This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl...This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.展开更多
The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with...The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.展开更多
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I...The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.展开更多
In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy sy...In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.展开更多
1.Introduction As China’s first floating production platform in ultra-deepwater,the“Deep Sea No.1”energy station is a milestone in China’s deepwater resource utilization.The energy station is located in the LS17-2...1.Introduction As China’s first floating production platform in ultra-deepwater,the“Deep Sea No.1”energy station is a milestone in China’s deepwater resource utilization.The energy station is located in the LS17-2 gas field,150 km off the southeast coast of Hainan Island,China.It is a semi-submersible platform(Fig.1)with a displacement of 101 thousand tonnes and an operational draft of 35 to 40 m.The platform is permanently moored in 1422 m water by 16 chain-polyester-chain mooring lines in a 4×4 pattern,and six steel catenary risers(SCRs)are attached to the platform.It is the world’s first and only semi-submersible platform with the function of condensate storage,so it can be regarded as a floating production storage and offloading(FPSO)unit.With the ability to produce 3 billion m3 of natural gas each year(enough for over 10 million families),the Deep Sea No.1 energy station is a key step toward China’s energy independence.The LS17-2 gas field,where the Deep Sea No.1 energy station is located,was discovered in 2014.Plans for its development were made in 2015,followed by research and a preliminary design.Deep Sea No.1 went into operation on June 25,2021,and will operate onsite continuously without dry-docking for 30 years.展开更多
The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys th...The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.展开更多
Released in September 2024 by an oversight committee of the US National Aeronautics and Space Administration(NASA),a safety report about the International Space Station(ISS)cited,in addition to 50 other“areas of conc...Released in September 2024 by an oversight committee of the US National Aeronautics and Space Administration(NASA),a safety report about the International Space Station(ISS)cited,in addition to 50 other“areas of concern,”a troublesome leak first detected six years ago in one of the station’s modules[1].Given the persistent leak,called“a top safety risk”[2],and the fact that the space sta-tion has outlived its original life expectancy by more than 10 years,the agency’s current plans call for decommissioning the ISS in 2031 by dragging it into the Pacific Ocean[3].展开更多
The Hongyancun subway station in Chongqing,China,is 116 meters deep and the difference in air pressure often leaves users with clogged(堵塞的)ears when accessed via its elevator.When the air pressure outside the eardr...The Hongyancun subway station in Chongqing,China,is 116 meters deep and the difference in air pressure often leaves users with clogged(堵塞的)ears when accessed via its elevator.When the air pressure outside the eardrum(耳膜)becomes different than the pressure inside,you experience ear barotrauma(气压伤).It occurs most often during steep ascents and descents and is usually associated with plane take⁃offs and landings,or driving up or down mountains.Most subway stations dont usually cause ear barotrauma,because they arent deep or steep enough for your ears to register a significant enough difference in air pressure.But taking the elevator to reach Chinas deepest subway station might actually clog up your ears.Thats because it is located 116 meters below the surface,which is the equivalent of about 40 floors underground.展开更多
The implementation of the standard is expected to help electric vehicle battery swap stations to adapt to diversified needs and vehicle models,promoting the industry’s orderly and healthy development.
This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameter...This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameters;introduces the optimization of intelligent production processes,precision control,and integration of construction technology,and also mentions the verification of full lifecycle applications and quality control;as well as emphasizes the importance of BIM+IoT platform and looks forward to the future.展开更多
Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissur...Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.展开更多
The rapid expansion of photovoltaic(PV)deployment poses new challenges for large-scale and distributed maintenance,particularly in fishery-PV complementary plants where panels are deployed over water surfaces.This pap...The rapid expansion of photovoltaic(PV)deployment poses new challenges for large-scale and distributed maintenance,particularly in fishery-PV complementary plants where panels are deployed over water surfaces.This paper presents the design and implementation of an intelligent operation and maintenance(O&M)system that integrates a 3D holographic digital twin cloud platform with UAV-assisted inspection and localized cleaning.The proposed system supports multi-source data acquisition,including UAV imagery,infrared sensing,and DustIQ-based soiling monitoring,and provides real-time visualization of the PV plant through 1:13D reconstruction.UAVs are employed for both autonomous inspections,covering defects such as soiling,bird droppings,bypass diode faults,and panel disconnections and targeted cleaning in small water-covered areas.Field trials were conducted at Riyue and Chebu PV plants,with small-scale UAV cleaning validation in Chebu fish ponds.Results demonstrated that the system achieves efficient task scheduling,fault detection,and localized cleaning,thereby improving O&M efficiency,reducing costs,and enabling digitalized and intelligent management for large-scale PV stations.展开更多
