A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and ...A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.展开更多
Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter ...Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.展开更多
Conventional fault tree and reliability analysis do not reflect the characteristics of basic events as non stationary and ergodic process. To overcome these drawbacks, theory of fuzzy sets is employed to run fault tre...Conventional fault tree and reliability analysis do not reflect the characteristics of basic events as non stationary and ergodic process. To overcome these drawbacks, theory of fuzzy sets is employed to run fault tree analysis(FTA) of roller oscillating tooth gear drive(ROTGD), the relative frequencies of basic events are considered as symmetrical normal fuzzy numbers, from the logical relationship between different events in the fault tree and fuzzy operators AND and OR, fuzzy probability of top event is solved. Finally, an example is given to demonstrate a real ROTGD system.展开更多
In the past, the probabilities of basic events were described as triangular or trapezoidal fuzzy number that cannot characterize the common distribution of the primary events in engineering, and the fault tree analyze...In the past, the probabilities of basic events were described as triangular or trapezoidal fuzzy number that cannot characterize the common distribution of the primary events in engineering, and the fault tree analyzed by fuzzy set theory did not include repeated basic events. This paper presents a new method to analyze the fault tree by using normal fuzzy number to describe the fuzzy probability of each basic event which is more suitably used to analyze the reliability in safety systems, and then the formulae of computing the fuzzy probability of the top event of the fault tree which includes repeated events are derived. Finally, an example is given.展开更多
The diagnosability of discrete event systems has been a topic of interest to many researchers. The diagnosability conditions for various systems have evolved based on a regularity condition that is imposed on faulty t...The diagnosability of discrete event systems has been a topic of interest to many researchers. The diagnosability conditions for various systems have evolved based on a regularity condition that is imposed on faulty traces with respect to their observable continuations. Improving upon this weak but necessary condition, a new model of diagnosability that is based on sensor outputs, which are called observatio ns, upon a command in put is proposed in this paper. Necessary and sufficient con ditions are derived for the proposed diagnosability model. The search performance of the proposed diagnosability condition is of linear complexity in terms of the power set of the system events and observations, compared to the exponential complexity of the search with the existing diag nosability regularity condition. Moreover, a system that is not diag no sable according to the existi ng diag nosability condition may be diagnosable in the proposed diagnosability model, which includes observations.展开更多
基金supported by the National Natural Science Foundation of China(11832012)
文摘A state/event fault tree(SEFT)is a modeling technique for describing the causal chains of events leading to failure in software-controlled complex systems.Such systems are ubiquitous in all areas of everyday life,and safety and reliability analyses are increasingly required for these systems.SEFTs combine elements from the traditional fault tree with elements from state-based techniques.In the context of the real-time safety-critical systems,SEFTs do not describe the time properties and important timedependent system behaviors that can lead to system failures.Further,SEFTs lack the precise semantics required for formally modeling time behaviors.In this paper,we present a qualitative analysis method for SEFTs based on transformation from SEFT to timed automata(TA),and use the model checker UPPAAL to verify system requirements’properties.The combination of SEFT and TA is an important step towards an integrated design and verification process for real-time safety-critical systems.Finally,we present a case study of a powerboat autopilot system to confirm our method is viable and valid after achieving the verification goal step by step.
基金supported by the National Natural Science Foundation of China (Grant No. 42104001)。
文摘Two long-term slow slip events(SSEs) in Lower Cook Inlet, Alaska, were identified by Li SS et al.(2016). The earlier SSE lasted at least 9 years with M_(w) ~7.8 and had an average slip rate of ~82 mm/year. The latter SSE, occurring in a similar area, lasted approximately 2 years with M_(w) ~7.2 and an average slip rate of ~91 mm/year. To test whether these SSEs triggered earthquakes near the slow slip area, we calculated the Coulomb stressing rate changes on receiver faults by using two fault geometry definitions: nodal planes of focal mechanism solutions of past earthquakes, and optimally oriented fault planes. Regions in the shallow slab(30–60 km) that experienced a significant increase in the Coulomb stressing rate due to slip by the SSEs showed an increase in seismicity rates during SSE periods. No correlation was found in the volumes that underwent a significant increase in the Coulomb stressing rate during the SSE within the crust and the intermediate slab. We modeled variations in seismicity rates by using a combination of the Coulomb stress transfer model and the framework of rate-and-state friction. Our model indicated that the SSEs increased the Coulomb stress changes on adjacent faults,thereby increasing the seismicity rates even though the ratio of the SSE stressing rate to the background stressing rate was small. Each long-term SSE in Alaska brought the megathrust updip of the SSE areas closer to failure by up to 0.1–0.15 MPa. The volumes of significant Coulomb stress changes caused by the Upper and Lower Cook Inlet SSEs did not overlap.
文摘Conventional fault tree and reliability analysis do not reflect the characteristics of basic events as non stationary and ergodic process. To overcome these drawbacks, theory of fuzzy sets is employed to run fault tree analysis(FTA) of roller oscillating tooth gear drive(ROTGD), the relative frequencies of basic events are considered as symmetrical normal fuzzy numbers, from the logical relationship between different events in the fault tree and fuzzy operators AND and OR, fuzzy probability of top event is solved. Finally, an example is given to demonstrate a real ROTGD system.
文摘In the past, the probabilities of basic events were described as triangular or trapezoidal fuzzy number that cannot characterize the common distribution of the primary events in engineering, and the fault tree analyzed by fuzzy set theory did not include repeated basic events. This paper presents a new method to analyze the fault tree by using normal fuzzy number to describe the fuzzy probability of each basic event which is more suitably used to analyze the reliability in safety systems, and then the formulae of computing the fuzzy probability of the top event of the fault tree which includes repeated events are derived. Finally, an example is given.
文摘安全隐患、未遂事故等异常事件是小事故升级为重大事故的早期预警,可用来建立事故模型识别源头事件及纠正保护系统中的不安全因素。结合液化天然气(LNG)库区的工艺特点和事故特征,对系统危害辨识、预测及预防(system hazard identification,prediction and prevention,SHIPP)模型改进,提出一种将故障树、贝叶斯网络与A-star算法融合的风险评估建模方法。首先依托专家经验,结合事故报警数据库中的异常事件建立安全屏障模型和故障树;然后遵循链式法则将故障树映射为贝叶斯网络;最后与改进的A-star算法融合确定事故发生途径。基于LNG事故报警数据库的研究表明,该方法相较于传统的SHIPP模型,可以实现动态前向风险评估并量化事故之间的条件概率,反向模拟安全屏障失效时的事故发生过程。研究成果可为LNG库区的系统安全、风险规避提供合理设计及决策。
文摘The diagnosability of discrete event systems has been a topic of interest to many researchers. The diagnosability conditions for various systems have evolved based on a regularity condition that is imposed on faulty traces with respect to their observable continuations. Improving upon this weak but necessary condition, a new model of diagnosability that is based on sensor outputs, which are called observatio ns, upon a command in put is proposed in this paper. Necessary and sufficient con ditions are derived for the proposed diagnosability model. The search performance of the proposed diagnosability condition is of linear complexity in terms of the power set of the system events and observations, compared to the exponential complexity of the search with the existing diag nosability regularity condition. Moreover, a system that is not diag no sable according to the existi ng diag nosability condition may be diagnosable in the proposed diagnosability model, which includes observations.