In this paper, we use the equivalence relation between K-functional and modulus of smoothness, and give the Stechkin-Marchaud-type inequalities for linear combination of Bernstein-Durrmeyer operators . Moreover, we ob...In this paper, we use the equivalence relation between K-functional and modulus of smoothness, and give the Stechkin-Marchaud-type inequalities for linear combination of Bernstein-Durrmeyer operators . Moreover, we obtain the inverse result of approximation for linear combination of Bernstein-Durrmeyer operators with . Meanwhile we unify and extend some previous results.展开更多
Della Vecchia et al. (see [2]) introduced a kind of modified Bernstein operators which can be used to approximate functions with singularities at endpoints on [0,1]. In the present paper, we obtain a kind of pointwi...Della Vecchia et al. (see [2]) introduced a kind of modified Bernstein operators which can be used to approximate functions with singularities at endpoints on [0,1]. In the present paper, we obtain a kind of pointwise Stechkin-type inequalities for weighted approximation by the modified Bemsetin operators.展开更多
文摘In this paper, we use the equivalence relation between K-functional and modulus of smoothness, and give the Stechkin-Marchaud-type inequalities for linear combination of Bernstein-Durrmeyer operators . Moreover, we obtain the inverse result of approximation for linear combination of Bernstein-Durrmeyer operators with . Meanwhile we unify and extend some previous results.
文摘Della Vecchia et al. (see [2]) introduced a kind of modified Bernstein operators which can be used to approximate functions with singularities at endpoints on [0,1]. In the present paper, we obtain a kind of pointwise Stechkin-type inequalities for weighted approximation by the modified Bemsetin operators.