As the core facility of offshore wind power systems,the structural safety of offshore booster stations directly impacts the stable operation of entire wind farms.With the global energy transition toward green and lowc...As the core facility of offshore wind power systems,the structural safety of offshore booster stations directly impacts the stable operation of entire wind farms.With the global energy transition toward green and lowcarbon goals,offshore wind power has emerged as a key renewable energy source,yet its booster stations face harsh marine environments,including persistent wave impacts,salt spray corrosion,and equipment-induced vibrations.Traditional monitoring methods relying on manual inspections and single-dimensional sensors suffer from critical limitations:low efficiency,poor real-time performance,and inability to capture millinewton-level stress fluctuations that signal early structural fatigue.To address these challenges,this study proposes a biomechanics-driven structural safety monitoring system integrated with deep learning.Inspired by biological stress-sensing mechanisms,the system deploys a distributedmulti-dimensional force sensor network to capture real-time stress distributions in key structural components.A hybrid convolutional neural network-radial basis function(CNN-RBF)model is developed:the CNN branch extracts spatiotemporal features from multi-source sensing data,while the RBF branch reconstructs the nonlinear stress field for accurate anomaly diagnosis.The three-tier architectural design—data layer(distributed sensor array),function layer(CNN-RBF modeling),and application layer(edge computing terminal)—enables a closedloop process from high-resolution data collection to real-time early warning,with data processing delay controlled within 200 ms.Experimental validation against traditional SOM-based systems demonstrates significant performance improvements:monitoring accuracy increased by 19.8%,efficiency by 23.4%,recall rate by 20.5%,and F1 score by 21.6%.Under extreme weather(e.g.,typhoons and winter storms),the system’s stability is 40% higher,with user satisfaction improving by 17.2%.The biomechanics-inspired sensor design enhances survival rates in salt fog(85.7%improvement)and dynamic loads,highlighting its robust engineering applicability for intelligent offshore wind farm maintenance.展开更多
Cross-border e-commerce usually involves multiple links such as online shopping platforms,payment systems,logistics services,customs clearance,and cross-border sales.From 2015 to 2023,China-Europe cross-border e-comme...Cross-border e-commerce usually involves multiple links such as online shopping platforms,payment systems,logistics services,customs clearance,and cross-border sales.From 2015 to 2023,China-Europe cross-border e-commerce has experienced rapid growth.Demand among Chinese consumers for European products has increased significantly,while European interest in Chinese goods has also steadily risen.Many small and medium-sized enterprises and cross-border e-commerce platforms have begun to enter this market.This article explores how independent e-commerce integrator platforms can leverage efficient,cost-effective supply chain services and brand advantages to attract Chinese and German SMEs.By doing so,these platforms can strengthen their market presence,reduce operational costs for SMEs,expand transaction volume,and ultimately create a win-win situation for all stakeholders.展开更多
基金supported by the Research Project of China Southern Power Grid(No.056200KK52222031).
文摘This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research.
基金National Natural Science Foundation of China under Grant No.51578463。
文摘The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.
基金supported by the National Natural Science Foundation of China(Nos.62272418,62102058)Basic Public Welfare Research Program of Zhejiang Province(No.LGG18E050011)the Major Open Project of Key Laboratory for Advanced Design and Intelligent Computing of the Ministry of Education under Grant ADIC2023ZD001,National Undergraduate Training Program on Innovation and Entrepreneurship(No.202410345054).
文摘The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.
基金State Grid Gansu Electric Power Company Science and Technology Program(Grant No.W24FZ2730008)National Natural Science Foundation of China(Grant No.51767017).
文摘In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.
文摘1.Introduction As China’s first floating production platform in ultra-deepwater,the“Deep Sea No.1”energy station is a milestone in China’s deepwater resource utilization.The energy station is located in the LS17-2 gas field,150 km off the southeast coast of Hainan Island,China.It is a semi-submersible platform(Fig.1)with a displacement of 101 thousand tonnes and an operational draft of 35 to 40 m.The platform is permanently moored in 1422 m water by 16 chain-polyester-chain mooring lines in a 4×4 pattern,and six steel catenary risers(SCRs)are attached to the platform.It is the world’s first and only semi-submersible platform with the function of condensate storage,so it can be regarded as a floating production storage and offloading(FPSO)unit.With the ability to produce 3 billion m3 of natural gas each year(enough for over 10 million families),the Deep Sea No.1 energy station is a key step toward China’s energy independence.The LS17-2 gas field,where the Deep Sea No.1 energy station is located,was discovered in 2014.Plans for its development were made in 2015,followed by research and a preliminary design.Deep Sea No.1 went into operation on June 25,2021,and will operate onsite continuously without dry-docking for 30 years.
基金Entrusted Fund of National Institute of Information and Communications Technology(NICT),Japan(JPJ012368C02401)。
文摘The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.
文摘Released in September 2024 by an oversight committee of the US National Aeronautics and Space Administration(NASA),a safety report about the International Space Station(ISS)cited,in addition to 50 other“areas of concern,”a troublesome leak first detected six years ago in one of the station’s modules[1].Given the persistent leak,called“a top safety risk”[2],and the fact that the space sta-tion has outlived its original life expectancy by more than 10 years,the agency’s current plans call for decommissioning the ISS in 2031 by dragging it into the Pacific Ocean[3].
