of concrete-filled lattice rectangular steel tube(CFLRST)column was put forward.The numerical simulation was modeled to analyze the mechanical characteristic of CFLRST column.By comparing the load-deformation curves from the test results,the rationality and reliability of the finite element model has been confirmed,moreover,the change of the section stiffness and stress in the forcing process and the ultimate bearing capacity of the column were analyzed.Based on the model,the comparison of ultimate bearing capacity and ductility between CFLRST column and reinforced concrete(RC)column were also analyzed.The results of the finite element analysis show that the loading process of CFLRST column consists of elastic stage,yield stage and failure stage.The failure modes are mainly strength failure and failure of elastoplastic instability.CFLRST column has higher bearing capacities in comparison with reinforced concrete columns with the same steel ratio.In addition,the stiffness degeneration of CFLRST column is slower than RC column and CFLRST column has good ductility. 展开更多
关键词 Steel-concrete composite structure concrete-filled lattice rectangular steel tube column nonlinear finite element ultimate strength DUCTILITY
在线阅读 下载PDF
Preface for Special Column on Automotive Steel
13
作者 Han Dong 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第11期I0001-I0002,共2页
It is believed that steels are still the most important materials for automobile in the foreseeable future because of the advantages in performance, cost, tolerance, fabrication, and recycling, etc. Over decades, a va... It is believed that steels are still the most important materials for automobile in the foreseeable future because of the advantages in performance, cost, tolerance, fabrication, and recycling, etc. Over decades, a variety of steels are developed and widely used in the car body, from low carbon steel to IF steel, BH steel, 展开更多
关键词 PREFACE Special column on Automotive Steel
原文传递
Research and Application on Machining Accuracy Control Technology and Installation Construction Points of Steel Structure Box Column
14
作者 LIUWei 《外文科技期刊数据库(文摘版)工程技术》 2022年第3期173-178,共6页
Through a series of steel column processing control measures, such as automatic cutting and blanking, U-shaped assembly, BOX assembly, CO2 backing weld, submerged arc automatic welding, the construction accuracy of la... Through a series of steel column processing control measures, such as automatic cutting and blanking, U-shaped assembly, BOX assembly, CO2 backing weld, submerged arc automatic welding, the construction accuracy of large steel box column is improved. Through the construction accuracy control of key process of box column on-site installation, the accurate positioning and installation of steel box column is ensured. The welding deformation problem is well solved through the verification of the solid engineering construction. This experience has a great reference value for steel box column processing and construction accuracy control. 展开更多
关键词 steel structure box column welding distortion installation of steel columns accuracy control
原文传递
Introduction to steel pylon hoisting of Taizhou Yangtze Bridge 被引量:1
15
作者 Xia Guoxing Zhang Ping 《Engineering Sciences》 EI 2011年第2期39-45,共7页
Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape al... Taizhou Yangtze River Bridge is the first three-pylon two-span suspension bridge in the world. The middle pylon adopts deep water caisson foundation. The superstructure of the middle pylon employs herringbone shape along the bridge, and portal shape in the transverse direction for the first time in China. In this paper, the basic construction procedure, equipment, construction steps, the key construction technologies and methods of steel pylon are introduced. 展开更多
关键词 steel-concrete composite segment steel pylon column steel cross beam herringbone shape closure MD3600 tower crane construction technology construction method
在线阅读 下载PDF
Structural behavior of intermediate length cold-formed steel rack columns with C-stitches 被引量:1
16
作者 M. ANBARASU Mahmud ASHRAF 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2019年第4期937-949,共13页
This article presents an experimental and numerical investigation on the strength and performance of intermediate length rack column sections with C-stitches under axial compression. The test program consisted of 10 a... This article presents an experimental and numerical investigation on the strength and performance of intermediate length rack column sections with C-stitches under axial compression. The test program consisted of 10 axial concentric compression tests on columns with and without C-stitches under pin end conditions for two different geometric lengths. Finite element (FE) models were developed using commercial FE package ABAQUS considering material and geometric nonlinearities as well as initial geometric imperfections. The elastic buckling properties of the section were calculated using readily available linear elastic buckling analysis tools based on Generalized Beam Theory (GBT) and Finite Strip Method (FSM). Obtained FE results were compared with those obtained experimentally, and once verified the developed FE modeling technique was used to carry out a parametric study to examine changes in structural response due to variations in length, depth and spacing of C-stitches. Observed influences of C-stitches on the behavior and resistance of the considered columns were carefully analyzed, and key design aspects are presented herein. 展开更多
