The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spec...The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 μg/m^3 in the new vehicle A, 1240 μg/m^3 in used vehicle B, and 132 μg/m^3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h^-1 to 0.67 h^-1, and in-vehicle TVOC concentration decreases from 1780 to 1201 μg/m^3.展开更多
In this paper, exact static conditions at the corner points for the bending of thickrectangular ptates are strictly. derived from the theorem of minimum potentialenerg[1].
Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation a...Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering.The data set of this study includes five parameters,namely slope height,slope angle,cohesion,internal friction angle,and peak ground acceleration.The available data is split into two categories:training(75%)and test(25%)sets.The output of the RT and REP tree models is evaluated using performance measures including accuracy(Acc),Matthews correlation coefficient(Mcc),precision(Prec),recall(Rec),and F-score.The applications of the aforementionedmethods for predicting slope stability are compared to one another and recently established soft computing models in the literature.The analysis of the Acc together with Mcc,and F-score for the slope stability in the test set demonstrates that the RT achieved a better prediction performance with(Acc=97.1429%,Mcc=0.935,F-score for stable class=0.979 and for unstable case F-score=0.935)succeeded by the REP tree model with(Acc=95.4286%,Mcc=0.896,F-score stable class=0.967 and for unstable class F-score=0.923)for the slope stability dataset The analysis of performance measures for the slope stability dataset reveals that the RT model attains comparatively better and reliable results and thus should be encouraged in further research.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
针对电气化铁路高负序含量、谐波污染等电能质量问题,讨论一种能够进行负序与谐波综合补偿的铁路功率调节器(railway static power conditioner,RPC)。为了提高RPC的控制性能与效果,构建RPC的电流内环基于重复预测的无差拍控制和电压外...针对电气化铁路高负序含量、谐波污染等电能质量问题,讨论一种能够进行负序与谐波综合补偿的铁路功率调节器(railway static power conditioner,RPC)。为了提高RPC的控制性能与效果,构建RPC的电流内环基于重复预测的无差拍控制和电压外环的复合准PI控制的双环控制策略,实现了对参考电流信号的快速、平滑跟踪和直流侧电压的平稳控制。考虑到系统模型参数的扰动性与波动性,通过采用基于遗忘因子的递推最小二乘算法来动态辨识系统参数,增强控制系统的适应性。最后进行仿真和实验验证,结果证实了所提方法的正确性。展开更多
为解决高速铁路牵引供电系统中的负序、谐波电能质量问题,提出采用铁路功率调节器(railway static power conditioner,RPC)进行负序和谐波电流综合治理。RPC包含共用直流侧电容的背靠背形式的两变流器,控制其功率能够实现负序补偿和谐...为解决高速铁路牵引供电系统中的负序、谐波电能质量问题,提出采用铁路功率调节器(railway static power conditioner,RPC)进行负序和谐波电流综合治理。RPC包含共用直流侧电容的背靠背形式的两变流器,控制其功率能够实现负序补偿和谐波抑制。分析RPC的基本结构和补偿原理后,提出三相V/v变压器下负序和谐波补偿电流检测方法,为保证RPC直流侧电压稳定和实现负序和谐波补偿,提出RPC直流侧电压和两变流器电流控制策略。最后,进行仿真验证。仿真结果表明,在该文提出的负序和谐波检测方法及控制策略下,RPC具有良好的负序和谐波补偿性能。展开更多
为解决电气化铁路牵引供电系统中三相网侧谐波、无功和负序等电能质量问题,同时满足电气化铁路补偿容量大的要求,提出了采用并联型铁路功率调节器(railway static power conditioner,RPC)配合降压变压器的综合补偿方案,具体研究了并联型...为解决电气化铁路牵引供电系统中三相网侧谐波、无功和负序等电能质量问题,同时满足电气化铁路补偿容量大的要求,提出了采用并联型铁路功率调节器(railway static power conditioner,RPC)配合降压变压器的综合补偿方案,具体研究了并联型RPC的控制策略并进行了仿真分析。提出了对RPC的指令电流检测采用平衡补偿电流检测法,对RPC的补偿电流控制采用基于比例谐振(proportion resonance,PR)控制器的三角波比较控制方式,同时将载波相移(carrier phase shift,CPS)技术应用于RPC的控制。最后,利用MATLAB/Simulink搭建了由2个RPC并联构成的补偿方案的仿真模型。仿真结果表明:RPC投入运行后,三相网侧电流为与电网电压同相位的三相正弦对称电流,只含有开关频率整数倍次的高次谐波;通过进一步采用CPS技术,开关频率奇数倍次的高次谐波被有效滤除,三相网侧电流总谐波畸变率由8.04%降低为2.24%。仿真结果验证了并联型RPC在解决牵引供电系统中三相网侧电流谐波、无功和负序等电能质量问题方面的可行性与优越性,为并联型RPC的工程应用提供了有价值的参考。展开更多
文摘The types and quantities of volatile organic compounds (VOCs) inside vehicles have been determined in one new vehicle and two old vehicles under static conditions using the Thermodesorber-Gas Chromatograph/Mass Spectrometer (TD-GC/MS). Air sampling and analysis was conducted under the requirement of USEPA Method TO-17. A room-size, environment test chamber was utilized to provide stable and accurate control of the required environmental conditions (temperature, humidity, horizontal and vertical airflow velocity, and background VOCs concentration). Static vehicle testing demonstrated that although the amount of total volatile organic compounds (TVOC) detected within each vehicle was relatively distinct (4940 μg/m^3 in the new vehicle A, 1240 μg/m^3 in used vehicle B, and 132 μg/m^3 in used vehicle C), toluene, xylene, some aromatic compounds, and various C7-C12 alkanes were among the predominant VOC species in all three vehicles tested. In addition, tetramethyl succinonitrile, possibly derived from foam cushions was detected in vehicle B. The types and quantities of VOCs varied considerably according to various kinds of factors, such as, vehicle age, vehicle model, temperature, air exchange rate, and environment airflow velocity. For example, if the airflow velocity increases from 0.1 m/s to 0.7 m/s, the vehicle's air exchange rate increases from 0.15 h^-1 to 0.67 h^-1, and in-vehicle TVOC concentration decreases from 1780 to 1201 μg/m^3.
