期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于Stacking集成学习的恶意URL识别方法
1
作者 孙杨 邱祥锋 《集美大学学报(自然科学版)》 2025年第2期179-185,共7页
针对传统URL(uniform resource locator)检测方法在恶意URL检测时存在的精确率不高、实时性差等问题,提出一种基于Stacking集成学习的算法模型。该模型用ADB(adaptive boosting)、LR(logistic regression)、SVM(support vector machine)... 针对传统URL(uniform resource locator)检测方法在恶意URL检测时存在的精确率不高、实时性差等问题,提出一种基于Stacking集成学习的算法模型。该模型用ADB(adaptive boosting)、LR(logistic regression)、SVM(support vector machine)、GBDT(gradient boosting decision tree)和GNB(gaussian naive bayes)5种机器学习算法作为初级分类器,其多层结构使不同机器学习模型之间可以优势互补,提升检测系统的整体性能表现。最后,通过在测试集上进行性能评估,选出性能最优的集成组合。实验结果表明,基于Stacking方法融合基学习器的集成学习模型在召回率、准确率、精确率、F 1值等多项指标上优于传统机器学习模型,对恶意URL检测的准确率可达96.77%。 展开更多
关键词 恶意URL 机器识别 Stacking模型 集成学习 基学习器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部