文摘The Hongyancun subway station in Chongqing,China,is 116 meters deep and the difference in air pressure often leaves users with clogged(堵塞的)ears when accessed via its elevator.When the air pressure outside the eardrum(耳膜)becomes different than the pressure inside,you experience ear barotrauma(气压伤).It occurs most often during steep ascents and descents and is usually associated with plane take⁃offs and landings,or driving up or down mountains.Most subway stations dont usually cause ear barotrauma,because they arent deep or steep enough for your ears to register a significant enough difference in air pressure.But taking the elevator to reach Chinas deepest subway station might actually clog up your ears.Thats because it is located 116 meters below the surface,which is the equivalent of about 40 floors underground.
文摘The implementation of the standard is expected to help electric vehicle battery swap stations to adapt to diversified needs and vehicle models,promoting the industry’s orderly and healthy development.
文摘This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameters;introduces the optimization of intelligent production processes,precision control,and integration of construction technology,and also mentions the verification of full lifecycle applications and quality control;as well as emphasizes the importance of BIM+IoT platform and looks forward to the future.
基金National Natural Science Foundation of China under Grant No.52108473Project of Shaanxi Engineering Technology Research Center for Urban Geology and Underground Space under Grant No.2025KT-03Key Project of Education Department of Shaanxi Province under Grant No.23JY042。
文摘Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.
基金Joint Innovation Program of Guangdong(Project No.:2023A0505020003)。
文摘The rapid expansion of photovoltaic(PV)deployment poses new challenges for large-scale and distributed maintenance,particularly in fishery-PV complementary plants where panels are deployed over water surfaces.This paper presents the design and implementation of an intelligent operation and maintenance(O&M)system that integrates a 3D holographic digital twin cloud platform with UAV-assisted inspection and localized cleaning.The proposed system supports multi-source data acquisition,including UAV imagery,infrared sensing,and DustIQ-based soiling monitoring,and provides real-time visualization of the PV plant through 1:13D reconstruction.UAVs are employed for both autonomous inspections,covering defects such as soiling,bird droppings,bypass diode faults,and panel disconnections and targeted cleaning in small water-covered areas.Field trials were conducted at Riyue and Chebu PV plants,with small-scale UAV cleaning validation in Chebu fish ponds.Results demonstrated that the system achieves efficient task scheduling,fault detection,and localized cleaning,thereby improving O&M efficiency,reducing costs,and enabling digitalized and intelligent management for large-scale PV stations.
基金supported by the Science and Technology Project of China Huaneng Group Co.,Ltd.Research on Key Technologies for Monitoring and Protection of Offshore Wind Power Underwater Equipment(HNKJ21-H40).
文摘As the core facility of offshore wind power systems,the structural safety of offshore booster stations directly impacts the stable operation of entire wind farms.With the global energy transition toward green and lowcarbon goals,offshore wind power has emerged as a key renewable energy source,yet its booster stations face harsh marine environments,including persistent wave impacts,salt spray corrosion,and equipment-induced vibrations.Traditional monitoring methods relying on manual inspections and single-dimensional sensors suffer from critical limitations:low efficiency,poor real-time performance,and inability to capture millinewton-level stress fluctuations that signal early structural fatigue.To address these challenges,this study proposes a biomechanics-driven structural safety monitoring system integrated with deep learning.Inspired by biological stress-sensing mechanisms,the system deploys a distributedmulti-dimensional force sensor network to capture real-time stress distributions in key structural components.A hybrid convolutional neural network-radial basis function(CNN-RBF)model is developed:the CNN branch extracts spatiotemporal features from multi-source sensing data,while the RBF branch reconstructs the nonlinear stress field for accurate anomaly diagnosis.The three-tier architectural design—data layer(distributed sensor array),function layer(CNN-RBF modeling),and application layer(edge computing terminal)—enables a closedloop process from high-resolution data collection to real-time early warning,with data processing delay controlled within 200 ms.Experimental validation against traditional SOM-based systems demonstrates significant performance improvements:monitoring accuracy increased by 19.8%,efficiency by 23.4%,recall rate by 20.5%,and F1 score by 21.6%.Under extreme weather(e.g.,typhoons and winter storms),the system’s stability is 40% higher,with user satisfaction improving by 17.2%.The biomechanics-inspired sensor design enhances survival rates in salt fog(85.7%improvement)and dynamic loads,highlighting its robust engineering applicability for intelligent offshore wind farm maintenance.
文摘Cross-border e-commerce usually involves multiple links such as online shopping platforms,payment systems,logistics services,customs clearance,and cross-border sales.From 2015 to 2023,China-Europe cross-border e-commerce has experienced rapid growth.Demand among Chinese consumers for European products has increased significantly,while European interest in Chinese goods has also steadily risen.Many small and medium-sized enterprises and cross-border e-commerce platforms have begun to enter this market.This article explores how independent e-commerce integrator platforms can leverage efficient,cost-effective supply chain services and brand advantages to attract Chinese and German SMEs.By doing so,these platforms can strengthen their market presence,reduce operational costs for SMEs,expand transaction volume,and ultimately create a win-win situation for all stakeholders.