关键词 cold-formed steel columns C-stitches intermediate length columns distortional buckling
原文传递
Stress-strain relationship of recycled self-compacting concrete filled steel tubular column subjected to eccentric compression
17
作者 Feng YU Cheng QIN +2 位作者 Shilong WANG Junjie JIANG Yuan FANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2020年第3期760-772,共13页
As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)co... As a typical compression member,the concrete-filled steel tube has been widely used in civil engineering structures.However,little research on recycled self-compacting concrete flled circular steel tubular(RSCCFCST)columns subjected to eccentric load was reported.In this study,21 specimens were designed and experimental studies on the stress-strain relationship of were carried out to study the mechanical behaviors.Recycled coarse aggregate replacement ratio,concrete strength grade,length to diameter ratio and eccentric distance of specimens were considered as the main experimental parameters to carry out eccentric compression tests.The corresponding stress-strain relationship curves were used to analyze the influence of concerned parameters on ecentric load-bearing capacity of RSCCFCST columns.The experimental results show that the strain of the eccentric compression stress-strain curves increase with the increase of recycled coarse aggregate replacement ratio and concrete strength grade.With increase of eccentric distance,the ductility of specimens increases while the bearing capacity decreases.Moreover,a phenomenological model of RSCCFCST columns is proposed,which exhibits versatile ability to capture the process during loading.The present study is expected to further understanding the behaviors and to provide guidance of RSCCFCST columns in design and engineering applications. 展开更多
关键词 concrete flleld circular steel tubular columns recycled self-compacting concrete eccentric compression recycled coarse aggregate replacement ratio stress-strain relationship
原文传递
Prediction of crippling load of I‑shaped steel columns by using soft computing techniques
18
作者 Rashid Mustafa 《AI in Civil Engineering》 2024年第1期70-88,共19页
This study is primarily aimed at creating three machine learning models:artificial neural net_(w)ork(ANN),random forest(RF),and k-nearest neighbour(KNN),so as to predict the crippling load(CL)of I-shaped steel columns... This study is primarily aimed at creating three machine learning models:artificial neural net_(w)ork(ANN),random forest(RF),and k-nearest neighbour(KNN),so as to predict the crippling load(CL)of I-shaped steel columns.Five input parameters,namely length of column(L),width of flange(bf),flange thickness(t_(f)),web thickness(t_(w))and height of column(H),are used to compute the crippling load(CL).A range of performance indicators,including the coefficient of determination(R_(2)),variance account factor(VAF),a-10 index,root mean square error(RMSE),mean absolute error(MAE)and mean absolute deviation(MAD),are used to assess the effectiveness of the established machine learning models.The results show that all of the three ML(machine learning)models can accurately predict the crippling load,but the performance of ANN is superior:it delivers the highest value of R_(2)=0.998 and the lowest value of RMSE=0.008 in the training phase,as well as the highest value of R_(2)=0.996 and the smaller value of RMSE=0.012 in the testing phase.Additional methods,including rank analysis,reliability analysis,regression plot,Taylor diagram and error matrix plot,are employed to assess the models’performance.The reliability index(β)of the models is calculated by using the first-order second moment(FOSM)technique,and the result is compared with the actual value.Additionally,sensitivity analysis is performed to check the impact of the input variables on the output(CL),finding that bf has the greatest impact on the crippling load,followed by t_(f),t_(w),H and L,in that order.This study demonstrates that ML techniques are useful for developing a reliable numerical tool for measuring the crippling load of I-shaped steel columns.It is found that the proposed techniques can also be used to predict other kinds of failures as well as different kinds of perforated columns. 展开更多
关键词 I-shaped steel column Crippling load ANN KNN RF Reliability analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部