文摘In this paper, exact static conditions at the corner points for the bending of thickrectangular ptates are strictly. derived from the theorem of minimum potentialenerg[1].
基金supported by the National Key Research and Development Plan of China under Grant No.2021YFB2600703.
文摘Slope stability prediction plays a significant role in landslide disaster prevention and mitigation.This paper’s reduced error pruning(REP)tree and random tree(RT)models are developed for slope stability evaluation and meeting the high precision and rapidity requirements in slope engineering.The data set of this study includes five parameters,namely slope height,slope angle,cohesion,internal friction angle,and peak ground acceleration.The available data is split into two categories:training(75%)and test(25%)sets.The output of the RT and REP tree models is evaluated using performance measures including accuracy(Acc),Matthews correlation coefficient(Mcc),precision(Prec),recall(Rec),and F-score.The applications of the aforementionedmethods for predicting slope stability are compared to one another and recently established soft computing models in the literature.The analysis of the Acc together with Mcc,and F-score for the slope stability in the test set demonstrates that the RT achieved a better prediction performance with(Acc=97.1429%,Mcc=0.935,F-score for stable class=0.979 and for unstable case F-score=0.935)succeeded by the REP tree model with(Acc=95.4286%,Mcc=0.896,F-score stable class=0.967 and for unstable class F-score=0.923)for the slope stability dataset The analysis of performance measures for the slope stability dataset reveals that the RT model attains comparatively better and reliable results and thus should be encouraged in further research.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
文摘针对电气化铁路高负序含量、谐波污染等电能质量问题,讨论一种能够进行负序与谐波综合补偿的铁路功率调节器(railway static power conditioner,RPC)。为了提高RPC的控制性能与效果,构建RPC的电流内环基于重复预测的无差拍控制和电压外环的复合准PI控制的双环控制策略,实现了对参考电流信号的快速、平滑跟踪和直流侧电压的平稳控制。考虑到系统模型参数的扰动性与波动性,通过采用基于遗忘因子的递推最小二乘算法来动态辨识系统参数,增强控制系统的适应性。最后进行仿真和实验验证,结果证实了所提方法的正确性。
文摘为解决铁路供电负序问题,同时兼顾无功补偿与谐波治理,由2个单相模块化多电平换流器(modular multilevel converter,MMC)背靠背连接构造铁路功率调节器(MMC-RPC),并直接接入牵引网。较传统RPC而言,取消了降压变压器,提高了直流电压,减小了直流端电流。针对铁路供电,分析单相系统的电压与功率间的数学模型,设计了一种无需系统角频率和电感参数的直接功率控制策略(direct power control,DPC)。以V/v牵引变为例,在Matlab/Simulink中搭建仿真模型,仿真结果验证了所提策略的有效性。
文摘为解决高速铁路牵引供电系统中的负序、谐波电能质量问题,提出采用铁路功率调节器(railway static power conditioner,RPC)进行负序和谐波电流综合治理。RPC包含共用直流侧电容的背靠背形式的两变流器,控制其功率能够实现负序补偿和谐波抑制。分析RPC的基本结构和补偿原理后,提出三相V/v变压器下负序和谐波补偿电流检测方法,为保证RPC直流侧电压稳定和实现负序和谐波补偿,提出RPC直流侧电压和两变流器电流控制策略。最后,进行仿真验证。仿真结果表明,在该文提出的负序和谐波检测方法及控制策略下,RPC具有良好的负序和谐波补偿性能。